DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar"

Transkripsi

1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

2 Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x) 1, a x b f(x)= b a 0, x lainnya a b Rataan : Variansi : EX [ ] = Var( X ) b a 2 ( b- a) 12 2

3 Distribusi Normal (Gauss) 3 Karl Friedrich Gauss Penting dipelajari Notasi: X ~ N (, 2 ) f.k.p: - Banyak digunakan - Aproksimasi Binomial - Teorema limit pusat rataan f ( x) 1 e 2 1 x 2 2, - < x < Simpangan baku /standar deviasi = e = N(0,1) disebut normal standar (baku)

4 Kurva Normal 4 Modus tunggal Titik belok Titik belok Total luas daerah di bawah kurva =1 Simetri terhadap x = Peluang X di sekitar 1, 2, dan 3

5 Pengaruh dan 5 Kurva normal dengan yang sama 1 < 2 < 3 parameter skala < 2 < 3 Kurva normal dengan yang sama parameter lokasi 1 2 3

6 6 Luas di bawah kurva Normal P( X ) 1 X ~ N(, 2 ) P (z 1 < Z < z 2 ) P(a < X < b) Z = X -m s X ~ N(, 2 ) Z ~ N(0,1) z 1 a 0 z 2 b

7 Menghitung Peluang Normal 7 Sulit!!! Harus dihitung secara numerik 1. Cara langsung 1 x 2 1 P( a X b) e dx 2 2. Dengan tabel normal standar P (Z z) b a 2 Z X N(0,1)

8 Arti Tabel Normal 8 Misal Z ~ N(0,1) dan z R, -3,4 z 3,4 z 1 x 2 /2 P( Z z) e dx 2 P(Z z) DITABELKAN untuk -3.4 z 3.4 P(Z z )

9 9 Membaca Tabel Normal P(Z 1,24 )

10 10 Hitung P (0 Z 1,24 ) P(0 Z 1,24 ) = P(Z 1,24 ) - P(Z < 0 ) P(Z 0 ) = 0,8925 0,5 = 0,3925 P(Z 1,24 )

11 Contoh 1 11 Suatu perusahaan listrik menghasilkan bola lampu yang umurnya berdistribusi normal dengan rataan 800 jam dan standar deviasi 40 jam. Hitunglah peluang suatu bola lampu dapat menyala antara 778 dan 834 jam

12 Jawab 12 Misal X : umur bola lampu X ~ N (800,40 2 ) X -m Dengan transformasi Z = : s P(778 X 834) P Z P( 0,55 Z 0,85) P( Z 0,85) P( Z 0,55) 0,80230,2912 0,5111

13 Contoh 2 13 Suatu pabrik dapat memproduksi voltmeter dengan kemampuan pengukuran tegangan, rataan 40 volt dan standar deviasi 2 volt. Misalkan tegangan tersebut berdistribusi normal. Dari 1000 voltmeter yang diproduksi, berapa voltmeter yang tegangannya melebihi 43 volt?

14 Jawab 14 Misal X : tegangan voltmeter X ~ N (40, 4) X -m Dengan transformasi Z = s P( X 43) P Z 2 PZ ( 1,5) 1 PZ ( 1,5) 10,9332 0, 0668 Banyaknya voltmeter yang tegangannya lebih dari 43 volt adalah 1000 unit x 0, unit

15 15 Aproksimasi Binomial dengan Normal Jika n maka B(n,p) N (, 2 ) dimana = np dan 2 =np(1-p) ( 1 p) B (6;0,2) B (15;0,2) Semakin besar n, binomial semakin dekat ke normal

16 16 Contoh 3 Misal peluang seorang pasien sembuh dari suatu penyakit demam berdarah adalah 0,4. es/demam.jpg Bila diketahui ada 100 pasien demam berdarah, berapa peluangnya bahwa yang sembuh a. tepat 30 orang b. kurang dari 30 orang

17 Jawab Misal X : banyaknya pasien yang sembuh X ~ B(n,p), n = 100 ; p = 0,4 Rataan: = np = 100 x 0,4 = 40 St.Dev: np(1 p) 400, 6 4, a. Peluang bahwa banyaknya pasien yang sembuh tepat 30 orang adalah: P( X 30) P(29,5 X 30,5) 29, ,5 40 P Z 4,899 4,899 P( 2,14 Z 1,94) P( Z 1,94) P( Z 2,14) 0, , ,01

18 Jawaban lanjutan 18 b. Peluang bahwa banyaknya pasien yang sembuh akan kurang dari 30 adalah: 29,5 40 P( X 30) PZ 4,899 PZ ( 2,14) 0, 0162

19 Distribusi Gamma 19 Observasi kontinu dan selalu non-negatif sering dianggap mengikuti distribusi gamma dengan parameter >0 dan β>0. Notasi X ~ Gamma(,) f.k.p f(x) = 1 Γ(α)β α xα 1 x β e,0 () disebut fungsi gamma 0 1 y ( ) y e dy < x < 0, x lainnya α > 0 dan β > 0 dimana (1) = 1 dan () = ( -1)!, jika > 1 E[X] = dan Var(X) = 2 Digunakan untuk memodelkan waktu tunggu Keluarga Gamma(,): distribusi eksponensial, khi kuadrat, Weibull, dan Erlang

20 ( n) ( n1)! 20 Bukti Untuk =1, x 1 x 2 ( ) e x e ( 1) x dx x 2 ( 1) e x dx ( 1) ( 1) x (1) e dx 1 0 sehingga jika kita ambil >1, tulis n= didapat persamaan rekursif: ( n) ( n1)!

21 21 Bukti x 1 1 E[ X ] x x e dx 0 ( ) 1 x x e dx, misal y ( ) 0 1 ( ) ( 1) ( ) 0 y e y x dy Dengan cara yang sama kita juga bisa menentukan E[X 2 ], sehingga kita bisa mendapatkan Var(X) = 2

22 Page 22 Contoh Radioactive particles passing by a counter follow a poisson process with an average of 4 particles per millisecond. What is the probability that up to 2 millisecond will elapse until 3 particles have passed the counter? Analisis Kasus: Misalkan X : waktu yang diperlukan untuk suatu partikel melewati counter X ~ Gamma(, )

23 Jawab MA2181 Analisis Data - Distribusi Kontinu Page 23

24 Distribusi Eksponensial 24 Keluarga distribusi gamma (1, 1/) Notasi: X ~ Exp () f.k.p x e,0 x f( x) 0, x lainnya E[X] = 1/ Var(X) = 1/ 2 Digunakan untuk memodelkan waktu antar kedatangan

25 25 Contoh 4 Misalkan lama pembicaraan telepon dapat dimodelkan oleh distribusi eksponensial, dengan rataan 10 menit/orang. Bila seseorang tiba-tiba mendahului anda di suatu telepon umum, carilah peluangnya bahwa anda harus menunggu: a. lebih dari 10 menit b. antara 10 sampai 20 menit

26 Jawab 26 Misalkan X : lama pembicaraan telepon Dik. X ~ exp(1/10) sehingga Tapi lama pembicaraan setara dengan waktu menunggu. Jadi, a. P( X 10) 1 P( X 10) b. f ( x) e x 1 / x /10 1 e dx 1 0,368 0, x/ P(10 X 20) e dx 0, 233

27 Page 27 Distribusi Chi-Square X ~ χ 2 (r) Kasus distribusi Gamma dengan =r/2 dan β=2, f(x) = 1 Γ(r/2)2 r/2 x r 2 1 e x 2,0 < x < 0, x lainnya Dengan f.p.m untuk t < ½, = = r σ 2 = 2 = 2r M t = 1 2t r 2

28 Distribusi - t Misalkan Z peubah acak normal baku dan V peubah acak khi-kuadrat dengan derajat kebebasan. Bila Z dan V bebas, maka distribusi peubah acak T, bila Z T V diberikan oleh, h t t 1, t 2 Ini dikenal dengan nama distribusi-t dengan derajat kebebasan.

29 Distribusi F Misalkan U dan V dua peubah acak bebas masingmasing berdistribusi khi kuadrat dengan derajat kebebasan 1 dan 2. Maka distribusi peubah acak, U 1 F V Diberikan oleh, h f f f Ini dikenal dengan nama distribusi-f dengan derajat kebebasan 1 dan , 0 f 2

30 30 Referensi Walpole, Ronald E. dan Myers, Raymond H., Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Edisi 4, Bandung: Penerbit ITB, Walpole, Ronald E., et.al, 2007, Statistitic for Scientist and Engineering, 8th Ed., New Jersey: Prentice Hall. Pasaribu, U.S., 2007, Catatan Kuliah Biostatistika.

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah) /4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform

Lebih terperinci

MA 2081 Statistika Dasar Utriweni Mukhaiyar. 11 September 2012

MA 2081 Statistika Dasar Utriweni Mukhaiyar. 11 September 2012 1 PEUBAH ACAK DAN DISTRIBUSINYA MA 2081 Statistika Dasar Utriweni Mukhaiyar 11 September 2012 2 Pemetaan (Fungsi) Suatu pemetaan / fungsi Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 3 Peubah

Lebih terperinci

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4.

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. * 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi Utriweni Mukhaiyar MA 2081 Statistika

Lebih terperinci

BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar

BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar FUNGSI PELUANG GABUNGAN BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang

Lebih terperinci

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012 Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang

Lebih terperinci

Regresi Linear Sederhana

Regresi Linear Sederhana Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi

Lebih terperinci

Fungsi Peluang Gabungan

Fungsi Peluang Gabungan Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang

Lebih terperinci

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah)

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah) 4/6/9 Galat (error) Uji Hipotesis H ditolak H benar H salah a P(menolak H H benar) galat tipe I keputusan benar MA 8 Statistika Dasar Kamis, 6 Februari 9 H tidak ditolak keputusan benar P(tidak menolak

Lebih terperinci

ANALISIS VARIANSI. Utriweni Mukhaiyar. 2 November 2011

ANALISIS VARIANSI. Utriweni Mukhaiyar. 2 November 2011 1 ANALISIS VARIANSI Utriweni Mukhaiyar MA 2181 Analisis Data 2 November 2011 Analisis Variansi 2 1. Tujuan Analisis Variansi 2. Asumsi-asumsi dalam Analisis Variansi 3. Hipotesis yang diuji dalam analisis

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar Uji Hipotesis MA081 STATISTIKA DASAR Utriweni Mukhaiyar 8 Maret 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu diuji kebenarannyaa

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011 Uji Hipotesis UJI RATAAN UJIVARIANSI MA 081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 011 Pengertian Hipotesisadalah i suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lbih lebih

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

PELUANG 8/18/2010 EKSPERIMEN RUANG SAMPEL. Ruang sampel S, yaitu himpunan dari semua kemungkinanki hasil dari suatu percobaan acak (statistik).

PELUANG 8/18/2010 EKSPERIMEN RUANG SAMPEL. Ruang sampel S, yaitu himpunan dari semua kemungkinanki hasil dari suatu percobaan acak (statistik). PELUANG 1 MA 2181 ANALISIS DATA, 18 AGUSTUS 2010 UTRIWENI MUKHAIYAR EKSPERIMEN Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012

Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012 1 Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012 2 Analisis Variansi 1. Tujuan Analisis Variansi 2. Asumsi-asumsi s s dalam a Analisis s Variansi a 3. Hipotesis

Lebih terperinci

11/8/2010 ANALISIS VARIANSI ILUSTRASI

11/8/2010 ANALISIS VARIANSI ILUSTRASI 11/8/010 ANALISIS VARIANSI 1 Utriweni Mukhaiar MA 181 Analisis Data 8 November 010 ANALISIS VARIANSI 1. Tujuan Analisis Variansi. Asumsi-asumsi dalam Analisis Variansi 3. Hipotesis ang diuji dalam analisis

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012

Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012 ANALISIS VARIANSI DWIFAKTOR Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012 ANOVA one-way vs two-way 2 Dalam ANOVA one-way ( satu faktor), diperhatikan hanya satu faktor saja yang berpengaruh

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR

PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR 1 PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR Eksperimen 2 Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar

MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar 1 Ciri-ciri eksperimen acak (Statistik): *Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. *Proporsi keberhasilan dapat diketahui

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar 1 Peluang & Aturan Bayes MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar 2 Eksperimen Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi

Lebih terperinci

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011 MA081 STATISTIKA DASAR SEMESTER II TAHUN 010/011 LATIHAN I A. DISTRIBUSI DISKRIT KHUSUS 1) [BENAR/SALAH] Banyaknya kejadian angin tornado melanda suatu daerah dimodelkan sebagai suatu proses Poisson dengan

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA PEUBAH ACAK DAN DISTRIBUSINYA MA3181 Teori Peluang 8 September 2014 Utriweni Mukhaiyar 1 Pemetaan (Fungsi) O Suatu pemetaan / fungsi O Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 2 Peubah

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari

Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari (C) by UM, last edited Feb 2011 1 Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari hasil-hasil sebelumnya.

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Penentuan Distribusi Kerugian Agregat Tertanggung Asuransi Kendaraan Bermotor di Indonesia Menggunakan Metode Rekursif Panjer Determination of Aggregate Insured Losses

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA DISTRIBUSI SAMPLING PENGANTAR Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2011 MATA KULIAH : STATISTIKA KODE MATA KULIAH / SKS : 410102047 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

MINGGU KE-9 MACAM-MACAM KONVERGENSI

MINGGU KE-9 MACAM-MACAM KONVERGENSI MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 53 61 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA OLIVIA ATINRI,

Lebih terperinci

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 139 146 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,

Lebih terperinci