MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA"

Transkripsi

1 MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA SRI SISKA WIRDANIYATI UNIB SEDYA PAMUJI JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Salah satu distribusi kontinu dalam statistika adalah distribusi Gamma yang dapat digunakan untuk menyelesaikan banyak persolan dalam bidang rekayasa dan sains. Sebagai salah satu contohnya distribusi Gamma memainkan peranan penting dalam teori antrian dan teori keandalan (reliabilitas) misalnya untuk mengatasi kehilanagan data. Distribusi Gamma adalah salah satu teori dari distibusi probabilitas yang banyak digunakan untuk menarik kesimpulan atau menguji sebuah hipotesis statistika. Distribusi Gamma mendapat namanya dari fungsi Gamma yang sudah dikenal luas, dan dipelajari dalam banyak bidang matematika. Distribusi yang mempunyai aplikasi paling luas dalam menganalisa data uji hidup adalah distribusi Gamma. Data uji hidup atau uji reliabilitas merupakan peluang bahwa komponen tersebut akan berfungsi sebagaimana mestinya selama, paling sedikit, sampai jangka waktu tertentu dalam percobaan yang telah ditentukan. Dalam uji reliabilitas terdapat beberapa fungsi yang digunakan untuk menentukan reliabilitas suatu sistem diantaranya adalah fungsi ketahanan (survival function) dan fungsi kegagalan (failure rate function). Namun, kekurangan dari distribusi Gamma adalah memiliki fungsi ketahanan (survival function) yang tidak dapat ditentukan bentuk khususnya, kecuali jika parameter bentuknya berupa bilangan natural. Hal ini menyebabkan distribusi Gamma sedikit digunakan dibandingkan dengan distribusi Weibull karena mempunyai fungsi kegagalan dan ketahanan yang lebih sederhana. Distribusi Gamma banyak dimamfaatkan untuk mengetahui atau menghitung jarak antara waktu tiba di fasilitas pelayanan (misalnya, bank dan loket tiket kereta api), dn lamanya waktu sampai rusaknya suku cadang dan alat listrik. Distribusi Gamma sendiri mempunyai hubungan dengan distribusi eksponensial, kedua dstribusi tersebut memungkinkan kedua distribusi tersebut digunakan dalam persoalan yang sama. Oleh karena itu Distribusi Gamma sangat penting untuk dipelajari pada masa sekarang ini, karena sangat berguna untuk mengetahui dan mempelajari pengaruh dari satu variabel terhadap variabel lain pada suatu masalah yang dihadapi. Hal tersebut yang melatar belakangi penulisan makalah ini. 1

3 1.2 PERUMUSAN MASALAH Rumusan masalah dari makalah dengan judul distribusi gamma ini adalah sebagai berikut: 1. Apa itu distribusi gamma? 2. Bagaimana aplikasi dari distribusi gamma? 1.3 TUJUAN Tujuan dari pembuatan makalah ini adalah sebagai berikut: 1. Untuk mengetahui distribusi gamma serta aplikasi yang menggunakan perhitungan distribusi gamma. 2. Untuk mengetahui macam-macam model distribusi gamma dan memahami rumus dari distribusi gamma, mulai dari simbol-simbol distribusi gamma. 1.4 MANFAAT Pembuatan makalah ini diharapkan memberikan manfaat bagi berbagai pihak sebagai berikut: 1. Menyediankan informasi terkait dari distribusi Gamma agar dapat mudah dipahami oleh penulis dan pembaca. 2. Menyediakan informasi dalam penerapan distribusi Gamma dalam menghadapi persoalan yang berhubungan erat dalam kehidupan sehari-hari. 3. Memahami distribusi Gamma untuk mengurangi terjadi kesalahan dalam penerapannya. 2

4 BAB II PEMBAHASAN 2.1 Distribusi Gamma Eksperimen-eksperimen probabilitas yang hasilnya menunjukkan suatu bentuk distribusi yang mempunyai variasi ukuran kemencengan yang cukup signifikan, distribusi Gamma merupakan salah satu alternatif model yang banyak digunakan. Fungsi Gamma r () adalah : α1 r () = e d, untuk > 0 0 Sifat-sifat penting fungsi Gamma adalah : 1. Untuk sebuah bilangan bulat positif n, (n) = (n 1)! 2. Didefinisikan = (1/2) = π Distribusi Gamma Peubah acak kontinu berdistribusi Gamma dengan parameter dan, bila padatnya diberikan oleh : 1 /β α1 f( :, ) = e 0 β (αα = 0 untuk lainnya Bila > 0 dan > 0 Distribusi Gamma Standard Jika parameter skala sebuah distribusi Gamma = 1 diperoleh suatu distribusi Gamma standar. F G = ( : ) = P (X ) = 0 α1 t e Γ(α) t dt P (X ) = F G ( ;, ) = F G ;α β 3

5 Nilai mean dari distribusi Gamma adalah: = Nilai variansi dari distribusi Gamma adalah: 2 = Contoh Soal dan Penyelesaian Variable acak kontinu yang menyatakan ketahanan suatu bantalan peluru (dalam ribaun jam) yang diberi pembebanan dinamis pada suatu putaran kerja tertentu mengikuti suatu distribusi Gamma dengan = 8 dan = 15, Tentukan, probabilitas sebuah bantalan peluru dapat digunakan selama 60 ribu-120 ribu jam dengan pembebanan dinamik pada putaran kerja tersebut! Hitunglah mean dan variansi di atas! Penyelesaian: P (60 120) = P ( 120) P ( 60) = FG (120; 8, 15) - FG (60 ; 8, 15 ) = FG (120/15 ; 8) - FG (60/15; 8) = FG (8 ;8) - FG (4 ; 8) = 0,5470 0,0511 = 0,4959 Mean : EX ( ) (8)(15) Varians : (8)(15 ) ,43. 4

6 BAB III PENUTUP 3.1 Kesimpulan Berdasarkan uraian pada makalah dapat disimpulkan bahwa: 1. Jika α = 1, fungsi rasio kegagalan dari distribusi Gamma merupakan fungsi naik untuk β > 1 dan merupakan fungsi turunan untuk β < Jika β = 1, fungsi rasio kegagalan dari distribusi Gamma merupakan suatu fungsi naik untuk β > 1 dan merupakan fungsi turun untuk β < Saran Agar dalam penyelesaian kasus distribusi gama dapat dikerjakan, maka perlu terlebih dahulu harus memahami rumus-rumus yang distribusi gama, baik tentang rumus fungsi distribusi Gamma hingga mean dan variansi. 5

7 DAFTAR PUSTAKA Harinaldi Prinsip-prinsip Statistik untuk Teknik dan Sains. Erlangga:Jakarta. Spiegel, Murray R, dkk Probabilitas Dan Statistik Edisi Kedua. Erlangga:Jakarta 6

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma (

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma ( I. PENDAHULUAN 1.1. Latar Belakang dan Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP

Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP Makalah Matematika Asuransi MODEL PARAMETRIK TAHAN HIDUP Disusun Oleh : 1. Intan Wijaya M0108018. Nariswari Setya D. M01080 3. Rahmawati Oktriana M0108061 4. Sri Maria Puji L. M0108108 JURUSAN MATEMATIKA

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

4. Misalkan peubah acak X memiliki fungsi distribusi:

4. Misalkan peubah acak X memiliki fungsi distribusi: Diskusi 1 Tanggal 19 Februari 2014, Waktu: suka-suka menit 1. Enam laki-laki dan 5 perempuan melamar suatu pekerjaan di PT KhrshFin. Empat dari mereka terpilih secara acak untuk diwawancarai. Misalkan

Lebih terperinci

Teori Keandalan sebagai Aplikasi Distribusi Eksponensial

Teori Keandalan sebagai Aplikasi Distribusi Eksponensial Teori Keandalan sebagai Aplikasi Distribusi Eksponensial Melati Budiana Putri / 18209006 Program Studi Sistem dan Teknologi Informasi Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR

PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR PERBANDINGAN PENGGUNAAN RANTAI MARKOV DAN DISTRIBUSI CAMPURAN DATA TIDAK HUJAN DAN DATA HUJAN UNTUK MENSIMULASI DATA HUJAN HARIAN TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk

BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk BAB III ESTIMASI BIAYA GARANSI TV Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk mengestimasi biaya garansi satu dimensi pada TV. Adapun tahapan-tahapan yang dilakukan seperti terlihat

Lebih terperinci

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada kehidupan sehari-hari, adanya ketidakmampuan manusia untuk mengetahui fenomena yang akan terjadi pada periode mendatang akan mengakibatkan kurang tepatnya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Fungsi Gamma dan Fungsi Beta. Ayundyah. Ayundyah Kesumawati. Prodi Statistika FMIPA-UII. March 31, 2015

Fungsi Gamma dan Fungsi Beta. Ayundyah. Ayundyah Kesumawati. Prodi Statistika FMIPA-UII. March 31, 2015 Fungsi Kesumawati Prodi Statistika FMIPA-UII March 31, 215 Gamma Fungsi Fungsi Gamma didefinisikan sebagai integral tak wajar berikut: Γ(α) := e x x α 1 dx (1) Integral ini konvergen bila α >. Dengan menerapkan

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

BAB VI DISTRIBUSI PROBABILITAS MENERUS

BAB VI DISTRIBUSI PROBABILITAS MENERUS BAB VI DISTRIBUSI ROBABILITAS MENERUS 6. Distribusi Uniform (seragam) Menerus Distribusi seragam menerus merupakan distribusi yang paling sederhana. Karaketristik distribusi ini adalah fungsi kepadatannya

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

I. PENDAHULUAN. analisis serta mempergunakannya untuk maksud maksud tertentu. Statisitika

I. PENDAHULUAN. analisis serta mempergunakannya untuk maksud maksud tertentu. Statisitika I. PENDAHULUAN 1.1 Latar Belakang Masalah Statsistika merupakan suatu metode, ilmu dan seni yang dipergunakan untuk (atau mempelajari tentang) pengumpulan data, analisis data dan interpretasi hasil analisis

Lebih terperinci

Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 2014 ISSN

Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 2014 ISSN Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 204 ISSN 2085-7829 Perbandingan Aplikasi Metode Parametrik (Distribusi Log logistik) dan Non Parametrik (Nelson-Aalen Estimator) dalam Analisis Data Uji

Lebih terperinci

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL SEMINAR TUGAS AKHIR SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL (STUDI KASUS TERMINAL MIRAH PELABUHAN TANJUNG PERAK SURABAYA) Oleh : Risky Abadi 1203.109.004 Latar Belakang Pelabuhan Tanjung Perak sebagai

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

Seminar Hasil Tugas Akhir

Seminar Hasil Tugas Akhir Seminar Hasil Tugas Akhir FALAH EGY SUJANA (1209100050) JURUSAN MATEMATIKA FMIPA-ITS SIMULASI ANTRIAN SISTEM PELAYANAN NASABAH (STUDI KASUS : BANK X) Pembimbing : Drs. Soetrisno, MI.Komp. LATAR BELAKANG

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

INTERVAL PENGGANTIAN PENCEGAHAN SUKU CADANG BAGIAN DIESEL PADA LOKOMOTIF KERETA API PARAHYANGAN * (STUDI KASUS DI PT. KERETA API INDONESIA)

INTERVAL PENGGANTIAN PENCEGAHAN SUKU CADANG BAGIAN DIESEL PADA LOKOMOTIF KERETA API PARAHYANGAN * (STUDI KASUS DI PT. KERETA API INDONESIA) Reka Integra ISSN: 2338-5081 Jurusan Teknik Industri Itenas No.02 Vol.4 Jurnal Online Institut Teknologi Nasional April 2016 INTERVAL PENGGANTIAN PENCEGAHAN SUKU CADANG BAGIAN DIESEL PADA LOKOMOTIF KERETA

Lebih terperinci

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012 PENENTUAN RELIABILITAS SISTEM DAN PELUANG SUKSES MESIN PADA JENIS SISTEM PRODUKSI FLOW SHOP Imam Sodikin 1 1 Teknik Industri Fakultas Teknologi Industri Institut Sains & Teknologi AKPRIND Yogyakarta Jl.

Lebih terperinci

Pengukuran dan Peningkatan Kehandalan Sistem

Pengukuran dan Peningkatan Kehandalan Sistem Pengukuran dan Peningkatan Kehandalan Sistem Pengukuran Kehandalan Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menguraikan proses perancangan kehandalan sistem 3 Kehandalan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA SIDANG TERTUTUP TUGAS AKHIR HOME MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA I V Oleh : Muh. Nurcahyo Utomo 121 1 37 Dosen Pembimbing: Dra. Farida Agustini

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL TA. SURAT PENGAKUAN...ii. SURAT KETERANGAN PERUSAHAAN...iii HALAMAN PENGESAHAN HALAMAN MOTTO HALAMAN PERSEMBAHAN

DAFTAR ISI HALAMAN JUDUL TA. SURAT PENGAKUAN...ii. SURAT KETERANGAN PERUSAHAAN...iii HALAMAN PENGESAHAN HALAMAN MOTTO HALAMAN PERSEMBAHAN DAFTAR ISI HALAMAN JUDUL TA i SURAT PENGAKUAN...ii SURAT KETERANGAN PERUSAHAAN...iii HALAMAN PENGESAHAN HALAMAN MOTTO HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR PERSAMAAN

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

MODEL MODEL LEBIH RUMIT

MODEL MODEL LEBIH RUMIT 08/0/06 MODEL MODEL LEBIH RUMIT Di susun oleh Nurul Hani Ulvatunnisa Kanthi Wulandari Sri Siska Wirdaniyati Kamal Adyasa Unib Sedya Pramuji 08/0/06 Model Polinom Berbagai Ordo Model Yang Melibatkan Transformasi

Lebih terperinci

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E.

Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006 A. 5/32 B. ¼ C. 27/32 D. ¾ E. 1 A. 0,20 B. 0,34 C. 0,40 D. 0,60 E. Persatuan Aktuaris Indonesia Probabilitas dan Statistik 27 November 2006. Jika A, B, C dan D adalah kejadian (event) di mana: ' B = A, C D = {}, P[ A] = [ ] 4, P B = 4 P C A = 2, P C B = 4, P D A = 4,

Lebih terperinci

3 BAB III LANDASAN TEORI

3 BAB III LANDASAN TEORI 3 BAB III LANDASAN TEORI 3.1 Pemeliharaan (Maintenance) 3.1.1 Pengertian Pemeliharaan Pemeliharaan (maintenance) adalah suatu kombinasi dari setiap tindakan yang dilakukan untuk menjaga suatu barang dalam,

Lebih terperinci

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT Oleh : Entit Puspita Dosen Jurusan pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Abstrak Dalam Keluarga eksponensial satu parameter

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Antrian Sistem antrian adalah merupakan keseluruhan dari proses para pelanggan atau barang yang berdatangan dan memasuki barisan antrian yang seterusnya memerlukan pelayanan

Lebih terperinci

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma Menentukan Keandalan Komponen Produksi Pada Model Stress Strength yang Berdistribusi Gamma Muh Nurcahyo Utomo, Farida Agustini W. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut

Lebih terperinci

ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon

ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon Jurnal Barekeng Vol. 8 No. 1 Hal. 45 49 (2014) ANALISIS SISTEM ANTRIAN PADA BANK MANDIRI CABANG AMBON Analysis of Queue System on the Bank Mandiri Branch Ambon SALMON NOTJE AULELE Staf Jurusan Matematika,

Lebih terperinci

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SESIOMADIKA) 2017 ISBN: 978-602-60550-1-9 Statistika, hal. 42-51 ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data antar kejadian (time-to-event data) adalah data lama waktu sampai suatu peristiwa terjadi atau sering disebut data survival. Untuk memperoleh data antar

Lebih terperinci

BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal.

BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal. BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan matematika dan penerapannya dalam berbagai bidang keilmuan selalu mencari metode baru untuk memudahkan dalam memprediksi dan menaksir

Lebih terperinci

ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II

ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II Asep Solih A 1* Rini Cahyandari 2 Tarkinih 3 123 Program

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011 MA081 STATISTIKA DASAR SEMESTER II TAHUN 010/011 LATIHAN I A. DISTRIBUSI DISKRIT KHUSUS 1) [BENAR/SALAH] Banyaknya kejadian angin tornado melanda suatu daerah dimodelkan sebagai suatu proses Poisson dengan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Langkah perancangan yang akan dilakukan adalah sebagai berikut: produksi pada departemen plastik

BAB III METODOLOGI PENELITIAN. Langkah perancangan yang akan dilakukan adalah sebagai berikut: produksi pada departemen plastik BAB III METODOLOGI PENELITIAN 3.1 Langkah Perancangan Langkah perancangan yang akan dilakukan adalah sebagai berikut: a. Melakukan studi literatur sejumlah buku yang berkaitan dengan preventive maintenance.

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi Interval Kepercayaan Skewness dan Kurtosis Menggunakan ootstrap pada Data Kekuatan Gempa umi Hardianti Hafid, Anisa, Anna Islamiyati Program Studi Statistia, FMIPA, Universitas Hasanuddin Gempa bumi yang

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

MODEL-MODEL LEBIH RUMIT

MODEL-MODEL LEBIH RUMIT MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can

Lebih terperinci

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI Puspitaningrum Rahmawati, Bambang Susanto, Leopoldus Ricky Sasongko Program Studi Matematika (Fakultas Sains dan Matematika,

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG

ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG ANALISIS SISTEM ANTRIAN PELAYANAN TIKET KERETA API STASIUN TAWANG SEMARANG SKRIPSI Oleh: MERLIA YUSTITI 24010210120023 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2014

Lebih terperinci

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si.

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si. RELIABILITAS & FUNGSI HAZARD 1 RELIABILITAS Peluang bahwa suatu produk atau jasa akan beroperasi dengan baik dalam jangka waktu tertentu (durabilitas) pada kondisi pengoperasian sesuai dengan desain (suhu,

Lebih terperinci