BAB I PENDAHULUAN Latar Belakang Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang Masalah"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan di berbagai disiplin ilmu, seperti : fisika, kimia, ekonomi dan lain-lain. Di antara berbagai disiplin ilmu tersebut, fisika dapat dikatakan mempunyai hubungan yang paling erat, karena hampir di semua permasalahannya dapat dimodelkan ke bentuk persamaan matematika, sehingga permasalahan-permasalahan fisika yang umumnya hanya tertulis secara teoritis akan menjadi lebih sederhana dan lebih mudah dicari penyelesaiannya. Saat ini, telah banyak permasalahan fisika yang telah dimodelkan ke bentuk persamaan matematika, di antaranya yaitu : perpindahan panas, gelombang, aliran listrik dan masih banyak lagi lainnya. Salah satu pemodelan yang diterapkan pada permasalahan perpindahan panas adalah persamaan Laplace. Ketika terjadi konduksi panas pada sebuah benda padat berdimensi dua, jika suhu telah mencapai kondisi stasioner, maka keadaan seperti itulah yang dapat dimodelkan ke persamaan Laplace. Bentuk umum persamaan Laplace dua dimensi adalah 2 f x f y 2 = 0. Dapat dilihat dari persamaan tersebut, bahwa persamaan Laplace tidak bergantung pada besaran waktu, melainkan hanya pada besaran ruang dimensinya. Sama halnya dengan persamaan-persamaan diferensial parsial lainnya, permasalahan dalam bentuk persamaan Laplace biasanya diikuti oleh masalah syarat batas. Permasalahan dalam bentuk persamaan Laplace yang dilengkapi dengan masalah syarat batas memberikan tingkat kesulitan yang berbeda-beda dalam menentukan solusinya sesuai dengan syarat batas yang diberikan. Oleh karena itu, tidak 1

2 2 semua solusi dapat ditentukan secara analitik, sehingga para ilmuwan banyak melakukan penelitian dalam mengembangkan metode numerik untuk mendapatkan pendekatan solusi analitiknya. Beberapa metode numerik yang telah dikembangkan oleh para ilmuwan adalah metode elemen hingga (Finite Elements Method/ FEM), metode beda hingga (Finite Different Method/ FDM) dan metode elemen batas (Boundary Elements Method/ BEM). Berbeda dengan FEM dan FDM yang dapat diklasifikasikan ke dalam metode domain, BEM mengklasifikasi dirinya sebagai metode batas. Demikian karena dalam penerapannya, diskritisasi yang digunakan oleh BEM tidak pada domain melainkan pada batas domainnya. Dari segi popularitas, BEM berada di bawah FEM dan FDM, namun dari segi fleksibitas penggunaannya, BEM dapat dikatakan lebih unggul dibandingkan keduanya. Penghitungan dengan metode elemen batas tidak mudah dilakukan secara manual, karena untuk mendapatkan pendekatan solusi dengan nilai error yang kecil, membutuhkan waktu yang lama dan tingkat ketelitian yang tinggi. Oleh karena itu, para ilmuwan mengembangkan program-program komputer untuk membantu penghitungan dengan metode ini. Di antaranya, dalam buku karangan (Ang, 2007) menggunakan bahasa pemrograman FORTRAN 77 dalam menyelesaikan persamaan Laplace dengan BEM. Selain FORTRAN 77, terdapat bahasa pemrograman lain, yaitu MATLAB yang telah menjadi bahasa pemrograman yang semakin lazim digunakan oleh para ilmuwan matematika. Beberapa uraian yang telah disampaikan penulis inilah, yang melatar belakangi dalam penulisan skripsi mengenai metode elemen batas untuk menyelesaikan permasalahan panas, khususnya dengan bantuan bahasa pemrograman MATLAB Rumusan Masalah Permasalahan yang dapat dirumuskan oleh penulis dalam skripsi ini adalah sebagai berikut : 1. Menentukan solusi umum dari suatu fungsi yang memenuhi persamaan Laplace

3 3 dan dilengkapi dengan syarat batas, menggunakan metode eleman batas. 2. Mengimplementasikan langkah-langkah penyelesaian persamaan Laplace dengan metode elemen batas ke dalam syntax program MATLAB. 3. Mendeskripsikan masalah perpindahan panas ke dalam bentuk persamaan Laplace. 4. Menentukan distribusi suhu dari permasalahan konduksi panas dengan menggunakan metode elemen batas disertai perbandingan solusinya jika menggunakan metode lain Batasan Masalah Permasalahan yang dibahas pada skripsi ini dibatasi pada implementasi metode elemen batas untuk menentukan solusi persamaan Laplace dengan syarat batas diketahui. Sehingga dalam penerapannya di masalah fisika, penulis mengimplementasikan metode elemen batas untuk menentukan distribusi suhu benda berdimensi dua yang berada pada keadaan stasioner Tujuan dan Manfaat Penelitian Tujuan dari penulisan skripsi ini untuk memenuhi syarat kelulusan program Strata-1 (S1) program studi matematika Universitas Gadjah Mada. Selain itu, penulis juga bermaksud untuk memberikan tambahan wawasan kepada pembaca mengenai metode elemen batas yang menjadi salah satu alternatif penyelesaian permasalahan dengan persamaan Laplace. Lebih lanjut, penulis juga memberikan contoh kepada pembaca terkait impelementasi dari metode elemen batas dalam menyelesaikan permasalahan di bidang fisika, khususnya pada permasalahan panas Tinjauan Pustaka Metode Elemen Batas yang menjadi pembahasan utama dalam skripsi ini, mengacu pada buku karangan (Ang, 2007). Pada buku karangan tersebut, diberikan juga penjelasan mengenai persamaan Laplace secara umum. Untuk implementasi

4 4 dari metode elemen batas, yang dikhususkan pada masalah perpindahan panas, penulis menggabungkan beberapa teori mengenai panas dari buku-buku karangan (Haberman, 2003), (Jiji, 2009), (Aryati, 2011) dan (Soedojo, 2000). Selanjutnya, di dalam pembahasan juga diberikan contoh-contoh permasalahan perpindahan panas dengan solusi numerik yang diperoleh dari metode elemen batas. Sebagai pembanding dari solusi tersebut, penulis mencantumkan juga solusi analitik yang diperoleh dari metode separasi variabel serta solusi numerik yang diperoleh dari metode elemen hingga dan metode beda hingga yang telah dijelaskan pada skripsi (Rodhiyah, 2014). Dalam menentukan penyelesaian persamaan Laplace dengan metode elemen batas diperlukan juga beberapa dasar teori. Untuk penjelasan mengenai turunan parsial dan deret Taylor, penulis mengacu pada buku karangan (Taylor, 1983). Sedangkan penjelasan secara ringkas terkait vektor yang digunakan dalam pembahasan, bersumber dari buku karangan (Larson dan Falvo, 2009). Selain yang telah disebutkan, di dalam dasar teori juga diberikan beberapa definisi dan teorema yang berkaitan erat dengan BEM. Di antaranya yaitu, teorema Green, Teorema Gauss- Green, teorema divergensi Gauss dan fungsi Dirac Delta. Keseluruhan teorema dan definisi tersebut mengacu pada buku karangan (Katsikadelis, 2002) Metode Penelitian Metode yang digunakan dalam pembuatan skripsi ini adalah dengan terlebih dahulu melakukan studi literatur mengenai beberapa materi berupa definisi dan teorema yang diperlukan dalam mengkaji metode elemen batas (BEM). Materi-materi yang telah dipelajari tersebut adalah turunan parsial, vektor, teorema Green, fungsi Dirac Delta, persamaan Laplace, metode separasi variabel dan deret Taylor dua variabel. Pembahasan diperoleh dengan mengkaji beberapa materi mengenai BEM yang terdapat pada buku karangan (Ang, 2007). Tahap ini diawali dengan menjelaskan relasi resiprokal antara solusi fundamental persamaan Laplace dengan fungsi

5 5 yang akan dicari solusi numeriknya menggunakan BEM. Setelah itu, dilanjutkan dengan menentukan solusi umum integral batas atas persamaan yang telah diperoleh dari relasi resiprokal sebelumnya. Solusi tersebut kemudian digunakan untuk menentukan nilai dari fungsi dan turunan parsial fungsi terhadap vektor normal pada setiap ruas garis (elemen) hasil diskritisasi batas domain. Selanjutnya, ditentukan nilai dari integral elemen batas yang kemudian digunakan untuk melengkapi langkah penyelesaian persamaan Laplace menggunakan BEM. Selain beberapa hal yang telah dijelaskan, diberikan juga contoh implementasi metode elemen batas pada beberapa masalah perpindahan panas, khususnya pada konduksi panas dimensi dua. Penyelesaian masalah-masalah ini menggunakan BEM dilakukan dengan bantuan program MATLAB. Selanjutnya, disajikan juga solusi analitik dari salah satu masalah sebagai pembanding nilai error antara dua metode elemen batas yang menggunakan jumlah diskritisasi berbeda Sistematika Penulisan Sistematika penulisan yang digunakan penulis dalam skripsi ini adalah sebagai berikut, BAB I : PENDAHULUAN Bab ini berisi tentang latar belakang masalah, rumusan masalah, batasan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian yang digunakan dalam penulisan skripsi ini, serta sistematika penulisan. BAB II : DASAR TEORI Bab ini berisi tentang uraian beberapa definisi dan teorema yang menjadi dasar pembahasan pada dua bab selanjutnya. BAB III : METODE ELEMEN BATAS Bab ini menjelaskan mengenai langkah-langkah dalam menentukan penyelesaian persamaan Laplace menggunakan metode elemen batas, serta gambaran secara ringkas mengenai pembuatan syntax metode elemen batas dengan MATLAB

6 6 BAB IV : MASALAH PERPINDAHAN PANAS DAN CONTOH PENYELESAIANNYA DENGAN METODE ELEMEN BATAS Pada bab ini, diuraikan mengenai pemodelan permasalahan panas ke dalam bentuk persamaan matematika, khususnya ke bentuk persamaan Laplace. Selanjutnya, diberikan juga dua contoh masalah konduksi panas dengan syarat batas Dirichlet dan Robin beserta penyelesaiannya menggunakan metode elemen batas. BAB V : KESIMPULAN Bab ini berisi kesimpulan dari seluruh pembahasan mengenai penyelesaian persamaan Laplace dengan metode elemen batas hingga implementasinya terhadap permasalahan konduksi panas. Pada bagian ini, juga disertakan saran yang dapat dipertimbangkan untuk penelitian selanjutnya.

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika adalah salah satu ilmu pengetahuan yang mempunyai peranan sangat besar dalam kehidupan nyata. Salah satu bagian dari matematika adalah persamaan

Lebih terperinci

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat BAB I PENDAHULUAN A. LATAR BELAKANG Ilmu termodinamika merupakan ilmu yang berupaya untuk memprediksi perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat dari perbedaan suhu

Lebih terperinci

Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Metode elemen batas untuk menyelesaikan masalah perpindahan panas Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, imams@ugm.ac.id Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sekitar 70% dari permukaan bumi adalah air, tetapi bukan berarti persediaan air untuk kebutuhan manusia berlimpah, karena 97,5% air tersebut adalah air laut

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini dijelaskan tentang latar belakang yang mendasari penelitian, tujuan penelitian agar penelitian ini memiliki acuan yang jelas untuk dicapai. Selain itu pada bab ini juga dijelaskan

Lebih terperinci

Dual Reciprocity Boundary Element Method untuk menyelesaikan Masalah Infiltrasi Air pada Saluran Irigasi Alur

Dual Reciprocity Boundary Element Method untuk menyelesaikan Masalah Infiltrasi Air pada Saluran Irigasi Alur SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 T - 18 Dual Reciprocity Boundary Element Method untuk menyelesaikan Masalah Infiltrasi Air pada Saluran Irigasi Alur Muhammad Manaqib UIN Syarif Hidayatullah

Lebih terperinci

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA Jurnal LOG!K@, Jilid 7, o., 07, Hal. - 36 ISS 978 8568 BOUDARY ELEMET METHOD UTUK MEYELESAIKA MASALAH SYARAT BATAS PERSAMAA LAPLAE DIMESI DUA Muhammad Manaqib Program Studi Matematika, Fakultas Sains dan

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan untuk masalah infiltrasi time-dependent

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral merupakan salah satu dari dua operasi utama dalam kalkulus. Jauh sebelum integral diperkenalkan, para matematikawan telah lebih dulu mengembangkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika selaku ilmu menalar logis tumbuh berkembang secara mandiri, akan tetapi banyak diterapkan dalam ilmu-ilmu lain. Persamaan integral merupakan salah

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan difusi dan sebaran temperatur pada geometri menjadi hal yang penting dalam berbagai bidang, seperti bidang fisika, kimia maupun kedokteran. Persamaan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB 1 PENDAHULUAN. khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses

BAB 1 PENDAHULUAN. khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Numerik merupakan suatu cabang atau bidang ilmu matematika, khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses matematik. Proses

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Keputusan yang nyata biasanya dibuat dalam keadaan ketidakpastian. Untuk memodelkan ketidakpastian, selama ini digunakan teori probabilitas yang ditemukan

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

Lebih khusus, dalam skripsi ini persamaan differensial tundaan yang dipelajari mempunyai bentuk umum sebagai berikut :

Lebih khusus, dalam skripsi ini persamaan differensial tundaan yang dipelajari mempunyai bentuk umum sebagai berikut : BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan penulisan, tinjauan pustaka, serta sistematika penulisan skripsi ini. 1.1. Latar Belakang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dinamika fluida adalah salah satu disiplin ilmu yang mengkaji perilaku dari zat cair dan gas dalam keadaan diam ataupun bergerak dan interaksinya dengan benda padat.

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method Prosiding Matematika ISSN: 2460-6464 Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method 1 Maulana Yusri

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral. Topik utama kalkulus diferensial yaitu turunan. Turunan mempunyai aplikasi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Model state space yang dikembangkan pada akhir tahun 1950 dan awal tahun 1960, memiliki keuntungan yang tidak hanya menyediakan metode yang efisien untuk analisis

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS NUMERICAL SOLUTION OF LAPLACE AND HELMHOLTZ EQUATION BY BOUNDARY ELEMENT METHOD Cicilia Tiranda Dr. Jeffry Kusuma Dr.

Lebih terperinci

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW Ummi Habibah *) Abstrak Problem rekayasa dan teknik kimia khususnya yang memiliki model matematika banyak yang berbentuk persamaan

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

Solusi Persamaan Helmholtz untuk Material Komposit

Solusi Persamaan Helmholtz untuk Material Komposit Vol. 13, No. 1, 39-45, Juli 2016 Solusi Persamaan Helmholtz untuk Material Komposit Jeffry Kusuma Abstrak Propagasi gelombang pada material homogen telah banyak dibahas dan didiskusikan oleh banyak ahli.

Lebih terperinci

PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA

PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA Arif Fatahillah 1*, Susi Setiawani 1, Novian Nur Fatihah 1 Prodi Pendidikan Matematika, FKIP, Universitas Jember,

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa

BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan matematika dalam kehidupan sangat berguna untuk meningkatkan pemahaman dan penalaran, serta untuk memecahkan suatu masalah dan menafsirkan solusi dari permasalahan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = +

BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = + BAB I PENDAHULUAN 1.1 Latar Belakang Peran matematika sebagai suatu ilmu pada dasarnya tidak dapat dipisahkan dari ilmu lainnya. Dalam ilmu fisika, industri, ekonomi, keuangan, teknik sipil peran matematika

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method)

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Tetti Novalina Manik dan Nurma Sari Abstrak: Dalam analisis akustik, kasus yang paling umum adalah menentukan

Lebih terperinci

Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas

Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas Tetti Novalina Manik dan Simon Sadok Siregar Abstrak: Penentuan medan suara yang terjadi akibat radiasi sumber atau akibat hamburan

Lebih terperinci

APLIKASI FUNGSI GREEN MENGGUNAKAN ALGORITMA MONTE CARLO DALAM PERSAMAAN DIFERENSIAL SEMILINEAR

APLIKASI FUNGSI GREEN MENGGUNAKAN ALGORITMA MONTE CARLO DALAM PERSAMAAN DIFERENSIAL SEMILINEAR APLIKASI FUNGSI GREEN MENGGUNAKAN ALGORITMA MONTE CARLO DALAM PERSAMAAN DIFERENSIAL SEMILINEAR SKRIPSI Oleh TILSA ARYENI 110803058 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol No., esember 0 ISSN: 087-9946 ANALISIS ISTRIBUSI SUHU PAA PELAT UA IMENSI ENGAN MENGGUNAKAN METOA BEA HINGGA Supardiyono Jurusan Fisika FMIPA UNESA Kampus

Lebih terperinci

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI Oleh Titis Miranti NIM 101810101012 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 HALAMAN

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama ada dan berkembang sangat pesat di setiap zaman. Perkembangan ilmu matematika tidak lepas

Lebih terperinci

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN

METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Praktikum m.k Model dan Simulasi Ekosistem Hari / Tanggal : Nilai METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Nama : NIM : Oleh PROGRAM STUDI ILMU KELAUTAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB-4. METODE PENELITIAN

BAB-4. METODE PENELITIAN BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215/4 sks Deskripsi singkat : Mata

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi Panas

Metode Elemen Batas (MEB) untuk Model Konduksi Panas Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode Mata Kuliah : Matematika Fisika II/FI-431 Tujuan Matakuliah : Jumlah SKS/Semester : 3/ 2(3) mahasiswa diharapkan memiliki pengetahuan dan pemahaman yang baik tentang

Lebih terperinci

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER ABSTRAK Telah dilakukan perhitungan secara analitik dan numerik dengan pendekatan finite difference

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perhitungan cadangan merupakan sebuah langkah kuantifikasi terhadap suatu sumberdaya alam. Perhitungan dilakukan dengan berbagai prosedur/metode yang didasarkan pada

Lebih terperinci

KATA PENGANTAR. FisikaKomputasi i -FST Undana

KATA PENGANTAR. FisikaKomputasi i -FST Undana Disertai Flowchart, Algoritma, Script Program dalam Pascal, Matlab5 dan Mathematica5 Ali Warsito, S.Si, M.Si Jurusan Fisika, Fakultas Sains & Teknik Universitas Nusa Cendana 2009 KATA PENGANTAR Buku ajar

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas merupakan salah satu wujud energi yang masuk ke dalam kategori energi kinetis dalam dunia fisika. Ketika suatu benda terbilang panas, benda tersebut mengandung

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,

Lebih terperinci

Aljabar Linier, Vektor, dan Eksplorasinya dengan Maple

Aljabar Linier, Vektor, dan Eksplorasinya dengan Maple Pengantar ke Maple Aljabar Linier, Vektor, dan Eksplorasinya dengan Maple Pengantar ke Maple ALJABAR LINIER, VEKTOR DAN EKSPLORASINYA DENGAN MAPLE Oleh: Kartono Edisi Pertama Cetakan Pertama, 2002 Edisi

Lebih terperinci