Outline. Oleh : Nachwan Mufti Adriansyah, ST, MT

Ukuran: px
Mulai penontonan dengan halaman:

Download "Outline. Oleh : Nachwan Mufti Adriansyah, ST, MT"

Transkripsi

1 Outli TTG3D3 Ata Modul#3 Ata da Popagasi mpdasi Ata Pgata mpdasi Sdii Ata ia Tipis mpdasi Gadg Ata Ata mpdasi Susua -lm dtik Tasfomasi mpdasi & Balu Olh : diasyah, ST, MT toductio Pgata A Dai sisi salua tasmisi, ata dipadag sbagai aiga tmial yag disbut sbagai: impdasi tmial / titik catu 3 Modul 3 mpdasi Ata 4

2 viw: Kofisi Patul da SW Salta MK. lktomagtika : Salua Tasmisi dga bba A Plaai kmbali kosp: Pmbagia daya pada agkaia salua tasmisi Kosp Matchig mpdasi ~ ~ Γ Γ ~ i ~ d Γd Γ i Γ d i Utuk salua ossy (kasus umum)... MK. Ata da Popagasi Kosp phituga impdasi ata is ata lii tipis da susuaya Pada umumya impdasi ata diuku 5 Dimaa, utuk salua losslss... i tad ta d i tahγd tahγ d viw: Kofisi Patul da SW Salta ~ i ~ d Γd Γ Γ d Γ d α Utuk α, kofisi patul aka diasaka sama (tapi fasa bbda) spaag salua # oltag Stadig Wav atio ( SW ) Γ SW Γ Γ SWd Γ αd αd mpdasi Ata A x ( ) fugsi,, Aus pd lm ata mpdasi ata mpdasi Sdii Jika ata tisolasi dai kadaa skliligya mpdasi sdii mpdasi gadg mpdasi Gadg Jika tdapat bda-bda lai di skita ata da mmpgauhi ata 7 8

3 Mtod MF duksi mpdasi Sdii Ata ia Tipis Kasus : d Ata lia tipis dipol ½λ, Distibusi aus siusoidal λ dipasag pada tmial mybabka aus pada d Aus mghasilka da mgiduksika i kmbali pada kodukto tsbut. Dai siilah kosp impdasi sdii bmula. 9 si Dipuhi syaat batas bagi kodukto smpua, da mda total pada kodukto smpua : Shigga, t i i Modul 3 mpdasi Ata Mtod MF duksi Mtod MF duksi Tgaga tiduksi pada lm d, d λ d d d i d aka mybabka aus d pada tmial ika ata dihubug sigkat, shigga impdasi tasf : d d d λ Kaa sifatya yag kosta da tidak tgatug pada bsaya, maka impdasi sdii dapat diyataka sbb : d d si Hal ii bati bahwa, mpdasi yag dilihat dai sisi tgaga sama dga mpdasi yag dilihat dai sisi tgaga iduksi Blaku Hukum sipositas Caso, shigga: shigga, d d d d d d. Ps. () Shigga dapat dituliska, d d. Ps. () Modul 3 mpdasi Ata Modul 3 mpdasi Ata

4 Mtod MF duksi Mtod MF iduksi Ps. () Ps. () d d d d d d d d d d λ adalah kompo mda listik diaah yag dihasilka olh aus ata sdii ( mda sdii ) slautya dapat diotasika sbagai ( ) Aus (distibusi aus siusoidal) diotasika, si d d.si.d Mda Sdii dapat dihitug dga Hukum Maxwll, ωa 3 Modul 3 mpdasi Ata 4 Mghitug Mda Sdii, Mghitug Mda Sdii, Asumsi : Mda listik mmiliki kompo kaah -, klipata dai λ λ x d φ ρ ρ P( ρ, φ,) y itg ω A Dicai da A dahulu utuk mghitug ρ v 4 πε dv 4 µ π J A dv 4 4πε A ρ µ π 4 d d ρ d 4πε A µ 4π Hukum kotiuitas, ρ dt ωt cos. πε d 4 c dtitas ul, cos d Aus da apat aus, ω( t ) c si. ρ A ( t ω ) cos. ω ωt si. µ 4π d ( ) da si ( ) ωt πε d 8 c c dg ω c ( ) ( ) ωt ( ) ( ) A µ 8π d Modul 3 mpdasi Ata 5

5 ( ) ( ) ω πε t d c 8 ( ) ( ) ω π µ t d 8 A A ω Mda listik dapat dihitug dai psamaa : ω t Buktika!! Mghitug Mda Sdii, Modul 3 mpdasi Ata 7 πε c 4 Dga, ( ) ( ) ; ; ρ ρ ρ 3 4 c 4 π π πε da t ω Pada kodukto ata, aak ata dga titik obsvasi dibuat NO : da - Mghitug Mda Sdii, Modul 3 mpdasi Ata 8 ) ( 3. ) ( Mda sdii tlah didapatka!! Mghitug Mghitug mpdasi mpdasi Sdii Sdii,.d.si ( ) ) ( 3. ) ( Kmbali k umus awal mpdasi Sdii 9 ( ).d si 3 dtitas ul, ( ) si ( ) ( ) d 5 ( ) ( ) d 5 Utuk,,3,5,...gail λ da Mghitug mpdasi Sdii, Modul 3 mpdasi Ata ( ) ( ) d 5 ( ) ( ) d 5 d 5

6 Mghitug mpdasi Sdii, ( ) ( ) d 5 d 5 suku suku Pylsaia suku Pylsaia suku Misalka, Misalka, u du d v ( - ) dv - d Batas u π Batas v Batas u Batas v π suku 5 π u ( ) du u suku 5 5 π π ( ( π v ) ) dv v ( v ) ) dv v Modul 3 mpdasi Ata Mghitug mpdasi Sdii, π u ( ) π v ) ( ) u 5 ( ) ( ) d 5 d 5 5 d u suku suku π 3 u ( ) du u π d v v Btuk da batas itgal yag sama utuk pylsaia kdua suku, shigga impdasi sdii dapat dituliska sbb : Mghitug mpdasi Sdii, π 3 3 ( π ) 3. i Misal, u ( ) du ω u ( ) π ω ω u dω du du dω d ω i (y) adalah fugsi itgal ksposial i (y) Ci (y) Si (y) ihat dfiisi itgal ksposial pada Kauss Mghitug mpdasi Sdii, dimaa, ( π ) 3. i X i (π) [ Ci (π) Si(π) ] [,577 l( π) Ci (π) Si(π) ] 3 Ci (π) da, 3 [,577 l(π) Ci(π)] X 3 Si (π) Catata :!! gat asumsi smula. Aus siusoidal klipata ½λ Nilai-ilai Ci(x), Si(x) dapat dilihat pada tabl ataupu dilihat pada gafik! Modul 3 mpdasi Ata 3 Modul 3 mpdasi Ata 4

7 Cotoh: Mghitug mpdasi Sdii, mpdasi Sdii Dipol Dga Paag Smbaag Utuk dipol ½λ 3 Ci (π) 73 ohm X 3 Si (π) 45,5 ohm ( 73 4,5 ) ohm Tlihat bahwa dipol /λ mmiliki sifat tidak soa ( aktasi ), shigga utuk mmbuatya soa haus dipotog (-5)%. Tidaka ii aka mmbuatya soa, ttapi sistasi sdii dga sdiiya uga aka bkuag dai 73 ohm Utuk dipol 3/ λ 3 3 Ci (6π) 5,5 ohm X 3 Si (6π) 45,5 ohm Catata : ( 5,5 45,5 ) ohm aktasi ( gail x /λ ) slalu positif Utuk >>, maka Si(π) muu haga π/, sdagka aka aik ( dai Poc. o. 3 Apil 934 ) cot Ci 4cot 3 cot Ci ( Si Si ) Utuk paag << (kcil skali), dai psamaa diatas diduksi madi : ( ) 5 Modul 3 mpdasi Ata 5 Modul 3 mpdasi Ata 6 Pgauh Goudpla Pada mpdasi Ata Jika ata ditmpatka di atas goudpla, dga koduktivitas σ, maka : A A(dg paag atatsb) Pgauh Taah Umumya taah aka diaggap sbagai kodukto smpua (σ ) dga luas uga, shigga ata diatas taah dapat diaggap sbagai susua ata, yaitu yag ssugguhya dga bayagaya Stuktu di atas disbut sbagai MONOPO! Cotoh : [ λ ] [ λ ] ( 36,5,8 ) ohm 4 moopol λ/4 di atas goudpla Modul 3 mpdasi Ata 7 Modul 3 mpdasi Ata 8

8 lustasi mpdasi Gadg mpdasi gadg / mutual tadi ika tdapat bda-bda (tutama kodukto) lai diskita ata catu. A gadg 9 3 mpdasi gadg Kosp Dasa mpdasi Gadg Tgatug kpada, Posisi latif ataa bda tsbut dga ata tcatu 3 macam posisi latif, Sid by sid Kolii Staggd Dfiisi mpdasi gadg Ngatif pbadiga mf iduksi pada agkaia skud thadap aus pim, ika skud op cicuit, Bdaka... dga kosp impdasi tasf di bawah ii... Pada impdasi tasf, T dimaa, T Modul 3 mpdasi Ata 3 Modul 3 mpdasi Ata 3

9 mpdasi gadg: mpdasi gadg: mpdasi gadg: Ngatif pbadiga tgaga iduktif pada ata skud yag dibuka ( T ) thadap aus pim yag mybabkaya gat kosp tgaga sdii, d Ptayaa, adalah tgaga yag diiduksika olh mda sdii (mda yag dihasilka olh aus-ya sdii) Pada gamba di sampig, aus pim mgiduksika pada ata- yag tidak dibbai Bagaimaa dga (tgaga pada ata- yag disbabka aus pada ata-)? mpdasi gadg dai pasaga ata di atas, Hk. sipositas St kodisi :, -, da d Modul 3 mpdasi Ata 33 Modul 3 mpdasi Ata 34 mpdasi gadg: mpdasi Gadg: Posisi latif sid by sid d Asumsi distibusi aus siusoidal, sid si d sid i adalah umus umum impdasi gadg ataa ata lia tipis dga distibusi aus siusoidal!! Asumsi : Paag ata- sama dga paag ata-, da mupaka klipata gail ½λ ( ½λ ; gail ) d ρ d d ( ) X pada ata- yag dihasilka olh aus pada ata- adalah : 3 3 masukka pada psamaa, sid { Ci( d) Ci ( [ d ] ) Ci ( [ d ] )} { Si( d) Si( [ d ) Si( [ d ] )} ihat di Kauss utuk puua lgkapya... Modul 3 mpdasi Ata 35 Modul 3 mpdasi Ata 36

10 mpdasi Gadg: Posisi latif sid by sid Gafik sistasi da aktasi gadg lm dipol λ/ yag disusu sid by sid mpdasi Gadg: Posisi latif sid by sid Pgauh paag lm thd sid by sid mutual sistasi Modul 3 mpdasi Ata 37 Modul 3 mpdasi Ata 38 mpdasi Gadg: Posisi latif sid by sid Pgauh paag lm thd sid by sid mutual aktasi mpdasi Gadg: Posisi latif Kolii Dga caa yag sama, dapat dituuka impdasi gadg ataa ata yag disusu kolii da hasilya adalah sbb : 5coshCi h Ci 5si h ( h ) Ci ( h ) [ Si h Si ( h ) Si ( h ) ] h l h 5cosh [ Si h Si ( h ) Si ( h ) ] 5si hci h Ci h ( h ) Ci ( h ) l h (b) Mutual actac Modul 3 mpdasi Ata 39 Hasil gafik utuk lm dipol λ/ dapat dilihat pada halama bikut!! Modul 3 mpdasi Ata 4

11 mpdasi Gadg: Posisi latif Kolii mpdasi Gadg: Posisi latif Staggd Staggd / chlo... Modul 3 mpdasi Ata 4 Modul 3 mpdasi Ata 4 mpdasi Susua -lm dtik mpdasi Susua Ata Hubuga-hubuga yag mdasai : dga : tgaga tmiasi lm k- aus tmiasi lm k- slf-impdac lm k- i impdasi gadg ataa lm k-i da k Dapat diyataka dalam btuk matiks : 3 [ ] [ ][ ] 43 Modul 3 mpdasi Ata 44

12 mpdasi Susua -lm dtik mpdasi tmiasi/titik catu/divig poit masig-masig lm : dst 3 3 Jika aus-aus pada smua lm, slf impdacs diktahui, maka impdasi pada tmiasi aka dapat dihitug! Cotoh soal Tiga lm dipol λ/ sid by sid dga spasi ata lm adalah λ/, higga tampak atasya spti tgamba di sampig ii. Smua lm dicatu dga amplitudo aus o uifom dga pbadiga amplitudo aus :: dga bda fasa ata lm yag bsblaha adalah 9 o (lm ata sblah kaa bfasa 9 mdahului ata sblah kii) da fsi adalah ata (sudut fasa o ). Hitug impdasi yag diasaka olh masig-masig lm λ/ λ/ 3 Modul 3 mpdasi Ata Tasfomasi mpdasi & Balu Tasfomasi mpdasi agkaia matchig impdac Umumya, impdasi ata bbda dga impdasi kaaktistik salua. Hal ii kaa sulit mgkompomika impdasi ata dga diagam paca yag dibutuhka. A Pada matchig impdasi, dipluka : i Sumb aga tidak tadi patula k sumb (tasmitt) i mpdasi kaaktistik ata umumya : 3Ω atau 6Ω balas (two wi cabl), 5Ω ( G8/U, G58/U ) 6Ω ( G/U, G59/U ) 75Ω ( G-874 ) Aga tadi tasf daya maksimum dai salua tasmisi k ata atau mcgah kusaka pmaca kaa daya patula dai ata

13 Tasfomasi mpdasi Tasfomato λ/4 Stub Si Pada ata, aag dipakai agkaia tpadu (lumpd cicuit) mlaika adalah bupa potoga salta (stub) shigga scaa mkais dapat diadalka di udaa tbuka da bisa utuk fkusi yag cukup tiggi > MH. Utuk fkusi di bawah HF, sig dipakai tasfomato dga iti fit da kodsato utuk tuig-ya. Biasaya ditmpatka pada ata da dico supaya taha thadap cuaca. is tals tal s Dalam matchig impdasi, impdasi ata dibawa sdkat mugki k impdasi kaaktistik salua. Sdmikia, SW pada salua di bawah haga tttu, misalka :.5,,.35,., dll (tgatug dai spsifikasi tasmitt) T ihat kmbali pisip matchig impdasi dai kuliah Salua Tasmisi da lktomagtika Tlkomuikasi!! T id i iabcd is m tal s Modul 3 mpdasi Ata 49 d l s 5 Syaat matchd : Y i Y Y i YiABCD Y Jadi, syaat matchd! Y Y is iabcd is G B ta l s Stub Paall tad tad ta l G B ta ls G da B ta l didapat d! didapat l s!! s s Balu (Balacig Ubalacig Uit) Slai tasfomasi impdasi, sig uga dipluka tasfomasi dai balas k tidakbalas, atau sbalikya. Misal: dai salta kodukto (balacd) Salta coaxial (ubalacd) Alat tasfomato spti ii disbut BAUN ( Balacig-Ubalacig Uit ) fsi : J.D. Kauss,.J. Mahfka, Atas fo All Applicatios, Mc Gaw Hill,, chapt 3 pag 83 5 Modul 3 mpdasi Ata 5

14 ampia Tabl d Of Modul#3 54

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z BAB Toi Pdukug.. Ligkuga Misalka z adalah suatu titik pada bidag da adalah bilaga yata positi. Ligkuga bagi z -ighbohood o z didiisika sbagai sluuh titik z pada bidag, sdmikia shigga z z < ; ditulis z,.

Lebih terperinci

Modul #03. Impedansi Antena. Program Studi S1 Teknik Telekomunikasi Jurusan Teknik Elektro - Sekolah Tinggi Teknologi Telkom Bandung 2008

Modul #03. Impedansi Antena. Program Studi S1 Teknik Telekomunikasi Jurusan Teknik Elektro - Sekolah Tinggi Teknologi Telkom Bandung 2008 Modul #3 T 343 ANTNA DAN PROPAGAS mpdansi Antna Pogam Studi S Tknik Tlkomunikasi Juusan Tknik lkto - Skolah Tinggi Tknologi Tlkom Bandung 8 Oganisasi Modul 3 mpdansi Antna A. Pndahuluan pag 3 B. mpdansi

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 7 Tasomasi Foui Cpat FFT : Fast Foui Tasom Idah Susilaati, S.T., M.Eg. Pogam Studi Tkik Elkto Fakultas Tkik da Ilmu Komput Uivsitas Mcu Buaa Yogyakata 9 KULIAH 7 SISTEM

Lebih terperinci

Transformasi Fourier Waktu Diskrit

Transformasi Fourier Waktu Diskrit Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

Antena Array 4 Patch Mikrostrip Sirkular Pada Frekuensi MHz

Antena Array 4 Patch Mikrostrip Sirkular Pada Frekuensi MHz Ata Aay 4 Patch Mikostip Sikula Pada Fkusi 2300-2400 MHz Si Hadiati*, Yuyu Wahyu*, Foli Oktafiai*, *)Pliti Pusat Plitia Elktoika da Tlkomuikasi (PPET-LIPI) Jl. Sagkuiag Badug 40135 -mail:[email protected]

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pgrtia Turua Fugsi Diisi Turua ugsi adala ugsi yag ilaiya di c adala c c c asalka it ii ada. Coto Jika 3 4, maka turua di adala 3 4 3.. 4 3 4 4 4 4 4 4 3 3 3 4 Jika mmpuyai turua di

Lebih terperinci

LAMPIRAN I GREEK ALPHABET

LAMPIRAN I GREEK ALPHABET LAMPIRAN I GREEK ALPHABE Α, Alpha Μ, µ Mu Ψ, Psi Β, β Ba Ν, ν Nu Ω, ω Oga. Γ, γ Gaa, δ Dla Ε, ε Epsilo Ζ, ζ Za Η, η Ea Θ, θ ha Ι, ι Ioa Κ, κ Kappa Λ, λ Labda Ξ, ξ i Ο,ο Oico Π, π Pi Ρ, ρ Rho Σ, σ Siga

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

Gambar 5.1 Ilustrasi dua sistem A dan A yang mengalami interaksi.

Gambar 5.1 Ilustrasi dua sistem A dan A yang mengalami interaksi. Sua pss ag dasai pgaata pada sist fisika adala pss itaksi. Apa ag tjadi pada sbua pss itaksi? Bagaiaa kita dfiisika vaiabl akskpik bdasaka pss itaksi ag tjadi? Sbagai ct ag palig sdaa kita tijau pss itaksi

Lebih terperinci

MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF 221 : 5099 : DRA ENDANG SUMARTINAH,MA

MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF 221 : 5099 : DRA ENDANG SUMARTINAH,MA MODUL E LEARNING SEKSI -9 MATA KULIAH : KALKULUS LANJUT KODE MATA KULIAH : INF DOSEN : 5099 : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mmplajari Fugsi a

Lebih terperinci

Hukum Gauss. f = fluks listrik = jumlah garis gaya yang menembus luas A E r = medan listrik = elemen luas q i

Hukum Gauss. f = fluks listrik = jumlah garis gaya yang menembus luas A E r = medan listrik = elemen luas q i Hukum Gauss Pv. Jumlah gais gaya yang klua dai pmukaan ttutup S bbanding luus dngan jumlah muatan yang dilingkupinya. dimana : f = E d A = q i f = fluks listik = jumlah gais gaya yang mnmbus luas A E =

Lebih terperinci

VIII. KELEMBAGAAN PENGELOLAAN ENERGI

VIII. KELEMBAGAAN PENGELOLAAN ENERGI VIII. KELEMBAGAAN PENGELOLAAN ENERGI Kondisi obyktif pnglolaan ngi di Nusa Pnida dapat dikmukakan bdasakan tahapan pnglolaan yang mliputi tahap pncanaan, plaksanaan, dan pngndalian. Pada tahap pncanaan

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

HANDOUT KULIAH OPTIK NONLINIER. Oleh: DR. Ayi Bahtiar, M.Si.

HANDOUT KULIAH OPTIK NONLINIER. Oleh: DR. Ayi Bahtiar, M.Si. HANDOUT KULIAH OPTIK NONLINIER Olh: DR. Ayi Bahtia, M.Si. JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN BANDUNG 5 BAB 1. PENDAHULUAN Physics would b dull ad lif most

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi BAB 5 OPTIK FISIS Prisip Huyges : Setiap titik pada muka gelombag dapat mejadi sumber gelombag sekuder. 5. Iterferesi - Iterferesi adalah gejala meyatuya dua atau lebih gelombag, membetuk gelombag yag

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las Sambuga Las Sambuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: as 0, 6 a Las Tumpu: s s s=a Utuk s = s ---- tba as tumpu (a) = s Utuk s s ----- tba as tumpu (a) = s mi as = a ---- = pajag as

Lebih terperinci

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR METDE NEWTN-STEFFENSEN DENGN RDE KEKNVERGENN TIG UNTUK MENYELESIKN PERSMN NNLINER Fitiai, Joha Kho, Supiadi Puta Mahaiwa Pogam Studi S Matmatika FMIP Uivita Riau Do JuuaMatmatika FMIP Uivita Riau Fakulta

Lebih terperinci

Komang Suardika, Jurusan Pendidikan Fisika Fisika Kuantum

Komang Suardika, Jurusan Pendidikan Fisika Fisika Kuantum Komag Suadika, Juusa Pdidika Fisika Fisika Kuatum I. Ppadaa Fkusi Boh Modl atom muut Ruthfod tdii dai iti atom yag bmuata positif da masif sta dikliligi pada jaak yag latif bsa olh lktolkto yag satiasa

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi II. TINJAUAN PUSTAKA Pada bab ii aka dibeika bebeapa kosep dasa, istilah istilah da defiisi yag eat kaitaya dega masalah yag haus dibahas yaitu megeai bayakya caa megkostuksi Dyck path dega pajag k upstokes

Lebih terperinci

Distribusi Arus dan Tegangan pada Saluran Transmisi

Distribusi Arus dan Tegangan pada Saluran Transmisi Pmbahasan Wk 4 Distibusi Aus an Tgangan paa Sauan Tansmisi Sott in Daya Tansmisi Scaa umum i spanang sauan tansmisi tapat: gombang atang an gombang pantu fksi gombang atang an gombang pantu fksi Yang fungsi

Lebih terperinci

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage : INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA Jl. Gaesha No. 0 Badug, 4032 Telp. (022) 2500834, 253427, Fax. (022) 2506452 Homepage : http://www.fi.itb.ac.id

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t} Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

MODUL 2 BILANGAN KOMPLEKS

MODUL 2 BILANGAN KOMPLEKS Diktat Kuliah EL- Matmatika Tkik I MODUL BILANGAN KOMPLEKS Satua Acara Prkuliaha Mdul (Bilaga Kmplks sbagai brikut Ptmua k- Pkk/Sub PkkBahasa TuuaPmblaara Bilaga Kmplks Pgatar Bilaga Kmplks Lambag Bilaga

Lebih terperinci

Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1

Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1 Pekuliahan Fisika Dasa II FI-331 Oleh Endi Suhendi 1 Menu hai ini (1 minggu): Muatan Listik Gaya Listik Medan Listik Dipol Distibusi Muatan Kontinu Oleh Endi Suhendi Muatan Listik Dua jenis muatan listik:

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI. Distribusi Pluag Diisi. (Walpol da M rs 995) Jika X adalah suatu variabl radom kotiu maka ugsi dsitas pluaga adalah suatu ugsi ag mmuhi kodisi: i. ; utuk x (- ) ii. = iii. = (.) Diisi.

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 6 Tafomai Foui Dik Idah Suilawai, S.T., M.Eg. Pogam Sudi Tkik Elko Fakula Tkik da Ilmu Komu Uivia Mcu Buaa Yogyakaa 9 KULIAH 6 SISTEM PEGOLAHA ISYARAT TRASFORMASI

Lebih terperinci

Distribusi Sampel, Likelihood dan Penaksir

Distribusi Sampel, Likelihood dan Penaksir BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Transformasi Z Materi :

Transformasi Z Materi : 4 Trasformasi Z Matri : Dfiisi Trasformasi Darah Kovrgsi (Rgio of Covrgc) Diagram Pol Zro Sifat Trasformasi Trasformasi dalam Btu Poliomial Rasioal Fugsi Sistm atau Fugsi Trasfr H() dari Sistm Liir Tida

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

TRYOUT 3 UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI ILMU PENGETAHUAN ALAM

TRYOUT 3 UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI ILMU PENGETAHUAN ALAM R N E/R N / ENEN ENE - R tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

STRUKTUR BAJA I. Perhitungan Sambungan Las

STRUKTUR BAJA I. Perhitungan Sambungan Las STRUKTUR BAJA I rhituga Samuga Las Samuga Las Samuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: σ as σ 0, 6σ a Las Tumpu: s s sa Utuk s s ---- ta as tumpu (a) s Utuk s s ----- ta as tumpu (a)

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner PROSIDING ISBN : 978 979 6353 6 3 S - Pgguaa Mtod Baysia Obyktif dalam Aalisis Pgukura Tigkat Kpuasa Plagga Brdasarka Kusior Adi Stiawa Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist

Lebih terperinci

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A.

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A. KUNCI JWN UJI KOPETENSI SEMESTER. Piliha Gada. Jawaba: b Titik da G mempuyai fase sama sebab aahya sama (ke atas) da beada di atas gais setimbag (sb x).. Jawaba: d Gelmbag elektmagetik adalah gelmbag yag

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian TEORI ANTRIAN Tori atria mrupaka studi matmatis mgai atria atau waitig lis yag di dalamya disdiaka bbrapa altratif modl matmatika yag dapat diguaka utuk mtuka bbrapa karaktristik da optimasi dalam pgambila

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Bab IV Metode Alternating Projection

Bab IV Metode Alternating Projection Bab IV Metode Alteratig Projectio Metode alteratig projectio megubah masalah feasibility o koveks mejadi masalah feasibility koveks Pada bab ii aka dicari matriks defiit positif da simetri X,Y yag diguaka

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1 LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat

Lebih terperinci

4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum

4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum Hardwiyao Uomo 060545 4.3 Samlig dari disribusi ormal da simasi liklihood maksimum Liklihood ormal mulivaria Kia asumsika vkor,,..., dga mrrsasika saml acak dari oulasi ormal mulivaria dga raa-raa µ da

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Miko 5 Gelombang Miko 6 Gelombang lektomagnetik Gelombang elektomagnetik (em) tedii dai gelombang medan listik dan medan magnit ang menjala besama dengan kecepatan sama dengan kecepatan cahaa.

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA Bab II : Kajian Pustaka 3 BAB II KAJIAN PUSTAKA Mateial bedasakan sifat popetinya dibagi menjadi bebeapa jenis, yaitu:. Isotopik : mateial yang sifat popetinya sama ke segala aah, misalnya baja.. Othotopik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor Deret da Aproksimasi Deret MacLauri Deret Taylor Tujua Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa megitegrasika da medieresiasi dega mudah. Kita bisa guaka saat

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci