KED PENGGUNAAN TURUNAN
|
|
|
- Ade Chandra
- 8 tahun lalu
- Tontonan:
Transkripsi
1 6 PENGGUNAAN TURUNAN JUMLAH PERTEMUAN : 1 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Menerapkan konsep dasar turunan fungsi dalam menentukan karakteristik grafik fungsi dan menggambarkan grafik Materi : 6.1 Maksimum dan Minimum Definisi Andaikan, daerah asal, memuat titik. Kita katakan bahwa: 1. adalah nilai maksimum pada jika untuk semua di ; 2. adalah nilai minimum pada jika untuk semua di ; 3. adalah nilai ekstrim pada jika ia adalah nilai maksimum atau nilai minimum. Contoh: Misalkan jika jika maka
2 Pada, tidak mempunyai nilai maksimum (menjadi cukup dekat ke 2 tetapi tidak pernah mencapainya). Tetapi mempunyai nilai minimum Teorema (Teorema Eksistensi Maks-Min). Jika kontinu pada selang tertutup, maka mencapai nilai maksimum dan nilai minimum. Di mana terjadinya nilai-nilai ekstrim Teorema (Titik kritis). Andaikan didefinisikan pada selang yang memuat titik. Jika adalah titik ekstrim, maka haruslah suatu titik kritis; yakni berupa salah satu: 1. Titik ujung dari 2. Titik stasioner dari ( ); 3. Titik singular dari ( tidak ada). Contoh: Carilah nilai-nilai maksimum dan minimum dari Pada
3 Jawab: Titik-titik kritis untuk fungsi di atas adalah, 0, 1, 2. Sekarang akan diperiksa pada titik kritis tersebut akan menghasilkan nilai-nilai:,, dan. Jadi nilai maksimum adalah 1 (dicapai pada dan 1) dan nilai minimum adalah -4 (dicapai pada 2). Grafik diperlihatkan dalam gambar disamping Contoh: Kotak persegi-panjang dibuat dari selembar papan, panjang 24 inci dan lebar 9 inci, dengan memotong bujur sangkar identik pada keempat pojok dan melipat ke atas sisi-sisinya. Cari ukuran kotak yang volumenya maksimum. Berapa volume ini? 24-2x x 9-2x
4 Jawab: Andaikan adalah sisi bujur sangkar yang harus dipotong dan adalah volume kotak yang dihasilkan. Maka Sekarang tidak dapat lebih kecil dari 0 ataupun lebih dari 4,5. Jadi, masalahnya sekarang adalah memaksimumkan pada. Titik-titik statsioner ditemukan dengan menetapkan sama dengan nol dan menyelesaikan persamaan yang dihasilkan: Ini memberikan atau, tetapi 9 tidak ada pada selang. Jadi titik-titik kritis adalah 0, 2, 4,5. Nilai-nilai ekstrim yang diperoleh ; ;. Jadi disimpulkan bahwa volume maksimum dari kotak tersebut 200 inci kubik jika, yakni kotak berukuran panjang 20 inci, lebar 5 inci, dan tinggi 2 inci. 6.2 Kemotonan dan Kecekungan Definisi Andaikan terdefinisi pada selang (terbuka, tertutup, atau tak satupun). Kita katakan bahwa: 1. adalah naik pada jika untuk setiap bilangan dan dalam. 2. adalah turun pada jika untuk setiap pasangan bilangan dan dalam. 3. monoton murni pada jika ia naik pada atau turun pada.
5 Turunan pertama dan kemonotonan Teorema (Teorema Kemonotonan). Andaikan kontinu pada selang dan dapat dideferensialkan pada setiap titik dalam dari. 1. Jika untuk semua titik dalam dari, maka naik pada 2. Jika untuk semua titik dalam dari, maka turun pada. Contoh Jika, cari di mana naik dan di mana turun. Jawab: Kita perlu menentukan dimana dan juga di mana. Sumbu terbagi menjadi 3 selang yaitu,, dan. Turunan Kedua dan Kecekungan. Definisi Andaikan terdiferensial pada selang terbuka. Jika naik pada, (dan grafiknya) cekung ke atas di sana; jika turun pada, cekung ke bawah pada.
6 Teorema (Kecekungan). Andaikan terdiferensialkan dua kali pada selang terbuka 1. Jika untuk semua dalam, maka cekung ke atas pada. 2. Jika untuk semua dalam, maka cekung ke bawah pada. Contoh Di mana naik, turun, cekung ke atas, dan cekung ke bawah? Jawab (+) (-) (+) -1 3 Maka untuk selang dan naik dan untuk selang turun. Pada selang cekung ke bawah dan pada selang cekung ke atas. Dapat dilihat gambar disamping.
7 6.3 Titik Balik Andaikan kontinu di. Misal suatu titik balik dari grafik jika cekung ke atas pada satu sisi dan cekung ke bawah pada sisi lainnya dari. Titik-titik di mana atau tidak ada merupakan calon-calon untuk titik balik. 6.4 Asimtot Garis adalah asimtot vertikal dari grafik jika salah satu dari pernyataanpernyataan berikut benar Garis adalah asimtot horisontal dari grafik jika 6.5 Penggambaran Grafik Canggih Contoh: Sketsa grafik Jawab: atau 1. Karena, maka adalah fungsi ganjil, maka grafik simetri terhadap titik asal
8 2. Mencari titik potong Akar fungsi diatas: 3. Menentukan kemonotonan Maka stasioner Maka 4. Menentukan cekung/cembung Maka titik balik Maka (-) (+) (-) (+) 0 Asimtot jika ada Tidak ada Maka sketsa fungsi
9 Ringkasan metode: 1. Periksa daerah asal dan daerah hasil fungsi untuk melihat apakah ada daerah di bidang yang dikecualikan 2. Uji kesimetrian terhadap sumbu y dan titik asal. 3. Cari perpotongan dengan sumbu-sumbu koordinat 4. Gunakan turunan pertama untuk mencari titik-titik kritis dan untuk mengetahui tempattempat grafik naik dan turun. 5. Uji titik-titik kritis untuk maksimum dan minimum lokal 6. Gunakan turunan kedua untuk mengetahui tempat-tempat grafik cekung ke atas dan cekung ke bawah dan untuk melokasikan titik-titik balik 7. Cari asimtot-asimtot 8. Tentukan beberapa pasangan koordinat 9. Sketsa grafik.
10 6.6 Latihan 1. Diketahui: a. Tentukan selang kemonotonan dan ekstrim fungsi b. Tentukan selang kecekungan dan titik belok c. Tentukan semua asimtot d. Gambarkan grafik
PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa:
PENGGUNAAN TURUNAN Maksimum dan Minimum Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa: 1. f c adalah nilai maksimum f pada S jika f c f x untuk semua x di S;. f c adalah nilai minimum f
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN
KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi
5. Aplikasi Turunan MA1114 KALKULUS I 1
5. Aplikasi Turunan MA4 KALKULUS I 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum
5.1 Menggambar grafik fungsi
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
Pertemuan 6 APLIKASI TURUNAN
Kalkulus Pertemuan 6 APLIKASI TURUNAN Menggambar Grafik Fungsi : Gambarlah grafik dari fungsi berikut! 4 f ( ) Beberapa informasi yang diperlukan untuk mengambar grafik dari fungsi tersebut adalah sebagai
TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika diberikan suatu fungsi f dan daerah asal S seperti gambar di samping.
TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61
TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan
(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..
3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,
BAB 5 PENGGUNAAN TURUNAN
Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,
Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc
Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi
BAB V. PENGGUNAAN TURUNAN
BAB V. PENGGUNAAN TURUNAN (Pertemuan ke 9 & 10) PENDAHULUAN Diskripsi singkat Pada bab ini ang dibahas adalah tentang nilai maksimum dan minimum, kemonotonan dan kean kurva, serta maksimum dan minimum
BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia
BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum
5. Aplikasi Turunan 1
5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.
TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
TEOREMA UJI TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] UJI TURUNAN I-ekstrim relati Andaikan kontinu pada selang (a,b), yang memuat titik kritis c : (i)
Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70
Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline
Hendra Gunawan. 2 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan
AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19
DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... UTS Genap 009/00... UTS Ganjil 009/00... UTS Genap 008/009... 5 UTS Pendek 008/009... 6 UTS 007/008... 8 UTS 006/007... 9 UTS 005/006...
DERIVATIVE (continued)
DERIVATIVE (continued) (TURUNAN) Kus Prihantoso December 14 th, 2011 Yogyakarta Maximum-minimum Misalkan S adalah suatu interval yang merupakan domain dari fungsi f dan S memuat c. Nilai f (c) disebut
PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] Pada materi sebelumnya telah dijelaskan bahwa Teorema Nilai Rata-Rata (TNR dierensial) memegang peranan
Matematika Dasar NILAI EKSTRIM
NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien
UJIAN TENGAH SEMESTER KALKULUS I
UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)
UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM)
Tentukan (jika ada) UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM) 1. Dengan menggunakan de nisi turunan, tentukan f 0 () bila f() = 2 + 4. 2. Tentukan: (a) d d (p + sin
TURUNAN FUNGSI TRIGONOMETRI
SOAL-JAWAB MATEMATIKA PEMINATAN TURUNAN FUNGSI TRIGONOMETRI Soal Jika f ( ) sin cos tan maka f ( 0) Ingatlah rumus-rumus turunan trigonometri: y sin y cos y cos y sin y tan y sec Karena maka f ( ) sin
BAB III TURUNAN DALAM RUANG DIMENSI-n
BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi
Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN
BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan
Hendra Gunawan. 9 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 9 Oktober 013 Sasaran Kuliah Hari Ini 34Masalah 3.4 Maksimum dan Minimum Lanjutan Memecahkan masalah maksimumdan minimum. 3.5 Menggambar Grafik Fungsi
Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk ( ) ( ) x < x f x > f x, x, x I. monoton turun pada interval I jika untuk
Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk x < x f x < f x, x, x I ( ) ( ) 1 1 1 monoton turun pada interval I jika untuk x < x f x > f x, x, x I. ( ) ( ) 1 1 1 Fungsi monoton
PENGGUNAAN TURUNAN IKA ARFIANI, S.T.
PENGGUNAAN TURUNAN IKA ARFIANI, S.T. MASALAH MAKSIMUM DAN MINIMUM Misalkan f fungsi dua variable maka f dikatakan mencapai maksimum relatif di titik (a,b) jika terdapat kitaran dari (a,b) demikian sehingga
Kalkulus Multivariabel I
Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua
PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] ungsi genap & ungsi ganjil Fungsi yang berbentuk (-)=() disebut ungsi genap yang graiknya simetri
A. MENYELESAIKAN PERSAMAAN KUADRAT
A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan
fungsi rasional adalah rasio dari dua polinomial. Secara umum,
fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah
Turunan Fungsi. h asalkan limit ini ada.
Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim
Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika
Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA
Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA
dapat dihampiri oleh:
BAB V PENGGUNAAN TURUNAN Setela pada bab sebelumnya kita membaas pengertian, sifat-sifat, dan rumus-rumus dasar turunan, pada bab ini kita akan membaas tentang aplikasi turunan, diantaranya untuk mengitung
UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1
Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi
Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange
Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z
Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan
Hendra Gunawan. 11 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot
ALJABAR. 1. HBS (Hogere Burger School) NI dan AMS (Algemeene Middelbare School) afd B, 1935 Bangun
Mengenang Jejak Sebagian Kecil Bangsa Indonesia Yang Pernah Mengikuti Ujian Sekolah Pada Masa Silam UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 935 ALJABAR. HBS (Hogere Burger School) NI dan
atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1
i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=
SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL KHUSUS Sistem Bilangan Real
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG SESI POKOK DAN SUB POKOK BAHASAN TUJUAN INSTRUKSIONAL UMUM SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL
DIFERENSIAL FUNGSI SEDERHANA
DIFERENSIAL FUNGSI SEDERHANA Salah satu metoe yang cukup penting alam matematika aalah turunan (iferensial). Sejalan engan perkembangannya aplikasi turunan telah banyak igunakan untuk biang-biang rekayasa
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya
(A) 3 (B) 5 (B) 1 (C) 8
. Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +
TURUNAN (DIFERENSIAL) FUNGSI
SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL 04 0 TURUNAN (DIFERENSIAL) FUNGSI. UN 04 Diketahui fungsi g A 7, A konstanta. Jika f g dan f turun pada, nilai minimum relatif g adalah... A. 4 B. C. 7 D.
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7
Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan
UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam
UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)
Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier
Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa
LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah
BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi
FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3.
FUNGSI KUADRAT Jenis-jenis soal fungsi kuadrat yang sering diujikan adalah soal-soal tentang : 1. Titik potong 2. Titik puncak 3. Menggambar grafik 4. Menentukan tanda a, b, c dan D 5. Menentukan persamaan
BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA
142 LAMPIRAN III BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA Pernahkan kamu melempar sebuah bola tenis atau bola voli ke atas? Apa lintasan yang terbuat dari lemparan bola tersebut ketika bola itu jatuh
Bagian 4 Terapan Differensial
Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.
BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,
BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn
Syllabus Matematika Dasar 1 Semester Ganjil 2012/2013 FMIPA Universitas Syiah Kuala
Syllabus Matematika Dasar 1 Semester Ganjil 2012/2013 FMIPA Universitas Syiah Kuala Kode MK : MPA 021 Beban : 3 SKS Sifat : Mata Kuliah Wajib Umum Mahasiswa FMIPA Unsyiah Tujuan Mata Kuliah: Setelah mengikuti
BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan
BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks
Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.
Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007
SOAL-SOAL TURUNAN FUNGSI
SOAL-SOAL TURUNAN FUNGSI Peserta didik memilki kemampuan memahami konsep pada topik turunan fungsi aljabar. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual pada topik
Rencana Pembelajaran
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga
King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:
Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat
A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +
Hand out_x_fungsi kuadrat
STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat
Model Optimisasi dan Pemrograman Linear
Modul Model Optimisasi dan Pemrograman Linear Prof. Dr. Djati Kerami Dra. Denny Riama Silaban, M.Kom. S PENDAHULUAN ebelum membuat rancangan penyelesaian masalah dalam bentuk riset operasional, kita harus
BAB I SISTEM BILANGAN REAL
BAB I SISTEM BILANGAN REAL A. Sistem Bilangan Real Sistem bilangan real sangat erat kaitannya dengan kalkulus. Sebagian dari kalkulus berdasar pada sifat-sifat sistem bilangan real, sehingga sistem bilangan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pemrograman Non linier Pemrograman non linier adalah suatu bentuk pemrograman yang berhubungan dengan suatu perencanaan aktivitas tertentu yang dapat diformulasikan dalam model
Nilai Maksimum dan Minimum Sebuah Fungsi
Nilai Maksimum dan Minimum Sebuah Fungsi Persoalan Maks- Min = Persoalan Ti9k Belok l Yang dimaksud 99k belok adalah berubahnya nilai kemiringan, slope atau turunan pertama fungsi dari plus ke minus atau
Materi UTS. Kalkulus 1. Semester Gasal Pengajar: Hazrul Iswadi
Materi UTS Kalkulus 1 Semester Gasal 2016-2017 Pengajar: Hazrul Iswadi Daftar Isi Pengantar...hal 1 Pertemuan 1...hal 2-5 Pertemuan 2...hal 6-10 Pertemuan 3...hal 11-13 Pertemuan 4...hal 14-21 Pertemuan
TIM MATEMATIKA DASAR I
MATEMATIKA DASAR I DIKTAT KULIAH DISUSUN OLEH TIM MATEMATIKA DASAR I FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS JAMBI 2013 KATA PENGANTAR Mata kuliah Matematika Dasar merupakan mata kuliah dasar yang diwajibkan
Nilai Ekstrim. (Extreme Values)
TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran
Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal
MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6
MATEMATIKA II Turunan dan Aplikasinya Rudi Prihandoko March 9, 2017 ver 0.6 KUIS I KUIS Misalkan ABCDE adalah NIM Anda. Misalkan pula f(x) = (Ax2 + Bx + C) 2 Ax 2 + Dx + E adalah suatu fungsi rasional.
SATUAN ACARA PERKULIAHAN
SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB
BAB I PENDAHULUAN Latar belakang
BAB I PENDAHULUAN 1.1. Latar belakang Dua orang Perancis telah berjasa untuk gagasan tentang sistem koordinat. Pieree Fermat adalah seorang pengacara yang menggemari matematika. Pada tahun 169 dia menulis
APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2
Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk
MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c
1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu
Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi
8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala
Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).
Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan
BAB II VEKTOR DAN GERAK DALAM RUANG
BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan
BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan
BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz
Open Source. Not For Commercial Use
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada
5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya
UJIAN TENGAH SEMESTER KALKULUS I/KALKULUS
UJIAN TENGAH SEMESTER KALKULUS I/KALKULUS Selasa, 3 Maret 004 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 0, KECUALI NOMOR 8. Diketahui fungsi f dengan f() =. Dengan menggunakan de nisi turunan, tentukan
MATEMATIKA DASAR 16. Jika maka Jawab : E 17. Diketahui premis-premis sebagai berikut : 1) Jika maka 2) atau Jika adalah peubah pada himpunan bilangan real, nilai yang memenuhi agar kesimpulan dari kedua
BAB I VEKTOR DALAM BIDANG
BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang
15. TURUNAN (DERIVATIF)
5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u
PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT
LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana
LIMIT KED. Perhatikan fungsi di bawah ini:
LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat
GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat
Mata Kuliah Kode/Bobot Deskripsi Singkat : Tujuan Instruksional Umum : : Kalkulus : TSP-102/3 SKS GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata kuliah ini membahas tentang konsep dasar matematika. Pembahasan
DASAR-DASAR ANALISIS MATEMATIKA
(Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: [email protected]. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)
11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku
PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI
FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat
Syllabus Matematika Dasar 1 Semester Ganjil 2013/2014 FMIPA Universitas Syiah Kuala
Syllabus Matematika Dasar 1 Semester Ganjil 2013/2014 FMIPA Universitas Syiah Kuala Kode MK : MPA 021 Beban : 3 SKS Sifat : Mata Kuliah Wajib Umum Mahasiswa FMIPA Unsyiah Tujuan Mata Kuliah: Setelah mengikuti
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2
