Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013"

Transkripsi

1 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu bacth produk terdiri dari nomor serial, dengan nomor urut pertama terdiri dari 0 sampai dengan 9. Jika salah satu produk diambil secara acak, maka X adalah munculnya nomor serial dengan angka pertama tersebut masing-masing nomor (R={0,,2,...,9) memiliki peluang 0,. f x = 0 = 0, Distribution Uniform Random Variable X Realization of x, x 2,, x n Possible Values of X Distribution Function Fx(a) = P(X=a) Mean E(X) x, x 2,, x n /n b:a 2 μ = (9:0) 2 <4,5 σ 2 = (9;0:)2 ; <8,25 2

2 3//203 Distribusi Kontinyu Uniform Distribusi Kontinyu Uniform Contoh: Variabel acak kontinyu menotasikan pengukuran arus pada kawat tembaga dalam miliamper. Jika diketahui bahwa f(x)=0,05 untuk 0 x 20. Berapakah peluang pengukuran arus berada antara 5 dan 0 ma. 0 P 5 < X < 0 = f x dx = 5 0,05 = 0,25 5 Rata-rata dan Variansi distribusi uniform arus kawat tembaga: a=0, b=20 μ = E X = (0+20) 2 = 0mA σ 2 = V X σ = 5,77 ma = (20 0)2 2 = 33,33 ma Gaussian distribution (Karl Friedrich Gauss, ) Bell-shaped curve Probability density function: NORMAL n x; μ, σ = < x < π = 3,459 e = 2,7828 2πσ e 2σ 2 (x μ)2, Area dalam Kurva Normal 2

3 3//203 Area dalam Kurva Normal Standard : Kurva normal yang telah di-standarisasi dan menggambarkan nilai standar deviasi dari nilai rata-rata. Mean = 0, Variansi =. N(0,). Z: normal random variabel dengan mean = 0, dan variansi = Z = X μ σ z = x μ σ z 2 = x 2 μ σ Menggunakan Tabel Standar Contoh Soal Suatu perusahaan generator menghitung berat salah satu komponennya. Berat komponen tersebut berdistribusi normal dengan rata-rata 35 gram, dan standard deviasi 9 gram.. Hitung probabilitas bahwa satu komponen yang diambil secara acak akan memiliki berat antara 35 dan 40 gram? 2. Berapa peluang pengambilan acak satu komponen dengan berat paling ringan 50 gram? JAWAB:. P 35 x 40 : x = 40 gram, x μ z = = = 0,56, P Z 0,56 = 0,723 σ 9 x = 35 gram, x μ z = = = 0, P Z 0 = 0,5 σ 9 P 35 x 40 = P 0 z 0,56 = 0,723 0,5 = 0,223 Contoh Soal 3

4 3//203 Latihan Soal: Nilai ujian fisika di sebuah kelas terdistribusi secara normal dengan rata-rata 60 dan standar deviasi 0. Berapa persen siswa yang memperoleh nilai antara 60 dan 70? Menghitung nilai x x μ z =, maka x = zσ + μ σ Contoh: Diketahui suatu distribusi normal dengan μ = 40 dan σ = 6. Carilah nilai x, yang memiliki: a. 45% area dari sisi kiri b. 4% area dari sisi kanan Jawab: a. P Z z = 0.45, z = 0,3 x = 6 0, = 39,22 Latihan Soal: Diketahui rata-rata hasil ujian adalah 74 dengan simpangan baku 7. Jika nilai-nilai peserta ujian berdistribusi normal dan 2% peserta nilai tertinggi mendapat nilai A, berapa batas nilai A yang terendah? Central Limit Theory Menyelesaikan permasalahan binomial dengan distribusi normal Distribusi Gamma Diaplikasikan pada masalah antrian dan masalah keandalan (reliabilitas). Time / space occuring until a specified number of Poisson events occur Fungsi gamma: GAMMA Properti fungsi gamma: 4

5 3//203 Fungsi distribusi gamma: Distribusi Gamma α: parameter bentuk; β: parameter skala β: waktu rata rata antar kejadian α: jumla kejadian yang terjadi berturutan pada waktu/ruang tertentu λ: jumla kejadian per unit waktu/ruang (λ = /β) x: nilai random variabel (lama waktu atau luasan area hingga kejadian berikutnya) Distribusi Gamma Rata-rata dan Variansi: Jika X dan X 2 adalah variabel acak yang independen, dan X ~ Gamma (α, β); X 2 ~ Gamma (α 2, β), maka X + X 2 ~ Gamma (α + α 2, β) Sehingga, jika X i ~ Gamma α i, β, for i =,, k, maka (X + + X k )~ Gamma (α + + α k, β) EKSPONENSIAL Distribusi Eksponensial Bentuk khusus dari distribusi peluang gamma (α = ) Time to arrival or time to first poisson event problems Diaplikasikan pada permasalahan waktu antar kedatangan pada fasilitas jasa, life time / waktu kegagalan komponen, survival time, dan waktu respon komputer Distribusi Eksponensial Eksponensial menganut proses Poisson (λ: laju kedatangan) X~Exp λ : P X a = λe ;λx dx = e ;λa a λ = /β μ = λ ; σ2 = /λ 2 Karakter penting: memoryless property Pada permasalahan life time (hingga terjadi break down / failure / kerusakan), misal life time dari lampu, TV, kulkas Kerusakan yang diakibatkan oleh pemakaian berkala (misal pemakaian mesin), tidak berlaku distirbusi eksponensial. Lebih tepat menggunakan distribusi GAMMA atau distribusi WEIBULL 5

6 3//203 Contoh: Gamma Contoh: Gamma Contoh: Gamma Dari Tabel: Contoh: Eksponensial Jumlah telpon masuk pada nomor darurat 9 pada suatu kota diketahui berdistribusi Poisson dengan rata-rata 0 telpon per jam. Jika saat ini dilakukan pengamatan, berapakah peluang telpon masuk terjadi paling cepat 5 menit dari sekarang? λ = 0 telpon per jam = 0/60 telpon per menit β = /λ = 6 menit per telpon P X a = e ;λa P X 5 = e ;( 6 )(5) = 2,7828 ;0,833 = 0,4347 X = menit antar telp ke 9 Rangkuman Distributions with Parameters Possible Values of X Density Function f x Normal (μ, σ 2 ) < X < 2πσ e 2σ 2(x μ)2 Exponential (λ) 0 < X λe ;λx Gamma (α, β) 0 < X Γ(α)β α x α; e ;x/β Note: P(x) = f x dx CHI-SQUARED 6

7 3//203 Distribusi Chi-Squared Distribusi Chi-Squared Distribusi gamma dengan α = ν/2 dan β = 2 ν: degrees of freedom (derajat kebebasan), positive integer Density Function: f x; ν = 2 ν/2 Γ(ν/2) x(ν/2); e ;x/2, x > 0 0, elsewere Mean dan Variansi: μ = ν dan σ 2 = 2ν Di suatu kota, pemakaian tenaga listrik harian dalam jutaan kilowatt-jam, variabel acak X berdistribusi gamma dengan μ = 6 dan σ 2 = 2. a. Cari nilai α dan β b. Cari peluang suatu hari tertentu pemakaian harian tenaga listrik akan melebihi 2 juta kilowatt-jam Jawab: a. α = ν/2, ν = μ = 6, α = 6 = 3, β = 2 2 b. P X > 2 = Γ 3 x2 e x P X > 2 = Γ 3 y2 e y 0 P X > 2 = F 6; 3 = = BETA Distribusi Beta Pengembangan dari distribusi uniform Distribusi kontiyu yang fleksibel tetapi terbatas pada suatu range tertentu. Misal: proporsi radiasi matahari yang diserap oleh suatu material, waktu maksimal untuk menyelesaikan suatu proyek Fungsi Beta: B α, β = x α; ( x) β; dx = Γ(α)Γ(β), for α, β > 0 Γ(α + β) 0 Dengan parameter: α > 0, β > 0 Density Function: f x; ν = B(α,β) xα; ( x) β;, 0 < x < 0, elsewere Catatan: distribusi uniform (0,) adalah distribusi beta dengan parameter α =, β = α = β, distribusi beta akan berbentuk simetris Distribusi Beta Distribusi Beta Mean dan Variansi: μ = α dan α:β σ2 αβ = α:β 2 α:β: Modus: μ = α α + β 2 Distribusi uniform (0,), mean dan variansi: μ = : = 2 dan σ2 = ()() : 2 :: = 2 7

8 3//203 Distribusi Beta Referensi Jika diketahui waktu maksimum penyelesaian suatu proyek berdistribusi beta dengan α = 3, dan β =. a. Berapakah peluang waktu penyelesaian melebihi 0.7? b. Berapa rata-rata dan variansi distribusi tersebut? Jawab: Γ(α:β) a. P X > 0.7 = Γ(α)Γ(β) xα; ( x) β; 0.7 Γ(4) P X > 0.7 = Γ(3)Γ() x2 ( x) P X > 0.7 = x3 0.7 = = Montgomery, D.C., Runger, G.C., Applied Statistic and Probability for Engineers, 5 th ed, John Wiley & Sons, Inc., NJ, 20 Walpole, Ronald B., Myers, Raymond H., Myers, Sharon L., Ye, Keying, Probability & Statistics for Engineers and Scientist, 9 th ed, Prentice Hall Int., New Jersey, 202. Weiers, R.M., 20, Introduction to Business Statistics, Cengage Learning, OH, b. Rata rata = 0.75; Variansi =

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA DISTRIBUSI SAMPLING PENGANTAR Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Goodness-of-Fit Uji Contingency Uji Homogenitas Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Contingency Uji Homogenitas Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 001.

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Pertemuan 8 STATISTIKA INDUSTRI 2 08/11/2013. Introduction to Linier Regression. Introduction to Linier Regression. Introduction to Linier Regression

Pertemuan 8 STATISTIKA INDUSTRI 2 08/11/2013. Introduction to Linier Regression. Introduction to Linier Regression. Introduction to Linier Regression Pertemuan 8 STATISTIKA INDUSTRI 2 TIN 4004 Outline: Regresi Linier Sederhana dan Korelasi (Simple Linier Regression and Correlation) Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi

Lebih terperinci

SILABUS MATA KULIAH. Pengalaman Pembelajaran

SILABUS MATA KULIAH. Pengalaman Pembelajaran SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-110 Nama Mata Kuliah : Teori Probabilitas Jumlah SKS : 2 Semester : II Mata Kuliah Pra Syarat : TKI-101 Pengantar Teknik Industri

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Kontrak Perkuliahan Pertemuan & Materi RPKPS Penilaian Tugas, short quiz (30%) Quiz 1 & 2 (40%) UAS (30%) Referensi Montgomery, D.C, George C. Runger. Applied Statistic and

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang rahmaanisa@apps.ipb.ac.id Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 8 Outline: Simple Linear Regression and Correlation Multiple Linear Regression and Correlation Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 4 Outline: Uji Dua Sample Uji Z Uji t Uji t gabungan (pooled t-test) Uji t berpasangan (paired t-test) Uji proporsi Uji Chi-Square Referensi: Johnson, R. A., Statistics

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji Z: Proportional Populasi Uji Hipotesis 2 populasi: Uji Z Uji pooled t-test Uji paired t-test Referensi: Johnson, R. A., Statistics

Lebih terperinci

Teori Keandalan sebagai Aplikasi Distribusi Eksponensial

Teori Keandalan sebagai Aplikasi Distribusi Eksponensial Teori Keandalan sebagai Aplikasi Distribusi Eksponensial Melati Budiana Putri / 18209006 Program Studi Sistem dan Teknologi Informasi Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Beberapa Fungsi Peluang Kontinu (2) Pengantar Hitung Peluang - Pertemuan 10

Beberapa Fungsi Peluang Kontinu (2) Pengantar Hitung Peluang - Pertemuan 10 Beberapa Fungsi Peluang Kontinu (2) Pengantar Hitung Peluang - Pertemuan 10 r.rahma.anisa@gmail.com Review Distribusi Seragam f ( x) b 1 0 a,untuk a x b,untuk x lainnya E( X ) a 2 b F X x = 0 x a (b a)

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK Adri Arisena 1, Anna Chadidjah 2, Achmad Zanbar Soleh 3 Departemen Statistika Universitas Padjadjaran 1 Departemen Statistika

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja.

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja. RP S1 SP 01 A. CAPAIAN PEMAN : 1. CP 11.1 : Mampu menganalisis data secara kuantitatif baik secara univariat maupun Multivariat serta menerapkannya. 2. CP 8.1 : Memformulasikan masalah ke dalam pemodelan

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016 REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS Utriweni Mukhaiyar MA81 Statistika Nonparametrik Kamis, 1 Januari 016 PEUBAH ACAK Peubah acak, yaitu pemetaan X: S R Ruang Sampel, S X x Himpunan Bil.Riil,

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions.

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Continuous Probability Distributions 1 Continuous Probability Distributions Normal Distribution Uniform Distribution Exponential Distribution

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN

Lebih terperinci

KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3

KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3 JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 241-248 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA SIDANG TERTUTUP TUGAS AKHIR HOME MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA I V Oleh : Muh. Nurcahyo Utomo 121 1 37 Dosen Pembimbing: Dra. Farida Agustini

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Evaluasi Deviasi dari Aproksimasi Frekuensi Kejadian Perawatan Korektif dan Preventif

Evaluasi Deviasi dari Aproksimasi Frekuensi Kejadian Perawatan Korektif dan Preventif Petunjuk Sitasi: Rahman, A. (2017). Evaluasi Deviasi Dari Aproksimasi Frekuensi Kejadian Perawatan Korektif Dan Preventif. Prosiding SNTI dan SATELIT 2017 (pp. C181-186). Malang: Jurusan Teknik Industri

Lebih terperinci

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA 12611006 DESSY ROFICA WULANDARI 12611018 SUHENDRA PRADESA - 12611089 SRI SISKA WIRDANIYATI 12611125 UNIB SEDYA PAMUJI - 12611150 JURUSAN STATISTIKA

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 13 BAB 2 LANDASAN TEORI 2.1 Pendahuluan Antrian merupakan kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan kasir untuk membayar barang yang kita beli, menunggu pengisian bahan

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan praktikum II. TINJAUAN PUSTAKA 2.1 Definisi Distribusi Probabilitas

I. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan praktikum II. TINJAUAN PUSTAKA 2.1 Definisi Distribusi Probabilitas I. PENDAHULUAN 1.1 Latar Belakang Distribusi probabilitas dapat diterapkan dalam banyak hal seperti pada kehidupan sehari-hari, kegiatan bisnis maupun pada dunia industri. Distribusi probabilitas berguna

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

Pengukuran dan Peningkatan Kehandalan Sistem

Pengukuran dan Peningkatan Kehandalan Sistem Pengukuran dan Peningkatan Kehandalan Sistem Pengukuran Kehandalan Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menguraikan proses perancangan kehandalan sistem 3 Kehandalan

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN #7 DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN 7.1. Pendahuluan Pada pembahasan terdahulu, keandalan hanya dievaluasi sebagai suatu sistem rekayasa (engineering) dengan tidak menggunakan distribusi

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si.

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si. RELIABILITAS & FUNGSI HAZARD 1 RELIABILITAS Peluang bahwa suatu produk atau jasa akan beroperasi dengan baik dalam jangka waktu tertentu (durabilitas) pada kondisi pengoperasian sesuai dengan desain (suhu,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Antrian Sistem antrian adalah merupakan keseluruhan dari proses para pelanggan atau barang yang berdatangan dan memasuki barisan antrian yang seterusnya memerlukan pelayanan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN Rencana

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

MODEL ANTREAN DENGAN DISTRIBUSI PELAYANAN NORMAL, ERLANG, WEIBULL STUDI KASUS TOL BANYUMANIK

MODEL ANTREAN DENGAN DISTRIBUSI PELAYANAN NORMAL, ERLANG, WEIBULL STUDI KASUS TOL BANYUMANIK SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 MODEL ANTREAN DENGAN DISTRIBUSI PELAYANAN NORMAL, ERLANG, WEIBULL STUDI KASUS TOL BANYUMANIK Sugito 1, Tarno 2, Agus Rusgiono 3, Jenesia Kusuma Wardhani

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL. Riana Ayu Andam P. 1, Sudarno 2, Suparti 3

KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL. Riana Ayu Andam P. 1, Sudarno 2, Suparti 3 ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 243-252 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL

Lebih terperinci