5. Aplikasi Turunan MA1114 KALKULUS I 1
|
|
|
- Shinta Budiono
- 8 tahun lalu
- Tontonan:
Transkripsi
1 5. Aplikasi Turunan MA4 KALKULUS I
2 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan Fungsi F. Titik Belok MA4 KALKULUS I
3 A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi Definisi 5.: Asimtot fungsi adalah garis lurus yang didekati oleh grafik fungsi. Ada Tiga jenis asimtot fungsi, yakni (i) Asimtot Tegak Garis c disebut asimtot tegak dari y f() jika (ii) Asimtot Datar Garis y b disebut asimtot datar dari y f() jika (iii) Asimtot Miring Garis y a b disebut asimtot miring jika ± f ( ) a dan ± f ( ) a b c ± f ( ) ± f ( ) b MA4 KALKULUS I 3
4 Asimtot tegak a a a asimtot tegak Dalam kasus f ( ) f ( ) a dan a a asimtot tegak Dalam kasus dan a a f ( ) f ( ) MA4 KALKULUS I 4
5 y b Garis y b asimtot datar karena f ( ) Asimtot datar mungkin dipotong oleh grafik fungsi untuk hingga Tapi, jika untuk menuju tak hingga asimtot datar dihampiri oleh grafik fungsi(tidak dipotong lagi) b MA4 KALKULUS I 5
6 yf() y a b Garis y a b asimtot miring Asimtot miring bisa dipotong oleh kurva untuk nilai hingga. Untuk satu fungsi tidak mungkin ada sekaligus asimtot datar dan asimtot miring MA4 KALKULUS I 6
7 Contoh Tentukan semua asimtot dari Jawab : (i) Asimtot tegak :, karena 4 (ii) Asimtot datar : f ( ) dan 4 Maka asimtot datar tidak ada 4 ( ) ( ) f ( ) 4 ( ( 4 ) ) 4 MA4 KALKULUS I 7
8 MA4 KALKULUS I 8 f a. 4 ) ( ± ± 4 ± ) ( ) ( ) ( ) ( 4 4 ± ± (iii) Asimtot miring 0 4 ± ) ( 4 ± ± 4 a f b ± ) ( Asimtot miring y 4 ±
9 Soal Latihan Tentukan semua asimtot dari fungsi berikut :. f ( ). f ( ) 3 3. f ( ) 4. f ( ) 3 5. f ) ( MA4 KALKULUS I 9
10 C. Kemonotonan Fungsi Definisi 5. Fungsi f() dikatakan monoton naik pada interval I jika untuk ( ) < f ( ) I < f,, f( ) f( ) I Fungsi f() monoton naik pada selang I MA4 KALKULUS I 0
11 monoton turun pada interval I jika untuk ( ) > f ( ), I < f, f( ) f( ) I Fungsi f monoton turun pada selang I MA4 KALKULUS I
12 Teorema 5. : Andaikan f diferensiabel di selang I, maka Fungsi f() monoton naik pada I jika Fungsi f() monoton turun pada I jika f '( )> 0 I f '( )< 0 I Contoh Tentukan selang kemonotonan dari 4 f ( ) Jawab : ( )( ) ( 4) f '( ) ( ) ( ) 4 ( ) ( 4) ( ) f() monoton naik pada (,0) dan (4, ) f() monoton turun pada (0,) dan (,4). MA4 KALKULUS I
13 n D. Ekstrim Fungsi Definisi 5.3 Misalkan f() kontinu pada selang I yang memuat c, maksimum f(c) disebut nilai global dari f pada I jika minimum f ( c) f ( c) f ( ) f ( ) I f(c) disebut nilai maksimum minimum buka yang memuat c sehingga lokal dari f pada I jika terdapat selang f ( c) f ( c) f ( ) f ( ) untuk setiap pada selang buka tadi. Nilai maksimum dan minimum fungsi disebut juga nilai ekstrim Titik pada daerah definisi dimana kemungkinan terjadinya ekstrim fungsi disebut titik kritis. MA4 KALKULUS I 3
14 Ma lokal Min lokal Ma global Min global Ma lokal Min lokal a b c d e f Nilai ekstrim fungsi pada selang I[a,f] MA4 KALKULUS I 4
15 n Ada tiga jenis titik kritis : Titik ujung selang I Titik stasioner ( yaitu c dimana f '( c) 0 ), secara geometris : garis singgung mendatar dititik (c,f(c)) Titik singulir ( c dimana f '( c) tidak ada ), secara geometris: terjadi patahan pada grafik f di titik (c,f(c)) MA4 KALKULUS I 5
16 Teorema 5.3 : Uji turunan pertama untuk ekstrim lokal Jika f '( ) > f '( ) < ( c, c δ ) f(c) 0 0 ( c δ, c) f '( ) < 0 f '( ) > 0 maksimum lokal minimum pada dan pada Maka f(c) merupakan nilai c f(c) c f(c) nilai maks lokal Disebelah kiri c monoton naik (f >0) dan disebelah kanan c monoton turun (f <0) f(c) nilai min lokal Disebelah kiri c monoton turun (f <0) dan disebelah kanan c monoton naik (f >0) MA4 KALKULUS I 6
17 Teorema 5.4 Uji turunan kedua untuk ekstrim lokal f ''( c) < 0 Misalkan f '( c) 0. Jika,maka f(c) merupakan maksimum f ''( c) > 0 nilai lokal f Contoh :Tentukan nilai ekstrim dari f ( ) Jawab: f minimum ( 4) '( ) ( ) Dengan menggunakan uji turunan pertama : 4 di 0 tercapai maksimum lokal dengan nilai di 4 tercapai minimum lokal dengan nilai f ( 0) f ( 4) 6 MA4 KALKULUS I 7
18 MA4 KALKULUS I 8 Soal Latihan ) ( f 3 3 ) ( f ) ( f f ) ( ) ( Tentukan selang kemonotonan dan ektrim fungsi berikut :
19 E. Kecekungan Fungsi y y Grafik fungsi cekung keatas Grafik fungsi cekung kebawah Fungsi f() dikatakan cekung ke atas pada interval I bila f '( ) naik pada interval I, dan f() dikatakan cekung kebawah pada interval I bila f '( ) pada interval I. turun Teorema 5.6 Uji turunan kedua untuk kecekungan. Jika f "( ) > 0, I, maka f cekung ke atas pada I.. Jika, maka f cekung ke bawah pada I. f "( ) < 0, I MA4 KALKULUS I 9
20 contoh Tentukan selang kecekungan dari Jawab : f '( ) 4 ( f ''( ) ( ( ) 4)( ) )(( 8 ( 8 ( ( ) 4 4)( ) ( 3 )( ) ) 4 8 4) ( f ( ) 4)) 8 3 ( ) 4 Grafik f cekung keatas pada (, ) dan cekung kebawah pada selang (,) MA4 KALKULUS I 0
21 n F. Titik belok n Definisi 5.4 Misal f() kontinu di b. Maka (b,f(b)) disebut titik belok dari kurva f() jika : terjadi perubahan kecekungan di b, yaitu di sebelah kiri b, fungsi f cekung ke atas dan di sebelah kanan b fungsi f cekung ke bawah atau sebaliknya b adalah absis titik belok, jika f "( b) 0 atau f "( b) tidak ada. MA4 KALKULUS I
22 f(c) f(c) c c (c,f(c)) titik belok Karena disebelah kiri c cekung keatas dan disebelah kanan c cekung kebawah (c,f(c)) titik belok Karena disebelah kiri c cekung kebawah dan disebelah kanan c cekung keatas MA4 KALKULUS I
23 f(c) c c (c,f(c)) bukan titik belok karena disekitar c tidak terjadi perubahan kecekungan Walaupun di sekitar c terjadi perubahan kecekungan tapi tidak ada titik belok karena f tidak terdefinisi di c MA4 KALKULUS I 3
24 Tentukan titik belok (jika ada) dari. f ( ) 3 f '( ) 6, f ''( ) Di 0 terjadi perubahan kecekungan, dan f(0) - maka (0,-) merupakan titik belok 4. f ( ) f ''( ) 0 0 Tidak ada titik belok, karena tidak terjadi perubahan kecekungan MA4 KALKULUS I 4
25 3. f ( ) f ''( ) ( ) Walaupun di, terjadi perubahan kecekungan, tidak ada titik belok karena fungsi f() tidak terdefinisi di MA4 KALKULUS I 5
26 Soal Latihan Tentukan selang kecekungan dan titik belok fungsi berikut :. f ( ) f ( ) f ( ) f ( ) 3 3 ( ) f ( ) / 3 MA4 KALKULUS I 6
27 Contoh: Diketahui f ( ) 4 a. Tentukan selang kemonotonan dan ekstrim fungsi b. Tentukan selang kecekungan dan titik belok c. Tentukan semua asimtot d. Gambarkan grafik f() a. Fungsi f() monoton naik pada selang (,0), (4, ) monoton turun pada selang (0,) dan (,4). di 0 tercapai maksimum lokal dengan nilai f ( 0) di 4 tercapai minimum lokal dengan nilai b. Grafik f cekung keatas pada, ) selang (,), tidak ada titik belok f ( 4) ( dan cekung kebawah pada c. Asimtot tegak, asimtot miring y, tidak ada asimtot datar 6 MA4 KALKULUS I 7
28 d. Grafik f() f ' f ' ' 6 y - 4 MA4 KALKULUS I 8
29 Soal Latihan A. Gambarkan grafik fungsi berikut dengan mencari terlebih dahulu selang kemonotonan,ekstrim fungsi, kecekungan, titik belok, dan asimtot f ( ) f ( ) 4 3 f ( ) 4 3 f ( ) 5. f ) 4 ( MA4 KALKULUS I 9
30 B. Misalkan f suatu fungsi kontinu dan f(-3)f(0). Jika grafik y f '( ) seperti gambar berikut : a. Tentukan selang kemonotonan fungsi f b. Tentukan selang kecekungan fungsi f c. Sketsa grafik fungsi f(). MA4 KALKULUS I 30
31 5. Menghitung it fungsi dengan Aturan L Hôpital Bentuk tak tentu dalam it :. Aturan L Hôpital untuk bentuk 0, 0 0 Andaikan f() g() 0. Jika 0, 0., f '( ) g'( ) L,, atau Maka f ( ) g( ) f '( ) g '( ) MA4 KALKULUS I 3
32 Contoh Hitung Jawab cos 0 bentuk (0/0) cos sin 4 cos Ctt : aturan L hopital bisa digunakan beberapa kali asalkan syaratnya dipenuhi. Aturan L Hôpital untuk bentuk f '( ) Andaikan f() g(). Jika g'( ) maka f ( ) g( ) f ' ( ) g' ( ) L,, atau MA4 KALKULUS I 3
33 Contoh Hitung 3 5 Jawab (bentuk ) Ctt: walaupun syarat di penuhi, belum tentu it dapat dihitung dengan menggunakan dalil L Hopital Contoh Hitung Jawab 3 ( 3) ( ( ) ( 3) ( ) 3 3 MA4 KALKULUS I 33 )
34 MA4 KALKULUS I 34 Soal seperti diatas tidak bisa diselesaikan dengan menggunakan aturan L Hopital, karena setelah dilakukan aturan L Hopital muncul lagi bentuk semula Soal seperti diatas diselesaikan dengan cara sbb 3 ) ( 3 ) ( 3 ) ( ) ( 3 3 ) ( ) ( 3
35 3. Bentuk 0. Untuk menyelesaikannya rubah kedalam bentuk 0 atau 0 Contoh : Hitung 0 csc Jawab : 0 csc 0sin 0cos 0 MA4 KALKULUS I 35
36 n 4. Bentuk - Misalkan f() g(). Untuk menghitung [ f() - g() ] dilakukan dengan menyederhanakan bentuk [ f()- g() ] sehingga dapat dikerjakan menggunakan cara yang telah dikenal sebelumnya Contoh : Hitung csc 0 ( cot ) Jawab : cos cos ( csc cot ) sin sin 0 0 sin 0 sin 0 cos 0 MA4 KALKULUS I 36
37 Soal Latihan Hitung it berikut ( bila ada ). sin 0 cos csc 0 5 ( cos ) cot 0 MA4 KALKULUS I 37
38 5.3 Masalah maksimum minimum lainnya Turunan dapat juga dipergunakan dalam menyelesaikan masalah sehari-hari yang berkaitan dengan masalah memaksimumkan/ meminimumkan fungsi. Langkah pertama yang harus dilakukan adalah memodelkan masalah tersebut menjadi fungsi satu peubah. Setelah itu gunakan aturan-aturan turunan untuk menentukan nilai maksimum atau nilai minimum MA4 KALKULUS I 38
39 Contoh:. Tentukan ukuran persegi panjang yang dapat dibuat dari kawat sepanjang 00 cm agar luasnya maksimum jawab Misal panjang y, lebar y Luas L y, karena y 00 à y 50 - Sehingga Luas L() (50-) 50, 0 50 L' ( ) 50 à 5 Karena maka di 5 terjadi maks lokal. L' '(5) < 0 Karena L(0) 0, L(5) 65, L(50) 0 à agar luas maks haruslah 5 dan y 5 MA4 KALKULUS I 39
40 . Sehelai karton berbentuk persegipanjang dengan ukuran 45 4 cm. Karton ini akan dibuat kotak tanpa tutup dengan cara memotong keempat pojoknya berupa bujur sangkar dan melipatnya. Tentukan ukuran kotak agar volume kotak maksimum Misal, panjang sisi potongan di pojok persegi panjang, sehingga V() (45-) (4-) 3 V ( ) , 0 V '( ) ( 3 90) ( 8)( 5) Sehingga diperoleh titik stasioner 8 dan MA4 KALKULUS I 40
41 V ''( ) Sehingga 4 76 V ''(8) 56 > 0 di 8 terjadi min lokal V ''(5) 56 < 0 di 5 terjadi maks lokal Untuk menentukan volume maksimum bandingkan nilai Volume jika 5 dan 0, (batas Df) V(0) 0 V() 0 V(5) 450 Agar volume kotak maksimum maka ukuran kotak : panjang 35 cm lebar 4 cm tinggi 5 cm MA4 KALKULUS I 4
42 Bisa saja masalah yang dihadapi harus dimodelkan kedalam bentuk fungsi implisit, seperti contoh berikut Contoh Sebuah roket yang diluncurkan vertikal diamati dari menara kontrol yang berjarak 3 km dari tempat peluncuran. Tentukan kecepatan vertikal roket pada saat jaraknya dari menara kontrol 5 km dan dan jarak ini bertambah dengan kecepatan 5000 km/jam Misal ketinggian roket y dan jarak dari menara z Menara kontrol z 3 km y Diketahui dz dt 5000 Saat z 5 MA4 KALKULUS I 4
43 Dengan menggunakan dalil pythgoras diperoleh y 9 z Pada saat z 5 à y 4 Dengan menggunakan turunan fungsi implisit didapatkan dy y z dt dz dt Jika data y 4, z 5, dan dz 5000 dt Kecepatan vertikal roket dy dt disubstitusikan diperoleh 650 km/jam MA4 KALKULUS I 43
44 Soal Latihan. Tentukan dua buah bilangan yang selisihya 00 dan hasil kalinya minimum cm. Tentukan ukuran persegi panjang dengan luas 000 dan kelilingnya minimum 3. Tentukan titik pada garis 6 y 9 yang terdekat ke titik (-3,) 4. Tentukan ukuran persegi panjang yang memiliki luas terbesar dengan alas pada sumbu serta dua titik sudutnya di atas sumbu serta terletak pada parabola y 8 5. Tentukan ukuran segitiga samakaki yang memiliki luas terbesar sehingga dapat diletakkan dalam lingkaran berjari-jari r MA4 KALKULUS I 44
45 6. Kota A terletak 3 km dari garis pantai yang lurus dan kota B terletak 4 km dari titik di pantai yang terdekat dari A. Pemerintah Daerah setempat akan memasang kabel telepon dari kota A ke kota B. Jika biaya pemasangan kabel dari A ke B untuk setiap kilometer melewati jalan laut dua kali besarnya dibandingkan biaya pasang kabel lewat darat. Tentukan letak titik di pantai agar biaya pemasangan kabel telepon dari A ke B semurah mungkin. MA4 KALKULUS I 45
5.1 Menggambar grafik fungsi
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN
KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi
5. Aplikasi Turunan 1
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
Pertemuan 6 APLIKASI TURUNAN
Kalkulus Pertemuan 6 APLIKASI TURUNAN Menggambar Grafik Fungsi : Gambarlah grafik dari fungsi berikut! 4 f ( ) Beberapa informasi yang diperlukan untuk mengambar grafik dari fungsi tersebut adalah sebagai
Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc
Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi
KED PENGGUNAAN TURUNAN
6 PENGGUNAAN TURUNAN JUMLAH PERTEMUAN : 1 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Menerapkan konsep dasar turunan fungsi dalam menentukan karakteristik grafik fungsi dan menggambarkan grafik Materi : 6.1
TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61
TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum
AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19
DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... UTS Genap 009/00... UTS Ganjil 009/00... UTS Genap 008/009... 5 UTS Pendek 008/009... 6 UTS 007/008... 8 UTS 006/007... 9 UTS 005/006...
UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM)
Tentukan (jika ada) UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM) 1. Dengan menggunakan de nisi turunan, tentukan f 0 () bila f() = 2 + 4. 2. Tentukan: (a) d d (p + sin
(A) 3 (B) 5 (B) 1 (C) 8
. Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +
PENGGUNAAN TURUNAN IKA ARFIANI, S.T.
PENGGUNAAN TURUNAN IKA ARFIANI, S.T. MASALAH MAKSIMUM DAN MINIMUM Misalkan f fungsi dua variable maka f dikatakan mencapai maksimum relatif di titik (a,b) jika terdapat kitaran dari (a,b) demikian sehingga
TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika diberikan suatu fungsi f dan daerah asal S seperti gambar di samping.
(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..
3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,
TURUNAN FUNGSI TRIGONOMETRI
SOAL-JAWAB MATEMATIKA PEMINATAN TURUNAN FUNGSI TRIGONOMETRI Soal Jika f ( ) sin cos tan maka f ( 0) Ingatlah rumus-rumus turunan trigonometri: y sin y cos y cos y sin y tan y sec Karena maka f ( ) sin
BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia
BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum
Matematika Dasar NILAI EKSTRIM
NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien
Bagian 4 Terapan Differensial
Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.
Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi
8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala
UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam
UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)
PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa:
PENGGUNAAN TURUNAN Maksimum dan Minimum Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa: 1. f c adalah nilai maksimum f pada S jika f c f x untuk semua x di S;. f c adalah nilai minimum f
Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.
Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )
UJIAN TENGAH SEMESTER KALKULUS I
UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)
SOAL-SOAL TURUNAN FUNGSI
SOAL-SOAL TURUNAN FUNGSI Peserta didik memilki kemampuan memahami konsep pada topik turunan fungsi aljabar. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual pada topik
Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk ( ) ( ) x < x f x > f x, x, x I. monoton turun pada interval I jika untuk
Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk x < x f x < f x, x, x I ( ) ( ) 1 1 1 monoton turun pada interval I jika untuk x < x f x > f x, x, x I. ( ) ( ) 1 1 1 Fungsi monoton
DEFFERNSIAL atau TURUNAN FUNGSI ALJABAR
DEFFERNSIAL atau TURUNAN FUNGSI ALJABAR A. Pengertian Turunan dari fungsi y f () Laju rata-rata perubahan fungsi dalam interval antara a dan a h adalah : y f( a h) f( a) f ( a h) f( a) = = (dengan syarat
Rencana Pembelajaran
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga
BAB 5 PENGGUNAAN TURUNAN
Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,
Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70
Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline
Hendra Gunawan. 4 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 Oktober 2013 Latihan (Kuliah yg Lalu) 1. Tentukan pada selang mana grafik fungsi f(x) = x 3 2x 2 + x + 1 naik atau turun. Tentukan pula pada
Hendra Gunawan. 9 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 9 Oktober 013 Sasaran Kuliah Hari Ini 34Masalah 3.4 Maksimum dan Minimum Lanjutan Memecahkan masalah maksimumdan minimum. 3.5 Menggambar Grafik Fungsi
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN
LAMPIRAN IV KARTU SOAL DAN JAWABAN PERSAMAAN GARIS SINGGUNG KURVA DAN FUNGSI NAIK DAN TURUN. Diketahui: g x = dan titik (, 0)
160 LAMPIRAN IV KARTU SOAL DAN JAWABAN PERSAMAAN GARIS SINGGUNG KURVA DAN 1. Tentukan persamaan garis singgung fungsi f x = x 2 di titik (2, 4). FUNGSI NAIK DAN TURUN Diketahui: f x = dan titik (2,...)
TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5
TURUNAN FUNGSI. SIMAK UI Matematika Dasar 9, 009 Jika kurva y a b turun pada interval, maka nilai ab... 5 A. B. C. D. E. Solusi: [D] 5 5 5 0 5 5 0 5 0... () y a b y b b a b b 6 6a 0 b 0 b 6a 0 b 5 b a
UJIAN TENGAH SEMESTER KALKULUS I/KALKULUS
UJIAN TENGAH SEMESTER KALKULUS I/KALKULUS Selasa, 3 Maret 004 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 0, KECUALI NOMOR 8. Diketahui fungsi f dengan f() =. Dengan menggunakan de nisi turunan, tentukan
Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN
BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan
JAWABAN PERSIAPAN UKD-5 APLIKASI TURUNAN. 1. Tentukan pers garis singgung (PGS) pada kurva. 2. Tentukan pers garis normal (PGN) pada kurva
JAWABAN PERSIAPAN UKD-5 APLIKASI TURUNAN. Tentukan pers garis singgung (PGS) pada kurva y 4x % 7x + 5 di titik (, ) x y 4( ) % 7( ) + 5 oke y 5 8x 7 m 8( ) 7 5 y 5(x + ) y 5x 5 y 5x +. Tentukan pers garis
Hendra Gunawan. 2 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan
dapat dihampiri oleh:
BAB V PENGGUNAAN TURUNAN Setela pada bab sebelumnya kita membaas pengertian, sifat-sifat, dan rumus-rumus dasar turunan, pada bab ini kita akan membaas tentang aplikasi turunan, diantaranya untuk mengitung
PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] Pada materi sebelumnya telah dijelaskan bahwa Teorema Nilai Rata-Rata (TNR dierensial) memegang peranan
Turunan Fungsi. h asalkan limit ini ada.
Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim
UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1
Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi
SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB
SOL-SOL LTIHN TURUNN FUNGSI SPM 00-007. SPM Matematika asar Regional I 00 Kode 0 Garis singgung kurva di titik potongnya dengan sumbu yang absisnya postif y mempunyai gradien.. 9 8 7. SPM Matematika asar
APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2
Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa
LEMBAR KERJA SISWA (LKS) Pertemuan I
186 LAMPIRAN V LKS 1 LEMBAR KERJA SISWA (LKS) Pertemuan I Nama : Kelas : Mata Pelajaran Materi Pokok Standar kompetensi : Matematika : Persamaan Garis Singgung Kurva : Menggunakan konsep limit fungsi dan
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7
Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan
BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA
142 LAMPIRAN III BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA Pernahkan kamu melempar sebuah bola tenis atau bola voli ke atas? Apa lintasan yang terbuat dari lemparan bola tersebut ketika bola itu jatuh
BAB V. PENGGUNAAN TURUNAN
BAB V. PENGGUNAAN TURUNAN (Pertemuan ke 9 & 10) PENDAHULUAN Diskripsi singkat Pada bab ini ang dibahas adalah tentang nilai maksimum dan minimum, kemonotonan dan kean kurva, serta maksimum dan minimum
Turunan Fungsi dan Aplikasinya
Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan dalam perhitungan turunan fungsi; menggunakan turunan
Open Source. Not For Commercial Use
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati
APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG
Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil
15. TURUNAN (DERIVATIF)
5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u
TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
TEOREMA UJI TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] UJI TURUNAN I-ekstrim relati Andaikan kontinu pada selang (a,b), yang memuat titik kritis c : (i)
Turunan Fungsi dan Aplikasinya
Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk
King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:
Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)
BAB I SISTEM BILANGAN REAL
BAB I SISTEM BILANGAN REAL A. Sistem Bilangan Real Sistem bilangan real sangat erat kaitannya dengan kalkulus. Sebagian dari kalkulus berdasar pada sifat-sifat sistem bilangan real, sehingga sistem bilangan
SOAL-SOAL LATIHAN KALKULUS I SISTEM BILANGAN REAL, PERTAKSAMAAN DAN OPERASI GEOMETRIS KURVA SEDERHANA
SOAL-SOAL LATIHAN KALKULUS I BAB I. SISTEM BILANGAN REAL PERTAKSAMAAN DAN OPERASI GEOMETRIS KURVA SEDERHANA. Tentukan bilangan rasional ang mempunai penajian desimal 5777777.... Tentukan himpunan penelesaian
TURUNAN FUNGSI KELAS : XI IPS
MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPS SEMESTER : (DUA) MAYA KURNIAWATI SMA N SUMBER PENGANTAR : TURUNAN FUNGSI Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul
TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :
TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.
LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah
BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi
TIM MATEMATIKA DASAR I
MATEMATIKA DASAR I DIKTAT KULIAH DISUSUN OLEH TIM MATEMATIKA DASAR I FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS JAMBI 2013 KATA PENGANTAR Mata kuliah Matematika Dasar merupakan mata kuliah dasar yang diwajibkan
(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada
f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn
Soal Babak Penyisihan OMITS 2008
Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....
PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] ungsi genap & ungsi ganjil Fungsi yang berbentuk (-)=() disebut ungsi genap yang graiknya simetri
MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6
MATEMATIKA II Turunan dan Aplikasinya Rudi Prihandoko March 9, 2017 ver 0.6 KUIS I KUIS Misalkan ABCDE adalah NIM Anda. Misalkan pula f(x) = (Ax2 + Bx + C) 2 Ax 2 + Dx + E adalah suatu fungsi rasional.
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =
TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22
TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika
MATEMATIKA TURUNAN FUNGSI
MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI
MATERI KALKULUS. y' = F'(x) = f(x), y'' = F''(x) = f'(x), y'''=f'''(x) = f''(x)= g'(x)= h(x) y1= f(x) y2 = g(x) y3 = h(x)
Universitas Muhammadiyah Sukabumi Artikel Kalkulus Oleh : ardi meridian herdiansyah MATERI KALKULUS KALKULUS 1 MODUL 6 V. MAKSIMUM / MINIMUM ( EKSTREM FUNGSI ) 5.1. Pengertian Diketahui y = F(x) suatu
Pembahasan SNMPTN 2011 Matematika IPA Kode 576
Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.
A. MENYELESAIKAN PERSAMAAN KUADRAT
A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan
BAB V PENERAPAN DIFFERENSIASI
BAB V PENERAPAN DIFFERENSIASI 5.1 Persamaan garis singgung Bentuk umum persamaan garis adalah = m + n, dimana m adalah koeffisien arah atau kemiringan garis dan n adalah penggal garis. Sekarang perhatikan
Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange
Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z
1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.
1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2
C. y = 2x - 10 D. y = 2x + 10
1. Diantara himpunan berikut yang merupakan himpunan kosong adalah... A. { bilangan cacah antara 19 dan 20 } B. { bilangan genap yang habis dibagi bilangan ganjil } C. { bilangan kelipatan 3 yang bukan
Pengoptimalan fungsi dua peubah Secara geometri diferensial
Pengoptimalan fungsi dua peubah Secara geometri diferensial Drs. Johannes P. Mataniari FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA PENDAHULUAN 1.1. Latar Belakang Suatu peubah
Geometri pada Bidang, Vektor
Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I
Kalkulus Multivariabel I
Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
DERIVATIVE (continued)
DERIVATIVE (continued) (TURUNAN) Kus Prihantoso December 14 th, 2011 Yogyakarta Maximum-minimum Misalkan S adalah suatu interval yang merupakan domain dari fungsi f dan S memuat c. Nilai f (c) disebut
BAB III TURUNAN DALAM RUANG DIMENSI-n
BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi
SATUAN ACARA PERKULIAHAN
SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB
Rangkuman Materi dan Soal-soal
Rangkuman Materi dan Soal-soal Dirangkum Ole: Anang Wibowo, S.Pd [email protected] / www.matikzone.co.cc Rangkuman Materi dan Conto Soal. Definisi dy df Turunan dari fungsi y f ( adala y ' f '( ( y'
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007
Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri
7 Limit Fungsi Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Mengitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri Cobala kamu mengambil kembang gula-kembang gula dalam
Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya
. Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) NAMA SEKOLAH : SMAN 4 Kota Solok MATA PELAJARAN : Matematika : XI IPA (Sebelas IPA)
133 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) NAMA SEKOLAH : SMAN 4 Kota Solok MATA PELAJARAN : Matematika KELAS : XI IPA (Sebelas IPA) SEMESTER : II (Dua) JUMLAH PERTEMUAN : 1 Pertemuan A. Standar Kompetensi
Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika
TURUNAN FUNGSI. 1. Turunan Fungsi
TURUNAN FUNGSI. Turunan Fungsi Turunan fungsi f disembarang titik dilambangkan dengan f () dengan definisi f ( ) f ( ) f (). Proses mencari f dari f disebut penurunan; dikatakan bawa f diturunkan untuk
Kurikulum 2013 Antiremed Kelas 11 Matematika
Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui
Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka
Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil
Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA
Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA
LIMIT KED. Perhatikan fungsi di bawah ini:
LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat
SATUAN ACARA PEMBELAJARAN (SAP)
SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan
