METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT"

Transkripsi

1 METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya, Pekanbaru 28293, Indonesia birmansyah81@gmail.com ABSTRACT This article discusses the use Adomian decomposition method to solve the boundary value problem of nonlinear partial differential equations. Discussions focused on the boundary value problem of nonlinear partial differential equations of order two. From the application of this method to two examples of nonlinear partial differential equations, solution obtained by this method approaches the exact known solutions. Keywords: Adomian decomposition method, nonlinear partial differential equations, boundary conditions ABSTRAK Artikel ini membahas penggunaan metode dekomposisi Adomian untuk menyelesaikan masalah nilai batas persamaan diferensial parsial nonlinear. Pendiskusian difokuskan untuk masalah nilai batas persamaan diferensial parsial nonlinear berorde dua. Dari penerapan metode ini ke dua contoh persamaan diferensial parsial yang dipilih terlihat solusi yang diperoleh metode ini mendekati solusi eksak yang diketahui. Kata kunci: metode dekomposisi Adomian, persamaan diferensial parsial nonlinear, nilai batas 1. PENDAHULUAN Persamaan diferensial adalah persamaan yang memuat turunan fungsi. Persamaan diferensial terbagi dua, yaitu persamaan diferensial biasa dan persamaan diferensial parsial. Persamaan diferensial parsial terbagi dua yaitu linear dan nonlinear. Salah satu persamaan diferensial yang dapat diaplikasikan dalam kehidupan sehari-hari yaitu persamaan diferensial parsial nonlinear dengan syarat batas. Penyelesaian masalah nilai batas merupakan penyelesaian persamaan diferensial yang ditinjau Repository FMIPA 1

2 dari kondisi batas yang diberikan. Permasalahan nilai batas pada persamaan diferensial parsial nonlinear memiliki beberapa bentuk. Pada artikel ini penulis hanya membahas bentuk persamaan diferensial parsial nonlinear orde dua. Adapun bentuk permasalahan nilai batas pada persamaan diferensial parsial nonlinear pada umumnya sebagai berikut [5] 2 u + = h(x, y), x, y 1, (1) yang bergantung pada syarat batas u(, y) = α 1 (y), u(1, y) = α 2 (y), u(x, ) = β 1 (x), u(x, 1) = β 2 (x). (2) α 1 (y), α 2 (y), β 1 (x), β 2 (x), dan h(x, y) diasumsikan real dan dapat diturunkan sebanyak yang diperlukan untuk x, y [, 1]. Pada artikel ini didiskusikan bagaimana menemukan solusi u(x, y) yang memenuhi persamaan (1) dan (2) dengan menggunakan metode dekomposisi Adomian, yang menghasilkan solusi dalam bentuk deret [5]. Pembahasan dimulai dengan memperkenalkan metode dekomposisi Adomian secara umum pada bagian 2, pada bagian 3 diberikan penerapan metode dekomposisi Adomian untuk menyelesaikan permasalahan nilai batas pada persamaan diferensial parsial nonlinear, kemudian pada bagian 4 diberikan penerapan metode dekomposisi Adomian untuk menyelesaikan persamaan parabolik dan pada bagian akhir diberikan contoh pemakaian untuk permasalahan nilai batas pada persamaan diferensial parsial nonlinear dan persamaan parabolik. 2. METODE DEKOMPOSISI ADOMIAN Pandang bentuk umum persamaan diferensial berikut F u(t) = g(t), (3) dimana F merupakan operator diferensial nonlinear yang memuat bentuk linear dan nonlinear, g(t) adalah fungsi yang diketahui dan u(t) adalah fungsi yang akan ditentukan [2, h. 7-8]. Metode dekomposisi Adomian menguraikan bagian nonlinear F menjadi bagian linear dan nonlinear. Bentuk linear dipisahkan lagi menjadi dua bagian yaitu L dan R, dengan L adalah operator linear yang mempunyai invers dan R adalah operator linear lainnya. Sedangkan bentuk nonlinear dari F dimisalkan Y. Metode dekomposisi Adomian menguraikan bagian nonlinear F menjadi Y = L + R + Y. Untuk operator orde dua operator L 1 didefinisikan sebagai integral lipat dua dari ke x dengan L(.) = 2 (.) x. Sehingga 2 L 1 (.) = x x (.)dxdx. Jadi Persamaan (3) dapat ditulis menjadi Lu + Ru + Y u = g, (4) atau dapat juga ditulis dalam bentuk Lu = g Ru Y u. (5) Repository FMIPA 2

3 Selanjutnya, dengan menerapkan L 1 pada kedua ruas persamaan (4), diperoleh L 1 Lu = L 1 g L 1 Ru L 1 Y u. (6) Jika L operator orde kedua atau L = 2 x, maka 2 L 1 Lu = = = = x x x x x x Lu dxdx 2 u(x, y) x 2 x dx u(x, y) x dxdx (u (x, y) u ())dx L 1 Lu = u(x, y) u() xu (). (7) Substitusikan persamaan (7) ke persamaan (6), diperoleh u(x, y) u() xu () = L 1 g L 1 Ru L 1 Y u, u(x, y) = u() + xu () + L 1 g L 1 Ru L 1 Y u. (8) Metode dekomposisi Adomian [2, h. 7] mengasumsikan solusi dari u dengan u(x, y) = u n (x, y), (9) sedangkan bentuk nonlinear Y u dinyatakan dalam suatu polinomial khusus, yaitu Y u = A n (u, u 1,..., u n ), (1) dengan A n didefinisikan sebagai A n = 1 [ ( d n )] Y λ i u n! dλ n i i= λ=, n =, 1, 2,, (11) disebut polinomial Adomian [1], dan λ merupakan suatu parameter. Dari persamaan (11) diperoleh A = Y (u ), A 1 = u 1 Y (u ), A 2 = u 2 Y (u ) + 1 2! u2 1Y (u ), A 3 = u 3 Y (u ) + u 1 u 2 Y (u ) + 1 3! u3 1Y (u ), (12). A n = 1 ( )] d [Y n dλ n! n i= λi u i. λ= Repository FMIPA 3

4 Polinomial Adomian (12) merupakan perluasan dari Teorema Taylor terhadap fungsi Y u di sekitar u = u, diperoleh Y u = A n = Y (u ) + u 1 Y (u ) + u 2 Y (u ) + + u 1 u 2 Y (u ) + ( ) u 2 1 Y (u ) + u 3 Y (u ) 2! ( ) u 3 1 Y (u ) +, (13) 3! selanjutnya, susun kembali persamaan (13) menjadi [( ) u Y u = Y (u ) + (u 1 + u 2 + )Y 2 (u ) u 1 u 2 + 2! [ ] [ ] (u u ) (u Y u = Y (u ) + Y u ) 2 (u ) + Y (u ) +, 1! 2! [ (u u ) n Y u = n! ] Y (u ) +, ] Y (n) (u ). (14) Persamaan (14) merupakan bentuk umum deret Taylor[3] dari Y u di sekitar u = u. Selanjutnya dengan mensubstitusikan u = u n dan Y u = A n ke persamaan (8), maka diperoleh u n (x, y) = u() + xu () + L 1 g L 1 R u n L 1 Dari persamaan (15) diperoleh relasi rekursif dengan n sebagai berikut u (x, y) = u() + xu () + L 1 g, u 1 (x, y) = L 1 Ru L 1 A, u 2 (x, y) = L 1 Ru 1 L 1 A 1, u 3 (x, y) = L 1 Ru 2 L 1 A 2,. =. Persamaan (16) sederhanakan menjadi A n. (15) u n+1 (x, y) = L 1 Ru n L 1 A n. (16) u (x, y) =u() + xu () + L 1 g, u n+1 (x, y) = L 1 Ru n L 1 A n, Akan tetapi dalam penerapannya nilai dari u n(x, y) tidak dapat ditentukan secara eksak. Oleh karena itu digunakan solusi aproksimasi dengan menggunakan deret terpotong u M (x, y) = M u n(x, y) dengan lim M u M (x, y) = u(x, y) [4]. Repository FMIPA 4

5 3. PENERAPAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Pandanglah persamaan diferensial parsial nonlinear berikut 2 u + = h(x, y), x, y 1, (17) dengan sehingga persamaan (17) menjadi atau dengan syarat batas 2 u = 2 u x u 2, 2 u x + 2 u u x 2 = h(x, y) 2 u 2 = h(x, y),, x, y 1, (18) u(, y) = α 1 (y), u(1, y) = α 2 (y), u(x, ) = β 1 (x), u(x, 1) = β 2 (x), dimana α 1 (y), α 2 (y), β 1 (x), β 2 (x), dan h(x, y) diasumsikan real dan dapat diturunkan sebanyak yang diperlukan untuk x, y [, 1]. Karena yang akan dicari adalah solusi u(x, y), dari dinyatakan operator L = 2 dan u x 2 yy = 2 dengan 2 L 1 (.) = x x (.)dxdx, sehingga persamaan (18) dapat ditulis menjadi Lu = h(x, y) u yy, (19) selanjutnya, dengan menerapkan L 1 pada ke kedua sisi (19), sehingga diperoleh L 1 Lu = L 1 (h(x, y)) L 1 u yy L 1. (2) Dengan menerapkan L 1 (.) = x x (.)dxdx pada persamaan (2), maka diperoleh ( ) 2 ) u u(x, y) = u(, y) + xu x (, y) + L 1 (h(x, y)) L (u 1 yy +. Misalkan u(, y) = α 1 (y), u x (, y) = f(y), sehingga diperoleh u(x, y) = α 1 (y) + xf(y) + L 1 h((x, y)) L 1 (u yy + ( ) 2 ) u. (21) Repository FMIPA 5

6 Dari persamaan (9) bahwa metode dekomposisi Adomian mengurai solusi u(x, y) dengan suatu deret takhingga dari komponen dan suku nonlinear u(x, y) = u n (x, y), (22) ( u ) 2 dengan suatu deret takhingga dari polinomial = A n, (23) dimana A n merupakan polinomial Adomian. Polinomial Adomian A n dapat dihasilkan untuk seluruh jenis nonlinear berdasarkan algoritma yang ditetapkan. Komponen u n (x, y) akan ditentukan secara berulang, dengan mensubstitusi deret dekomposisi Adomian persamaan (22) dan (23) ke kedua sisi (21) diperoleh (( ) u n (x, y) = α 1 (y) + xf(y) + L 1 (h(x, y)) L 1 u n + A n ). (24) Metode dekomposisi Adomian mengidentifikasi komponen ke-nol u (x, y) dengan seluruh suku yang muncul dari syarat batas dan dari mengintegrasi suku asal. Oleh sebab itu, metode dekomposisi memuat hubungan rekurensi atau u n (x, y) = u + u n (x, y) = u + Dari persamaan (24) (25) u k, k=1 yy u k+1, k. (25) k= u (x, y) = α 1 (y) [ + xf(y) + L 1 h((x, y)), ( u k+1(x, y) = L 1 k+1 u k)yy + u k+1 (x, y) = L 1 [ (uk )yy + A k k+1 A k ], k ], k (26) dan dari persamaan (26) diperoleh u (x, y) = α 1 (y) + xf(y) + L 1 h((x, y)), u 1 (x, y) = L 1( ) (u ) yy + A, u 2 (x, y) = L 1( ) (u 1 ) yy + A 1,. =. u k+1 (x, y) = L 1( (u k ) yy + A k ), k. (27) Repository FMIPA 6

7 Beberapa polinomial Adomian pertama yang mewakili suku nonlinear A n didefinisikan oleh A = u 2 y, A 1 = 2u y u 1y, (28) A 2 = 2u y u 2y + u 2 1 y. Jadi dari persamaan (27) dan (28), diperoleh u (x, y) = α 1 (y) + xf(y) + L 1 ((h(x, y)) + L 1 (h(x, y)), u 1 (x, y) = L 1 (u yy + u 2 y ), u 2 (x, y) = L 1 (u 1yy + 2u y u 1y ). Dengan mensubstitusikan hasil dari persamaan (29) ke persamaan (22) diperoleh solusinya dalam bentuk deret u(x, y) = u n (x, y), (29) = u (x, y) + u 1 (x, y) + u 2 (x, y) +. (3) 4. PENERAPAN METODE DEKOMPOSISI ADOMIAN PADA PERSAMAAN PARABOLIK Pandanglah persamaan parabolik berikut: dengan syarat awal u = 2 u + Y (u) + g(x, y), (x, y) [a, b] [, T ), (31) x2 u(x, ) = f(x). (32) Karena yang akan dicari adalah solusi u(x, y), dinyatakan operator M y (.) = (.) dan M xx (.) = 2 (.) x 2 dengan M 1 y selanjutnya, dengan menerapkan M 1 y M 1 y (.) = y (.)dy, sehingga persamaan (31) menjadi M y u = M xx u + Y (u) + g(x, y), (33) M y u = M 1 y Ruas kiri persamaan (34) dapat diturunkan menjadi M 1 y Mu = pada kedua ruas persamaan (33), maka M xx u + My 1 Y (u) + My 1 g(x, y). (34) = y y M y u u(x, y) = u(x, y) y, dy, dy, M 1 y M t u = u(x, y) u(x, ). (35) Repository FMIPA 7

8 Kemudian, disubstitusikan persamaan (35) ke persamaan (34), sehingga u(x, y) u(x, ) = My 1 M xx u + My 1 Y (u) + My 1 g(x, y), u(x, y) = u(x, ) + My 1 M xx u + My 1 Y (u) + L 1 y g(x, y). (36) Dari persamaan (9) Metode dekomposisi Adomian menguraikan solusi u(x, y) ke dalam deret takhingga u(x, y) = u n (x, y). (37) Dari persamaan (1) bentuk nonlinear Y u diuraikan dengan deret takhingga dari polinomial Adomian, yaitu Y u = A n (u, u 1,..., u n ). (38) Selanjutnya, substitusikan (37) dan (38) ke dalam persamaan (36), sehingga diperoleh solusi untuk u(x, y) adalah u n (x, y) = u(x, ) + M 1 y M xx ( ) ( ) u n (x, y) + My 1 A n + M 1 y g(x, y). (39) Contoh 1 Selesaikan permasalahan nilai batas pada persamaan diferensial parsial nonlinear berikut dengan metode dekomposisi Adomian. 2 u + = 2y + x 4, (4) dengan syarat batas x, u(, y) =, u(1, y) = y + a, dan syarat batas y, u(x, ) = ax, u(x, 1) = x(x + a), dimana a adalah konstanta. Penyelesaian: Untuk solusi menggunakan polinomial Adomian persamaan (4) dapat ditulis dalam bentuk ( ) 2 2 u x = 2y + 2 x4 2 u u, 2 Lu = 2y + x 4 u yy, (41) selanjutnya, dengan menerapkan L 1 pada ke kedua sisi (41), menghasilkan u(x, y) = u(, y) + xu x (, y) + yx L 1 (u yy + 3 x6 ( ) 2 ) u, (42) Repository FMIPA 8

9 substitusikan syarat batas u(, y) =, dan u x (, y) = f(y), ke persamaan (42), maka diperoleh u(x, y) = xf(y) + x 2 y + 1 ( ( ) 2 ) u 3 x6 L 1 u yy +. (43) Dengan mensubstitusi deret dekomposisi Adomian persamaan (22) dan (23) ke masing-masing ruas (43) menghasilkan u n (x, y) = xf(y) + x 2 y + 1 (( ) 3 x6 L 1 u n + A n ). (44) Ini memberikan hubungan rekurensi u (x, y) = xf(y) + x 2 y x6, yy u k+1 = L 1( (u k ) yy + A k ), k (45) Beberapa komponen pertama dari u(x, y) diberikan oleh u (x, y) =xf(y) + x 2 y x6, u 1 (x, y) = ( 1 1 x5 f (y) x3 f (y) x4 f 2 (y) x6 u 2 (x, y) = 1 42 x7 f (y) x5 f (4) (y) x6 (f 2 (y) x6 f (y)f (y) x8 f (y)f (y) x6 f (y)f (y) x7 f 2 (y)f (y) x9 f (y)f (y) x7 f (y)f (y) x8 f 2 (y)f (y). ), Dengan mensubstitusi hasil dari komponen pertama dari u(x, y), u (x, y), u 1 (x, y) dan u 2 (x, y) ke persamaan (3) menghasilkan u(x, y) = xf(y) + x 2 y x5 f (y) x3 f (y) x4 f 2 (y) x7 f (y) +. (46) Untuk menentukan fungsi f(y), subtitusikan syarat batas u(x, y) = ax ke persamaan (46) menghasilkan xf() x3 f () x4 f 2 () x5 f () x7 f () + = ax. (47) Dengan menyamakan koefisien pangkat pada x pada persamaan (47) kedua sisi menghasilkan f() = a, f () = f () = f (n) () =. (48) Repository FMIPA 9

10 Perluasan Taylor dari f(y) diberikan oleh f(y) = f() + f ()y + 1 2! f ()y ! f ()y 3 +. (49) Dengan mensubstitusi persamaan (48) ke persamaan (49) menghasilkan f(y) = a. (5) Selanjutnya mensubstitusikan persamaan (5) ke persamaan (46), sehingga diperoleh u(x, y) = x 2 y + xa. (51) Persamaan (51) adalah solusi yang memenuhi dari persamaan (4). Contoh 2 Selesaikan persamaan parabolik berikut dengan metode dekomposisi Adomian u = 2 u x + 2 e u + e 2u, (x, y) [, 1] [, 1] (52) dengan syarat awal u(x, ) = ln(x + 2). Untuk perbandingan diberikan solusi eksak u(x, y) = ln(x + y + 2). Penyelesaian: Dari persamaan (52) diketahui Y (u) = e u + e 2u, g(x, y) = dan f(x) = ln(x + 2). Dengan menerapkan beberapa polinomial Adomian pada persamaan (1) ke bentuk nonlinear Y u diperoleh A = Y (u ) = e u + e 2u, A 1 = u 1 Y (u ), A 1 = u 1 ( e u 2e 2u ), ( ) u A 2 = u 2 Y 2 (u ) + 1 (Y (u ) ), 2! ( A 2 = u ) 2 u2 1 e u + (2u 2 1 2u 2 )e 2u, A 3 = u 3 Y (u ) + u 1 u 2 Y (u ) + u3 1 3! Y (u ), ( A 3 = u 3 + u 1 u 2 1 ) ( 6 u3 1 e u + 4u 1 u 2 2u 3 4 ) 3 u3 1 e 2u. Dengan mensubstitusikan g(x, y) = ke persamaan (39) sehingga menjadi ( ) ( u n (x, y) = u(x, ) + M 1 M xx u n (x, y) + M 1 A n ). (53) Repository FMIPA 1

11 Selanjutnya, u n pada persamaan (53) dapat diperoleh secara rekursif sebagai berikut u = u(x, ) = ln(x + 2) u 1 = My 1 M xx u + My 1 A = y x + 2 u 2 = My 1 M xx u 1 + My 1 A 1 = y2 2(x + 2) 2 u 3 = My 1 M xx u 2 + My 1 A 2 =. =., sehingga dari u, u 1, u 2, u 3,..., diperoleh u(x, y) = u + u 1 + u 2 + u 3 +, y 3 3(x + 2) 3 = ln(x + 2) + y x + 2 y 2 2(x + 2) + y 3 2 3(x + 2) + + ( 1)n+1 y n 3 n(x + 2) +, n ( 1) n+1 y n u(x, y) = ln(x + 2) + n(x + 2). (54) n n=1 Persamaan (54) dapat disederhanakan ln(x + 1) = x 1 2 x x3, ln(x + 2) = ln((x + 1) + 1), ( 1) n n + 1 = (x + 1) 1 2 (x + 1) (x + 1)3, = ln 2, ln 2 = Jadi persamaan (54) dapat ditulis ( 1) n+1 y n n(x + 2) = y n x + 2 y 2 2(x + 2) + y 3 2 3(x + 2), 3 n=1 ( ) y = ln x , sehingga diperoleh ( ) y u(x, y) = ln(x + 2) + ln x , = ln(x + 2) + ln(y), u(x, y) = ln(x + y + 2). (55) Repository FMIPA 11

12 Persamaan (55) adalah solusi yang memenuhi dari persamaan (52). Dari contoh 1 dan 2 terlihat bahwa penerapan metode dekomposisi Adomian dengan mengambil solusi dari deret berhingga, solusi hampirannya diperoleh dan dapat menghasilkan solusi yang sama dengan solusi eksaknya. Hal ini berarti metode dekomposisi Adomian akurat dalam menyelesaikan persamaan diferensial parsial nonlinear orde dua. DAFTAR PUSTAKA [1] Abbasbandy, S. 23. Improving Newton-Raphson Method for Nonlinear Equations by Modified Adomian Decomposition Method. Computational and Applied Mathematics, 145: [2] Adomian, G Solving Frontier Problems of Physics, The Decomposition Method. Kluwer-Academic Press, Boston. [3] Bartle, R. G. & D. R. Sherbert Introduction to Real Analysis, 4 th Ed. Hamilton Printing Company, New Jersey. [4] Javidi, M. & A. Golbabai. 27. Adomian Decomposition Method for Approximating the Solution of the Parabolic Equations. Applied Mathematical Sciences, 1: [5] Wazwaz, A. M. 2. A Note on Using Adomian Decomposition Method for Solving Boundary Value Problems. Foundation of Physics Letters, 13: Repository FMIPA 12

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1 ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA Rini Christine Prastika Sitompul 1 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 9 16. PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

Lebih terperinci

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR ABSTRACT

METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR ABSTRACT METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR Nasrin 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1. METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN Okmi Zerlan 1*, M. Natsir 2, Eng Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR Eka Parmila Sari 1, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR Istawi Arwannur 1, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER Marison Faisal Sitanggang, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neli Sulastri 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL Siti Nurjanah 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

KONSEP METODE ITERASI VARIASIONAL ABSTRACT

KONSEP METODE ITERASI VARIASIONAL ABSTRACT KONSEP METODE ITERASI VARIASIONAL Yuliani 1, Leli Deswita 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM Siti Mariana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR Rin Riani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE oleh HILDA ANGGRIYANA M0109035 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 23-30 Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Elis Ratna Wulan, Fahmi

Lebih terperinci

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA Vanny Restu Aji 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR Nurul Khoiromi Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENERAPAN METODE NEWTON-COTES OPEN FORM 5 TITIK UNTUK MENYELESAIKAN SISTEM PERSAMAAN NONLINIER M Ziaul Arif, Yasmin

Lebih terperinci

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR Een Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M.

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA

Lebih terperinci

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Julia Murni 1, Sigit Sugiarto 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan,

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Helmi Putri Yanti 1, Rolan Pane 2 1 Mahasiswa Program Studi S1 Matematika 2 DosenJurusan Matematika Fakultas Matematika dan

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Ridho Alfarisy 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA Dedi Mangampu Tua 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR DENGAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR DENGAN METODE TRANSFORMASI DIFERENSIAL Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01, No. 1 (2012), hal 9 14. PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR DENGAN METODE TRANSFORMASI DIFERENSIAL Rahayu, Sugiatno, Bayu

Lebih terperinci

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh : Agung Christian

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2 BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA Zulkarnain 1, M. Imran 2 1.2 Laboratorium Matematika Terapan FMIPA Universitas Riau, Pekanbaru e-mail

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR Alhumaira Oryza Sativa 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT ugi@mail.ut.ac.id ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan

Lebih terperinci

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR Rio Kurniawan Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE NEWTON BISECTRIX UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Daimah 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear M. Nizam 1, Lendy Listia Nanda 2 1, 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN Nurholilah Siagian, Samsudhuha, Khozin Mu tamar Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR

FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR FAKTORISASI POLINOMIAL ALJABAR DENGAN MENGGUNAKAN METODE EUCLIDEAN DAN FAKTOR PERSEKUTUAN TERBESAR Rora Oktafia 1*, Sri Gemawati 2, Endang Lily 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN GELOMBANG AIR DANGKAL DAN ELASTIK

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN GELOMBANG AIR DANGKAL DAN ELASTIK METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN GELOMBANG AIR DANGKAL DAN ELASTIK TESIS Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Magister Pendidikan pada Program Studi Magister

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI Siswanti, Syamsudhuha 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Dewi Erla Mahmudah 1, Ratna Dwi Christyanti 2, Moh. Khoridatul Huda 3,

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n! Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci