Hendra Gunawan. 14 Februari 2014
|
|
|
- Erlin Halim
- 8 tahun lalu
- Tontonan:
Transkripsi
1 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204
2 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga Memeriksa kk kekovergea suatu deretda, bila mugki, meghitug jumlahya 9.3 Deret Positif: Uji Itegral Memeriksa kekovergea deret positif dega uji jumlah terbatas da uji itegral 2/4/204 (c) Hedra Guawa 2
3 MA20 MATEMATIKA 2A 9.2 DERET TAK TERHINGGA Memeriksa kekovergea suatu deret da, bila mugki, meghitug jumlahya 2/4/204 (c) Hedra Guawa 3
4 Megapa Deret Tak Terhigga Dega turua pertama, kita medapatka hampira si x x, utuk x 0. Bila kita guaka turua kedua da ketiga, kita aka dapatka hampira yag lbihbik lebih baik 3 x si x x 6, utuk x Kelak kita dapat meujukka bahwa 3 5 x x si x x 3! 5!......, 2/4/204 (c) Hedra Guawa 4 0. utuk x.
5 Megapa Deret Tak Terhigga Pertayaaya adalah: apa arti pejumlaha x 3 x 3! 5 x 5! da bagaimaa megetahui jumlah tsb ada? Secara umum, bila a R utuk tiap N, apa arti pejumlaha a + a 2 + a 3 + a 4 + a 5 + da bagaimaa meghitugya? 2/4/204 (c) Hedra Guawa 5
6 Deret Tak Terhigga Betuk pejumlaha a + a 2 + a 3 + a 4 + a 5 + disebut sebagai ideret tak terhigga atau sigkatya deret, da dapat dituliska dalam otasi. a 2/4/204 (c) Hedra Guawa 6
7 Bagaimaa Memakai Deret Diberika suatu deret a + a 2 + a 3 + a 4 + a 5 + Kkita dapat meghitug jumlah parsial ya: S = a S 2 = a + a 2 S N = a + a a N Dalam hal ii kita peroleh barisa {S N }. 2/4/204 (c) Hedra Guawa 7
8 Bagaimaa Memakai Deret Jika {S N } koverge ke S, maka deret tersebut dikataka koverge (kes) da kita defiisika a a a 2 a 3... lim N S N S. Bilaga S disebut sebagai jumlah deret tsb. 2/4/204 (c) Hedra Guawa 8
9 Deret Geometri Deret geometri ar, dega a 0 da r, mempuyai jumlah parsial N a( r ) S N. r N Jika r <, maka lim r 0, da dalam hal ii lim N S N N a r. N Jika r > atau r =, {S N } div. 2/4/204 (c) Hedra Guawa 9 N
10 Cotoh Deret 2 merupaka deret geometri dega suku pertama a = ½ da rasio r = ½. Jadi deret ii koverge da jumlahya adalah S =. Deret ( ) merupaka deret geometri dega suku pertama a = da rasio r =. Jadi deret ii diverge. 2/4/204 (c) Hedra Guawa 0
11 Soal: Berapa Luasya?. dst. 2/4/204 (c) Hedra Guawa
12 Uji Suku ke utuk Kedivergea Jika deret a koverge, maka lim a 0. Jika lim a 0, maka deret diverge. a Cotoh. ( ) diverge karea lim( ) 0. Catata. Hati hati! Walau tetu a koverge. lim a 0, belum 2/4/204 (c) Hedra Guawa 2
13 Deret Harmoik Deret Harmoik Di sii Tapi deret ii diverge karea: lim Di sii Tapi deret ii diverge, karea: lim 0. S S /4/204 (c) Hedra Guawa
14 Deret Kolaps (Berjatuha) Deret Kolaps (Berjatuha) Deret koverge karea Deret koverge, karea ) ( k k k S ) ( k k k k S k k bila 2/4/204 (c) Hedra Guawa 4
15 Teorema Kelieara Deret a b Jika a da koverge, da c kostata, maka (i) ca c b a (ii) ( a ) b a, b. 2/4/204 (c) Hedra Guawa 5
16 Catata Jika a diverge da c 0, maka ca diverge. Sebagai cotoh, diverge karea 00 diverge. 2/4/204 (c) Hedra Guawa 6
17 MA20 MATEMATIKA 2A 9.3 DERET POSITIF: UJI INTEGRAL Memeriksa kekovergea deret positif dega uji jumlah terbatas da uji itegral 2/4/204 (c) Hedra Guawa 7
18 Deret Positif a Deret a disebut deret positifapabila a 0 utuk tiap N. Pada bagia ii, kita haya aka membahas deret positif. Teorema (Uji Jumlah Terbatas). koverge jika da haya jika jumlah parsialya terbatas. a 2/4/204 (c) Hedra Guawa 8
19 Cotoh/Latiha Buktika bahwa! koverge. Petujuk. Periksa keterbatasa jumlah parsial ilss. 2/4/204 (c) Hedra Guawa 9
20 Uji Itegral Misalka f fugsi yag kotiu, tak egatif, da tak aik pada [, ), da a = f(). Maka deret a koverge jikada haya jikaitegral itegral tak wajar koverge. f ( x ) dx 2/4/204 (c) Hedra Guawa 20
21 Cotoh Deret koverge, karea itegral 2 koverge. 2 x dx Deret koverge jikada haya jika p >. p [Hasil ii mejustifikasi fk bh bahwa diverge.] 2/4/204 (c) Hedra Guawa 2
22 Latiha. Selidiki apakah deret koverge 2 l atau diverge. 2. Selidiki pula apakah deret 3 3 l l(l ) koverge atau diverge. 2/4/204 (c) Hedra Guawa 22
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET
Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
Kalkulus Rekayasa Hayati DERET
Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti
Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga
Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak
BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA
BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,
Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1
Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
DERET TAK HINGGA (INFITITE SERIES)
MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag
Himpunan/Selang Kekonvergenan
oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)
BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1
BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka
Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram
Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu
Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier
Barisan dan Deret. Modul 1 PENDAHULUAN
Modul Barisa da Deret Reto Wika Tyasig Ada P PENDAHULUAN okok bahasa dalam modul ii terdiri atas dua kegiata belajar. Yag pertama tetag barisa, yag kedua tetag deret da cotoh-cotoh pemakaia deret. Pembahasa
DERET POSITIF : UJI INTEGRAL DAN UJI LAIN-LAINNYA KELOMPOK 2:
MAKALAH KALKULUS LANJUT DERET POSITIF : UJI INTEGRAL DAN UJI LAIN-LAINNYA OLEH : KELOMPOK 2:. NI LUH PUTU SUARDIYANTI (0830005) 2. I WAYAN WIDNYANA (0830008) 3. LUH PUTU PRAJAYANTHI W. (0830027) JURUSAN
LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n
LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara
II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <
II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
Deret Fourier. Modul 1 PENDAHULUAN
Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi
DERET Matematika Industri 1
DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara
METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT
METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam
Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna
Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember
BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor
Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat
BAB VI DERET TAYLOR DAN DERET LAURENT
BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f
Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,
III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar
BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari
Definisi Integral Tentu
Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.
Bab IV. Penderetan Fungsi Kompleks
Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara
LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang
2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua
theresiaveni.wordpress.com NAMA : KELAS :
theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu
terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2
Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN
KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
BAB II TINJAUAN PUSTAKA
3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
Barisan Dan Deret Arimatika
Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta
Teorema Nilai Rata-rata
Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi
Barisan Aritmetika dan deret aritmetika
BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika
MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM
MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,
KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI
KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,
II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)
3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real
BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA
BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka
C (z m) = C + C (z m) + C (z m) +...
4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut
Pengertian Secara Intuisi
Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut
,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.
PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,
ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25
head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90
InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013
IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, [email protected]
1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk
OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (
BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga
BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya
-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih
-- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa
TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.
TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa
E-learning matematika, GRATIS 1
E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah
BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada
8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia
TEOREMA WEYL UNTUK OPERATOR HYPONORMAL
Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, [email protected] Abstract This paper aims at describig
B a b 1 I s y a r a t
34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat
Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP
( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak
PERTEMUAN 13. VEKTOR dalam R 3
PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde
Pendiferensialan. Modul 1 PENDAHULUAN
Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA
MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ
BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)
rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1
KEKONVERGENAN BARISAN DI DALAM RUANG
KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: [email protected]
mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.
Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah
BARISAN DAN DERET. Materi ke 1
BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang
II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber
BAB 12 BARISAN DAN DERET
BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika
BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang
BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi
SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT
Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI
Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,
Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
BARISAN DAN DERET TAK BERHINGGA
MATERI KULIAH a 1 Kalkulus Lajut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 010 BARISAN DAN DERET DI SMA: BARISAN & DERET ARITMETIKA
BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.
BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku
Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i
INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval
BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.
BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha
Sistem Bilangan Kompleks (Bagian Ketiga)
Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar
Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa
Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT
Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus
Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta
Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh
BAB : I SISTEM BILANGAN REAL
Ruag Barisa BAB : I SISTEM BILANGAN REAL Sebelum membicaraka barisa da deret aka dibicaraka lebih dahulu tetag bilaga real karea barisa da deret yag aka dibicaraka adalah barisa da deret bilaga real. Sistem
SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...
SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.
Semigrup Matriks Admitting Struktur Ring
Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: [email protected] bstrak Diberika adalah rig komutatif dega eleme satua da adalah
Pengantar Statistika Matematika II
Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka
ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si.
ANALISIS RIIL I Disusu oleh Bambag Hedriya Guswato, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS SAINS DAN TEKNIK UNIVERSITAS
Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC
Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas
Koleksi Soal dan. Pembahasan MaG-D. Oleh: Arini Soesatyo Putri. Universitas Islam Negeri Sunan Gunung Djati Bandung [Date]
Koleksi Soal da Pembahasa MaG-D Oleh: Arii Soesatyo Putri Uiversitas Islam Negeri Sua Guug Djati Badug 06 [Date] Kata Pegatar Bismillahirrahmaairrahiim... Mathematical Aalysis ad Geometry Day (MaG-D) merupaka
III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah
III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka
Pendekatan Nilai Logaritma dan Inversnya Secara Manual
Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN [email protected] Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM [email protected] Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember
HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN
Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI
MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd
MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)
Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.
Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga
Barisan, Deret, dan Notasi Sigma
Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai
