BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F"

Transkripsi

1 BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

2 Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung pada parameter yaitu µ (rataan populasi) dan σ (simpangan baku populasi) Fungsi padat peubah acak normal X : n(x; µ, σ) atau ( / ) [( x µ )/ σ ] f ( x) = e ; < x < σ π

3 Kurva Normal µ x Distribusi normal dengan µ=0 dan σ= disebut distribusi normal baku

4 Sifat-sifat Kurva Normal. Modus,terdapat pada x = µ. Kurva setangkup terhadap rataan µ 3. Kurva mempunyai titik belok pada : x = µ ± σ, cekung ke bawah jika µ-σ<x<µ+σ dan cekung ke atas untuk x yang lainnya 4. Kedua ujung kurva mendekati sb-x asimtot datar kurva normal 5. Seluruh luas di bawah kurva =

5 Luas di Bawah Kurva Normal Luas di bawah kurva di antara x=x dan x=x adalah Peluang di satu titik = 0 untuk p.a.kontinu ( ) [ ] = < < )/ ( ) (/ x x x dx e x X x P σ µ π σ ) ( ) ( sehingga 0 ) ( x X x P x X x P a X P < < = = =

6 Luas daerah yang diarsir = P( x X x) x µ x x

7 Standardisasi atau Pembakuan Misalkan diberikan p.a. X~ N(µ,σ ) Transformasi : X μ Z = σ membuat Z ~ N(0,) x x µ 0 σ z z µ=0 σ =

8 Contoh Diketahui X berdistribusi normal dengan µ=50 dan σ=0 tentukan peluang bahwa X mendapat harga antara 45 dan 6. Solusi : P(45 < X < 6) = P( < Z < ) 0 0 = P( 0,5 < Z <,) = P( Z <,) P( Z < 0,5) = 0,8849 0,3085 = 0,5764

9 Contoh Suatu jenis baterai mobil rata-rata berumur 3 tahun dengan simpangan baku 0,5 tahun. Bila umur baterai berdistribusi normal, berapa persen baterai jenis A akan berumur kurang dari,3 tahun. Solusi : Misal X : umur baterai mobil jenis A P( X <,3) = P( Z = 0,0808 = 8,08 % <,4),3 3 x

10 Contoh 3 Suatu pengukur dipakai untuk menolak semua suku cadang yang ukurannya tidak memenuhi ketentuan,50±d. Diketahui pengukuran tsb berdistribusi normal dengan rataan,50 dan simpangan baku 0,. Tentukan harga d agar ketentuan tsb mencakup 95% seluruh pengukuran. Solusi : Diketahui luas atau peluang=0,95 tentukan dulu z kemudian cari x=σ z +µ P(,96 < Z <,96) = 0,95,50 + d = (0,)(,96) +,50 d = (0,)(,96) = 0,39

11 Dalil Limit Pusat Misalkan X berdistribusi tertentu dengan rata-rata µ dan simpangan baku σ. Jika ukuran sampel (n) cukup besar (n ), maka Z = (X- µ)/ σ berdistribusi normal baku N(0,). Bentuk limit distribusinya Kasus khusus penerapan dalil limit pusat : Teorema : X µ X ~ ( µ, σ / n) Z = ~ N(0,) n σ / n

12 Distribusi Gamma Distribusi gamma mendapat namanya dari fungsi gamma yaitu Γ α x ( α) = x e dx = ( α -)! ; untuk α 0 Peubah acak kontinu X berdistribusi gamma dengan parameter α>0 dan β>0, pdfnya : α x / β x e, x > 0 α f ( x) = β Γ( α) 0, untuk x lainnya µ = α.β dan σ = α.β > 0

13 Distribusi Eksponensial Peubah acak kontinu X berdistribusi eksponensial dengan parameter β>0, pdfnya : x / β e, x > 0 f ( x) = β 0, untuk x lainnya µ = β dan σ = β

14 Distribusi Khi-Kuadrat (Chi-Square) Peubah acak kontinu X berdistribusi khikuadrat dengan derajat kebebasan (d.k.) ν, pdfnya : ν / x / x e, x > 0 ν / f ( x) = Γ( ν / ) 0, untuk x lainnya µ = ν dan σ = ν dengan ν bil. bulat +; khi-kuadrat : gamma dengan α = ν/ dan β=.

15 Sifat-sifat Kurva Khi-Kuadrat. Grafik kurva berada di kuadran I bid. kartesius. Kurva tidak simetri, miring ke kanan (kurva +). Kemiringannya makin berkurang jika d.k.nya makin besar 3. Ujung kurva sebelah kanan mendekati sb- X asimtot datarnya 4. Seluruh luas di bawah kurva = 5.

16 Kurva Khi-Kuadrat χ p Luas daerah yang diarsir = p Titik kritis untuk p=0,95 dan ν = 4 adalah 3,7

17 Teorema Jika S variansi sampel acak ukuran n diambil dari populasi normal dengan variansi σ, maka peubah acak : ( n ) S σ berdistribusi khi-kuadrat dengan derajat kebebasan (dk) : ν = n-. ~ χ

18 Contoh Tentukan titik kritis untuk dk=9, jika luas daerah seb. kanan = 0,05 dan luas daerah seb.kiri = 0,05! dari tabel khi-kuadrat : χ χ =,70 =6,9 χ χ

19 Contoh Suatu pabrik baterai mobil menjamin bahwa baterainya akan tahan rata-rata 3 tahun dengan simpangan baku tahun. Bila lima baterainya tahan,9;,4;3,0;3,5;dan 4, tahun, apakah pembuatnya masih yakin bahwa simpangan baku baterai tsb tahun? Jawab : Mula-mula dihitung variansi sampel s = [5. 48,6-(5) ]/(5. 4)=0,85. Kemudian χ = [4. 0,85]/=3,6 merupakan suatu nilai khi-kuadrat dengan dk=4. Karena 95% nilai khi-kuadrat dengan dk=4 terletak antara 0,484 dan,43, nilai hitung σ = masih wajar, sehingga tidak ada alasan mencurigai simpangannya bukan tahun

20 Distribusi Student (t) Jarang sekali variansi populasi diketahui Untuk sampel ukuran n 30 taksiran σ yang baik diperoleh dengan menghitung nilai S atau S n, selama itu distribusi statistik ( X µ )/( S / n ) masih secara hampiran berdistribusi normal baku, tapi bila n < 30 kita menghadapi distribusi T

21 Distribusi Student (t) Pertama kali diterbitkan pada 908 dalam suatu makalah oleh W.S. Gosset Karyanya diterbitkan secara rahasia dengan nama Student Dalam menurunkan persamaan ini Gosset menganggap sampel berasal dari normal. Kendati anggapan ini kelihatan amat mengekang dapat dibuktikan populasi yang tidak normal tapi distribusinya berbentuk lonceng masih memberikan nilai T yang menghampiri amat dekat distribusi t

22 Distribusi t dengan dk: ν=n- Z = X Misalkan p.a. normal baku dan ( n ) S σ / n V = p.a. khi-kuadrat dengan σ derajat kebebasan ν=n-. Jika Z dan V bebas, maka distribusi p.a. : T diberikan oleh : f ( t) = Γ Γ µ = [( v + ) / ] ( v / ) πv ( X µ )/( σ / n ) [ ] ( n ) S / σ /( n ). + t v ( v+ ) / ; < t <

23 Hubungan kurva t dengan ν = dan 5 dan kurva Normal Baku ν = ν = ν = 5 ν = 0

24 Sifat-sifat Kurva t. Kurva setangkup terhadap rataan 0. Kurva berbentuk lonceng, tapi distribusi t lebih berbeda satu sama lain dengan distribusi Z karena nilai T tergantung pada dua besaran yang berubah-ubah yaitu X dan S sedangkan nilai Z hanya tergantung pada perubahan X 3. Kedua ujung kurva mendekati sb-x asimtot datarnya 4. Seluruh luas di bawah kurva = 5.

25 Contoh Suatu pabrik bola lampu yakin bahwa bola lampunya akan tahan menyala rata-rata selama 500 jam. Untuk mempertahankan nilai tsb, tiap bulan diuji 5 bola lampu. Bila nilai t yang dihitung terletak antara t 0,05 dan t 0,05 maka pengusaha pabrik akan mempertahankan keyakinannya. Kesimpulan apakah yang seharusnya dia ambil dari sampel dengan rataan 58 jam dan simpangan baku sampel 40 jam? Anggap bahwa distribusi waktu menyala secara hampiran adalah normal.

26 Dari tabel diperoleh t 0,05 =,7 untuk dk=4. Jadi pengusaha tadi akan puas dengan keyakinannya bila sampel 5 bola lampu akan memberikan nilai t antara -,7 dan,7. Bila memang µ=500, maka t = / 5,5 suatu nilai yang cukup jauh di atas,7. Peluang mendapat nilai t dengan dk=4 sama atau lebih besar dari,5 secara hampiran adalah 0,0. Bila µ > 500, nilai t yang dihitung dari sampel akan lebih wajar. Jadi pengusaha tadi kemungkinan besar akan menyimpulkan produksinya lebih baik dari pada dugaannya semula. =

27 Distribusi F T : Misalkan U dan V dua peubah acak bebas masing-masing berdistribusi khi-kuadrat dengan dk= ν dan dk= ν. Maka distribusi p.a : dengan dk= ν dan dk= ν F V U X ~ / / ν ν = ( ) [ ]( ) ( ) ( ) ( ) ( ) < < + Γ Γ + Γ = + yang lainnya untuk, 0 ;0 /. / / /. / ) ( / / x x v x v x v v v v v v x f v v v v

28 Kurva F F = ( p);( ν, ν ) F p;( ν, ν ) F Ada dua dk yaitu dk= ν dan dk= ν Untuk p=0,05 dengan (ν,ν )=(4,8) : F=3, untuk p=0,0 dengan (ν,ν )=(4,8) : F=5,8

29 Sifat-sifat Kurva F. Grafik kurva berada di kuadran I bid. kartesius. Kurva tidak simetri, miring ke kanan (kurva +) 3. Ujung kurva sebelah kanan mendekati sb- X asimtot datarnya 4. Seluruh luas di bawah kurva = 5. Sampling

5. Fungsi dari Peubah Acak

5. Fungsi dari Peubah Acak 5. Fungsi dari Peubah Acak EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Sebaran cuplikan (n-1)s 2 / σ 2 TEOREMA 5.16 Jika S 2 adalah variansi dari cuplikan acak berukuran n yang diambil

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

DISTRIBUSI NORMAL. RatuIlmaIndraPutri

DISTRIBUSI NORMAL. RatuIlmaIndraPutri DISTRIBUSI NORMAL RatuIlmaIndraPutri Distribusi normal menggunakan variabel acak kontinu. Distribusi normal sering disebut DISTRIBUSI GAUSS. Distribusi ini merupakan salah satu yang paling penting dan

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

Pengujian Hipotesis. Oleh : Dewi Rachmatin

Pengujian Hipotesis. Oleh : Dewi Rachmatin Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

PENGUJIAN HIPOTESIS 2

PENGUJIAN HIPOTESIS 2 PENGUJIAN HIPOTESIS. Menguji Kesamaan Dua Rata-rata a. Uji Dua Pihak Misalkan ada dua populasi berdistribusi normal dengan masing-masing rata-rata dan simpangan baku secara berturut-turut μ dan μ dan σ

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Revenue Management Belakangan ini revenue management telah mendapat perhatian dunia sebagai salah satu aplikasi dari operations research (OR) yang paling sukses. Revenue management

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Pokok Bahasan: Chi Square Test

Pokok Bahasan: Chi Square Test Pokok Bahasan: Chi Square Test Start Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness of Fit Test) (Kontigensi Table Test) 1 Instruksional Umum Memberi penjelasan tentang distribusi

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016 REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS Utriweni Mukhaiyar MA81 Statistika Nonparametrik Kamis, 1 Januari 016 PEUBAH ACAK Peubah acak, yaitu pemetaan X: S R Ruang Sampel, S X x Himpunan Bil.Riil,

Lebih terperinci

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji

Lebih terperinci

Makalah Statistika Distribusi Normal

Makalah Statistika Distribusi Normal Makalah Statistika Distribusi Normal Disusun Oleh: Dwi Kartika Sari 23214297 2EB16 Fakultas Ekonomi Jurusan Akuntansi Universitas Gunadarma 2015 Kata Pengantar Puji syukur kehadirat Tuhan Yang Maha Esa

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis.

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis. Konsep: PENGUJIAN HIPOTESIS Agus Susworo Dwi Marhaendro Hipotesis: asumsi atau dugaan sementara mengenai sesuatu hal. Dituntut untuk dilakukan pengecekan kebenarannya. Jika asumsi atau dugaan dikhususkan

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi

Lebih terperinci

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(,

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(, 0 DISTRIBUSI NORMAL UMUM Distribusi normal umum ini merupakan distribusi dari peubah acak kontinu yang paling banyak sekali dipakai sebagai pendekatan yang baik dari distribusi lainnya dengan persyaratan

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan PENGUJIAN HIPOTESIS Hipotesis Statistik adalah pernyataan atau dugaan mengenai satu atau lebih populasi. Dengan mengambil suatu sampel acak dari populasi tersebut dan menggunakan informasi yang dimiliki

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( ) BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H

Lebih terperinci

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh:

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh: Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi, SP., MSc. Start Home Contact Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Contingency Table Test)

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

PENGUJIAN HIPOTESIS. Daerah penolakan. luas KED

PENGUJIAN HIPOTESIS. Daerah penolakan. luas KED PENGUJIAN HIPOTESIS A. Langkah langkah pengujian hipotesis Hipotesis adalah asumsi atau dugaan mengenai sesuatu. Jika hipotesis tersebut tentang nilai nilai parameter maka hipotesis itu disebut hipotesis

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah) /4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu

Lebih terperinci

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono 6. Teori Estimasi EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Pendahuluan Inferensi statistik adalah metoda untuk menarik inferensi atau membuat generalisasi dari suatu populasi. Ada

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik

Lebih terperinci

MODEL-MODEL LEBIH RUMIT

MODEL-MODEL LEBIH RUMIT MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang

Lebih terperinci

5. Aplikasi Turunan 1

5. Aplikasi Turunan 1 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Populasi dan Sampel. Materi 1 Distribusi Sampling

Populasi dan Sampel. Materi 1 Distribusi Sampling Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB II LANDASAN TEORI. Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan

BAB II LANDASAN TEORI. Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan BAB II LANDASAN TEORI 21 Konsep Dasar Analisis Regresi Analisis regresi (regressison analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Uji Hipotesis

BAB II LANDASAN TEORI. 2.1 Uji Hipotesis BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang pengujian hipotesis, metode klasifikasi berstruktur pohon, metode-metode statistika yang menjadi dasar pada metode QUEST, dan algoritme QUEST..1

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION)

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) Andaikan ada suatu populasi dengan jumlah anggotanya sebanyak N diambil contoh sebanyak n. Apabila dari setiap kemungkinan contoh tersebut dihitung suatu

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka

Lebih terperinci

UJI HIPOTESIS SATU-SAMPEL

UJI HIPOTESIS SATU-SAMPEL UJI HIPOTESIS SATU-SAMPEL Pengantar 1. Tulisan ini terkait dengan artikel berjudul KETIKA ILMU HUKUM SEIRING STATISTIKA pada laman www.edscyclopedia.com. Pada website tersebut, mengenai uji hipotesis secara

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012 Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

STATISTIK PERTEMUAN IV

STATISTIK PERTEMUAN IV STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Langkah-langkah pengujian hipotesis Hipotesis adalah asumsi atau dugaan mengenai sesuatu. Jika hipotesis tersebut tentang nilai-nilai parameter maka hipotesis itu disebut hipotesis

Lebih terperinci

BAB VI DISTRIBUSI PROBABILITAS MENERUS

BAB VI DISTRIBUSI PROBABILITAS MENERUS BAB VI DISTRIBUSI ROBABILITAS MENERUS 6. Distribusi Uniform (seragam) Menerus Distribusi seragam menerus merupakan distribusi yang paling sederhana. Karaketristik distribusi ini adalah fungsi kepadatannya

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011 Uji Hipotesis UJI RATAAN UJIVARIANSI MA 081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 011 Pengertian Hipotesisadalah i suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lbih lebih

Lebih terperinci

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd Definisi Pengujian hipotesis deskriptif pada dasarnya merupakan proses pengujian generalisasi hasil penelitian yang didasarkan pada satu

Lebih terperinci

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( )

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( ) MOMEN, KEMIRINGAN DAN KERUNCINGAN, DISTRIBUSI NORMAL, DISTRIBUSI T, DISTRIBUSI F, DISTRIBUSI BINOMIAL, DISTRIBUSI POISSON, UJI NORMALITAS DAN HOMOGENITAS, UJI F DAN t, HIPOTESIS, DAN ANOVA Makalah Sebagai

Lebih terperinci

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada. 18-Aug-17. 1http://istiarto.staff.ugm.ac.id. Statistika Teknik.

Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada. 18-Aug-17. 1http://istiarto.staff.ugm.ac.id. Statistika Teknik. Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada Statistika Teknik Rentang Keyakinan 1 Rentang Keyakinan Estimasi Parameter Distribusi probabilitas memiliki sejumlah parameter. Parameter-parameter

Lebih terperinci

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma (

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma ( I. PENDAHULUAN 1.1. Latar Belakang dan Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar Uji Hipotesis MA081 STATISTIKA DASAR Utriweni Mukhaiyar 8 Maret 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu diuji kebenarannyaa

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi

Lebih terperinci

Chi Square Test. Pokok Bahasan: Oleh:

Chi Square Test. Pokok Bahasan: Oleh: Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi,, SP., MSc. Start Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Kontigensi Table Test) 1 Instruksional

Lebih terperinci

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka MODUL DISTRIBUSI t 1. PENDAHULUAN Pengujian hipotesis dengan distribusi t adalah pengujian hipotesis yang menggunakan distribusi t sebagai uji statistik. Tabel pengujiannya disebut tabel t-student. Distribusi

Lebih terperinci

Definisi yang sama dapat diberikan untuk limit tak hingga sepihak.

Definisi yang sama dapat diberikan untuk limit tak hingga sepihak. Lecture 4. Limit C A. Infinite Limits Definisi 4.1 Notasi lim f(x) = Menyatakan bahwa nilai f(x) membesar tanpa batas jika nilai x semakin dekat dengan a, tetapi tidak sama dengan a. lim f(x) = lim f(x)

Lebih terperinci

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT)

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT) STATISTIKA II Distribusi Sampling (Nuryanto, ST., MT) 1. Pendahuluan Bidang Inferensia Statistik membahas generlisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan

Lebih terperinci

BAB 2 LANDASAN TEORI. KB (Keluarga Berencana) adalah salah satu usaha yang dilakukan untuk mencegah

BAB 2 LANDASAN TEORI. KB (Keluarga Berencana) adalah salah satu usaha yang dilakukan untuk mencegah BAB LANDASAN TEORI. Pengertian Keluarga Berencana KB (Keluarga Berencana) adalah salah satu usaha yang dilakukan untuk mencegah kehamilan, baik secara tradisional dan modern yang tujuannya adalah meningkatkan

Lebih terperinci