METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR
|
|
|
- Liana Setiabudi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Supriadi Putra 1, Ria Kuriawati 1 Laboratorium Matematika Terapa Jurusa Matematika Program Studi S1 Matematika, Jurusa Matematika Fakultas Matematika da Ilmu Pgetahua Alam Uiversitas Riau Kampus Biawidya Pekabaru (89 [email protected] ABSTRAK Kita aka mdiskusika sebuah metode iterasi baru utuk myelesaika persamaa oliear satu variabel. Tulisa yag sama telah dilakuka sebelumya oleh Eskadari, H. World Academy of Scice, Egieerig ad Techology 44, (008. Aka tetapi disii aka dibuktika orde kekoverga dari metode yag belum dilakuka oleh Eskadari. Perbadiga komputasi dari beberapa metode yag dibahas aka diberika dga memperhatika jumlah iterasi, da COC (Computatioal Order of Covergce atau perhituga orde kovergsi secara komputasi. Kata Kuci: Metode Hybrid, Metode Newto, Metode Iterasi Baru. ABSTRACT We discuss a ew iteratio method to solve a oliear equatio of oe variable. The same work has be doe by Eskadari, H. World Academy of Scice, Egieerig ad Techology 44, (008. Here we prove the order of covergce of the method that is ot performed by Eskadari. Compariso amog the discussed methods is also giv by cosiderig umber of iteratio ad COC (Computatioal Order of Covergce. Key Words: Hybrid method, Newto s method, New iteratio method. PENDAHULUAN Mtuka akar dari suatu persamaa oliear satu variabel, f ( x 0, (1 adalah topik yag selalu dibahas dalam mata kuliah metode umerik, kara masalah ii mcul dari berbagai masalah sais yag memerluka pyelesaia secara matematik. Metode aalitik yag tersedia dalam myelesaika masalah oliear ii sagat terbatas kemampuaya, maka peliti mgembagka metode aproksimasi. Metode Newto adalah metode yag sagat popular utuk mgaproksimasi akar persamaa oliear (1. Dalam perapaya metode ii memerluka satu tebaka awal, kataka x 0, da iterasiya diyataka oleh f ( 1, 0,1,, ( x Metode ii msyaratka bahwa x0 0, agar metode dapat diterapka da koverg secara kuadratik (Cote, 1980; Weerakoo, 000. Ide pgembaga metode Newto ii adalah pgguaa garis lurus yag myiggug kurva f (x pada titik (, f (, 0,1,, Btuk ii tidak lai merupaka ekspasi Taylor orde pertama dari f (x pada x, 0,1,, Dga ide yag sama peliti lai telah mgembagka metode iterasi yag dituruka melalui eksapasi Taylor sampai dga orde kedua da ketiga. Melalui ekspasi Taylor orde dua, Halley (Eskadari, 008 da Traub (Traub, 1964 mgembagka metode iterasi Euler, Halley da Chebyshev. Iterasi yag dimaksud berturut-turut adalah sebagai berikut, 46
2 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri f ( 1, ( ' f ( x 1 1 L( x f ( 1 ' L( f ( (4 1 f ( 1 1 L( ' f ( (5 dimaa '' f ( f ( L(. ' f ( Ketiga metode di atas telah dibuktika memiliki orde kekoverga kubik. Selajutya Nasr Al-Di dalam (Nasr, 008 mgembagka metode Hybrid yag diperoleh melalui ekspasi Taylor orde ketiga. Btuk formula iterasiya adalah B B 4AC x 1 (6 A dga A x, B 6, da C 6 f ( 6 BAHAN DAN METODE Pada pelitia ii dilakuka kajia ulag terhadap pekerjaa yag terlebih dahulu telah dilakuka oleh Eskadari (Eskadari, 008. Dalam tulisaya, Eskadari belum melakuka pembuktia aalisa kekoverga dari metode yag dikemukakaya. Utuk itu pulis melakuka aalisa ii dga mgguaka defiisi tigkat kesalaha (Bartle, 000. Defiisi 1 Asumsika bahwa suatu barisa { x } koverg ke da misalka e x utuk 0,1,,. Jika terdapat dua buah kostata A 0 da p 0 maka 1 1 lim lim A, p p x p merupaka orde kekoverga dari barisa { x } da A disebut asimtot error. Setelah aalisa kekoverga dilakuka secara aalitis, selajutya melalui uji komputasi (mgguaka software Maple 1 aka dibadigka hasil yag diberika oleh masig-masig metode iterasi. Jumlah iterasi da ilai COC (perhituga orde kekoverga secara komputasi pada setiap cotoh persamaa oliear yag diguaka aka dijadika acua pembadig. Nilai COC diperoleh melalui defiisi berikut. Defiisi Misalka adalah akar dari f( x 0 da adaika 1,, 1 adalah tiga hasil iterasi berturut-turut yag cukup dekat ke akar. Maka, orde kovergsi secara komputasi (COC dapat diaproksimasi dga rumus l ( 1 /( COC :. l ( x /( x 1 HASIL DAN PEMBAHSAN Metode Iterasi Baru Seperti halya metode Hybrid, metode iterasi baru yag dikemukaka oleh Eskadari (Eskadari, 008 diperoleh dari ekspasi Taylor orde ketiga. Btuk iterasiya adalah D 1 (1 (7 dimaa D (1 f ( da adalah suatu parameter, dga 0 1 da 1. Utuk 0, maka persamaa (7 mjadi f ( 1 (8 Persamaa (7 da (8 memberika dua ilai yag mugki utuk x 1, tergatug pada tada yag diberika. Tada yag dipilih disesuaika dga tada, sehigga ilai dari pembilag semaki kecil. Akhirya persamaa (7 ditulis dalam btuk sig( D 1 (9 (1 Persamaa (9 ii merupaka metode iterasi baru utuk myelesaika persamaa oliear satu variabel. 47
3 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri Aalisa Kekoverga Teorema 1 Misalka I adalah akar sederhaa dari fugsi f : I R. Misalka f, f ', f '', f ''' kf ( x f ''( (4kC x 4kC e 1kC e O( e (17 (iv Jika persamaa (17 dibagi dga da f kotiu pada iterval I. Jika x 0 persamaa (15 kemudia disederhaaka cukup dekat ke maka metode iterasi pada dga mgguaka idtitas persamaa (9 mempuyai orde 1 1 kekoverga kuadratik utuk 0 1 x x x O( x 1 x da kubik utuk 0. dga mgambil sampai suku x, diperoleh btuk Bukti: kf ( x Misalka adalah akar dari fugsi 4kCe f ( x 0, maka f ( 0. Asumsika 0, 0 da e x. (1kC 1kC O(. Dga melakuka ekspasi Taylor utuk f ( x disekitar x, maka Dga mgguaka idtitas 1 f ( O(. ( ! (1 x 1 x x x, 8 16 Selajutya dga memfaktorka da dga mgambil sampai suku x, dari persamaa (10, maka diperoleh 1 ( ( '( O e kf ( x ''( f x f (11 maka hasil dari 1 f! '( f utuk myederhaaka otasi misalka setelah disederhaaka da dimisalka ( j 1 f ( dga A adalah C j utuk j,, j! A 1 kc (18 sehigga persamaa (11 mjadi (6kC k C 6kC O( f ( e C O(. Misalka B adalah hasil perkalia (1 dari Dga cara yag sama masig-masig persamaa (1 dga persamaa (18, utuk da f '' x diperoleh maka aka diperoleh btuk B (1 (C kc 1 C O(, (1 da (C k C kc 6kC O( C O( (14 (19 Persamaa (1 dikuragka dga Kemudia persamaa (1 dikuadratka, persamaa (19, kemudia hasilya dibagi sehigga diperoleh dga kc da dimisalka dga ( 1 4C (4C 6C O( (15 C, C Dga mgalika persamaa (1 dga C C kc O( C. (0 persamaa (14 diperoleh f ( Dga mgalika persamaa (14 dga (16 k, selajutya hasilya dibagi dga C (C 6C O( kc, da dimisalka dga D, Misalka k ( 1, maka hasil perkalia C 6C4 k dga persamaa (16 adalah D 1 O(. (1 C C Kemudia dga membagi persamaa (0 da (1, setelah disederhaaka diperoleh 48
4 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri C ( kc C O(. D ( Selajutya persamaa ( disubstitusika ke persamaa (7, sehigga diperoleh 1 ( kc C O(.( Kara x 1 e 1, maka persamaa ( mjadi 1 ( kc C O(. (4 Dga mguragka kedua ruas persamaa (4 dga, sehigga diperoleh 1 ( kc C O(. (5 Persamaa (5 merupaka persamaa tigkat kesalaha dari metode iterasi baru. Berdasarka Defiisi 1, maka orde kekoverga dari metode iterasi baru adalah kuadratik. Kara k ( 1, maka utuk 0 orde kekoverga metode iterasi baru mjadi kubik. Cotoh Komputasi Pada bagia ii diberika tiga persamaa oliear yag juga biasa diguaka oleh peliti lai dalam melakuka uji komputasi. Uji komputasi melibatka : Metode Newto (yag diperoleh melalui ekspasi Taylor orde satu, Metode Euler, Halley, Chebyshev (yag diperoleh melalui ekspasi Taylor orde dua, Metode Hybrid da Metode Iterasi Baru (yag diperoleh melalui ekspasi Taylor orde tiga. Selai itu, simulasi ii juga aka melihat jumlah iterasi yag dibutuhka metode sampai mdapatka akar aproksimasi da COC (Computatioal Order of Covergce atau perhituga orde kovergsi secara komputasi dari ketiga metode yag diaproksimasi. Tiga persamaa oliear yag aka diguaka yaitu: 1. Polyomial f ( x x 4x 10, dga Poliomial da eksposial x f ( x x e x, Dga Poliomial da trigoometri f ( x x cos x, dga Hasil dari uji komputasi terhadap ketiga persamaa oliear di atas diberika pada tabel berikut. Tabel 1. Perbadiga Komputasi metode Newto, Euler, Halley, Chebyshev, Hybrid da metode Iterasi Baru No x 0 Metode COC f ( x 1 1 Newto e e-11 Euler e e-09 Halley e e Chebyshev e e-14 Hybrid e e-14 Baru ( e e Baru ( e e-11 Newto e e-10 Euler e e-07 Halley e e-06.0 Chebyshev e e-14 Hybrid e e-1 Baru ( e e-07 Baru ( e e-10 Newto e e Euler e e-06 Halley e e-06 Chebyshev e e-06 49
5 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri Hybrid e e-1 Baru ( e e-06 Baru ( e e-1 Newto e e-17 Euler e e-1 Halley e e-14 Chebyshev e e-16 Hybrid e e-1 Baru ( e e-1 Baru ( e e-10 Newto e e-09 Euler e e-1 Halley e e-09 Chebyshev e e-09 Hybrid e e-10 Baru ( e e-1 Baru ( e e-1 Newto e e-14 Euler e e-15 Halley e e-11 Chebyshev e e-09 Hybrid e e-09 Baru ( e e-15 Baru ( e e-14 KESIMPULAN DAN SARAN Dari hasil komputasi yag telah dilakuka, secara umum metode iterasi baru utuk 0 sebadig dga metode Newto da metode Hybrid kara ketigaya mghasilka jumlah iterasi yag hampir sama utuk setiap fugsi. Tetapi utuk metode iterasi baru dga ilai 0, iterasi yag diperluka utuk memperoleh akar hampira sebadig dga metode Euler, Halley da Chebyshev. Selajutya utuk orde kovergsi dari ketiga metode yag dihitug secara komputasi (COC, dapat dilihat bahwa metode iterasi baru dga ilai 0 memiliki COC yag sama dga hasil yag diberika oleh metode Euler, Halley da Chebyshev. Sedagka metode Newto, metode Hybrid da metode iterasi baru dga ilai laiya memiliki COC. Hal ii mujukka bahwa orde kovergsi dari metode iterasi baru utuk 0 adalah kubik. Hasil yag palig marik adalah teryata metode iterasi baru utuk ilai 0 memberika perhituga yag persis sama dga metode Euler. Hal ii berarti bahwa metode iterasi baru utuk kasus khusus 0 tidak lai merupaka metode Euler seperti yag diberika oleh persamaa (. UCAPAN TERIMA KASIH Disampaika kepada Bapak Dr. Imra, M. M.Sc yag telah memberika koreksi yag sagat berarti terhadap aalisa kekoverga metode iterasi baru yag dibahas. DAFTAR PUSTAKA Nasr,A.I A New Hybrid Iteratio Method for Solvig Algebraic Equatios. Applied Mathematics ad Computatio 195, Bartle, R.G. & Sherbert D.R Itoductio to Real Aalysis, Third Editio. Joh Wiley ad Sos, New York. Cote,S.D Elemtary Numerical Aalysis, Third Editio. McGraw- Hill Book Compay, U.S.A. Eskadari, H A New Numerical Solvig Method for Equatios of Oe 50
6 Vol. 9. No. 1, 011 Jural Sais, Tekologi da Idustri Variable. World Academy of Scice, Egieerig ad Techology 44, Halley, E A ew exact ad easy method of fidig the roots of equatios gerally, ad that without ay previous reductio, Phil.Roy. Soc. Lodo Mathew, J.H Numerical Method for Mathematical, Scice, ad Egieer. Prtice-Hall Iterasioal, U.S.A. Melma, A Geometry ad covergce of Euler s ad Halley s Methods, SIAM Rev. 9 ( Traub, J.F Iterative Methods for Solutio of Equatios, Prtice-Hall, Eglewood Cliffs, New Jersey. Weerakoo, S & Ferado, T.G.I A variat of Newto s Method with Accelerated Third-Order Covergce. Applied Mathematics Letters. 1:
STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN
STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : [email protected] ABSTRAK Makalah ii
METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT
METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua
Modifikasi Metode Cauchy Tanpa Turunan Kedua dengan Orde Konvergensi Empat
Jural Sais Matematika da Statistika, Vol., No., Juli 07 ISSN 69-90 prit/issn 07-099 olie Modifikasi Metode Cauchy Tapa Turua Kedua dega Orde Kovergesi Empat Alamsyah, Wartoo, Jurusa Matematika, Fakultas
METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR
Vol. 9. No., 0 Jural Sais, Tkologi da Idustri METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Supriadi Putra, Ria Kuriawati, Asmara Karma [email protected] Laboratorium Matmatika Trapa Jurusa
Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear
Prosidig Semirata FMIPA Uiversitas Lampug 03 Aalisa Komputasi Metode Dua Lagkah Bebas Turua Utuk Meelesaika Persamaa Noliear Supriadi Putra MSi Jurusa Matematika FMIPA Uiversitas Riau E-mail:sputra@uriacid
LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n
LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara
METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT
METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika
Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru
Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika
III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah
III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka
POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan
POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
Pendekatan Nilai Logaritma dan Inversnya Secara Manual
Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN [email protected] Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
Bab 3 Metode Interpolasi
Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui
BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:
4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap
METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Helmi Putri Yanti 1, Rolan Pane 2 1 Mahasiswa Program Studi S1 Matematika 2 DosenJurusan Matematika Fakultas Matematika dan
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013
IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, [email protected]
FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT
FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR Nurul Khoiromi Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau
PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT
Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus
EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2
EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus
METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT
METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Ridho Alfarisy 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
BAB 3 METODE PENELITIAN
Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...
BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)
rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1
SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT
Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI
PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA
PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA V. M. Vidya *, Bustami, R. Efedi Mahasiswa Program S Matematika Dose Jurusa Matematika
Bab 7 Penyelesaian Persamaan Differensial
Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala
METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER
Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Solusi Numerik Persamaan Transport
Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.
FAMILI DARI METODE NEWTON-LIKE DENGAN ORDE KONVERGENSI EMPAT Nurazmi, Supriadi Putra 2, Musraini M 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas
PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN
PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,
METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT
METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor
Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM [email protected] Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember
Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP
( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak
METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK
METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI
BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT
METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam
II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)
3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR
PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM [email protected] Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa
Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika
ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE
2 ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE Sri Purwati 1, Johaes Kho 2, Aziskha 2 1 Mahasiswa Program S1 Matematika FMIPA Uiversitas Riau email : [email protected]
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK
VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM Siti Mariana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Persamaan Non-Linear
Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode
BAB VI DERET TAYLOR DAN DERET LAURENT
BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f
TEOREMA WEYL UNTUK OPERATOR HYPONORMAL
Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, [email protected] Abstract This paper aims at describig
Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,
METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT
METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam
Bab IV. Penderetan Fungsi Kompleks
Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Bab 8 Teknik Pengintegralan
Catata Kuliah MA3 Kalkulus Elemeter II Oki Neswa,Ph.D., Departeme Matematika-ITB Bab 8 Tekik Pegitegrala Metoda Substitusi Itegral Fugsi Trigoometrik Substitusi Merasioalka Itegral Parsial Itegral Fugsi
PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI
PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI Nadya Zulfa Negsih, Bustami Mahasiswa Program Studi S Matematika Dose Jurusa Matematika
SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL
SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *[email protected] Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas
HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN
Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI
Deret Fourier. Modul 1 PENDAHULUAN
Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi
SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY
JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email
Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1
Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga
Kalkulus Rekayasa Hayati DERET
Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran
BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi
METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT
METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika
Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB
ELECRICIAN Jural Rekayasa da ekologi Elektro Aalisis da Visualisasi Represetasi Deret Fourier Gelombag Siyal Periodik Megguaka MALAB Ahmad Saudi Samosir Jurusa ekik Elektro Uiversitas Lampug, Badar Lampug
KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT
KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR Een Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT
Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK
VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Julia Murni 1, Sigit Sugiarto 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan,
BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian
BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,
PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN
PEDUGA RASIO UTUK RATA-RATA POPULASI MEGGUAKA KUARTIL VARIABEL BATU PADA PEGAMBILA SAMPEL ACAK SEDERHAA DA PEGATURA PERIGKAT MEDIA ur Khasaah, Etik Zukhroah, da Dewi Reto Sari S. Prodi Matematika Fakultas
SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL
KNM XVII 11-14 Jui 2014 ITS, Surabaya SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL JEFFRY KUSUMA 1, KHAERUDDIN 2, SYAMSUDDIN
Deret dan Aproksimasi. Deret MacLaurin Deret Taylor
Deret da Aproksimasi Deret MacLauri Deret Taylor Tujua Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa megitegrasika da medieresiasi dega mudah. Kita bisa guaka saat
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang
II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN
JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat
II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <
II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi
METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT
METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan
KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT
KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA Dedi Mangampu Tua 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas
Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series
Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami
REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan
REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k
BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT
BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neli Sulastri 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika
Semigrup Matriks Admitting Struktur Ring
Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: [email protected] bstrak Diberika adalah rig komutatif dega eleme satua da adalah
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau
LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang
2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT
Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA
BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka
Modifikasi Metode Chebyshev-Halley tanpa Turunan Kedua dengan Orde Konvergensi Delapan
Prosidig SI MaNIs Semiar Nasioal Itegrasi Matematika da Nilai Islami Vol. No. Juli 7 Hal. 8- p-issn: 8-96; e-issn: 8-6X Halama 8 Modiikasi Metode Chebshev-Halle tapa Turua Kedua dega Orde Kovergesi Delapa
Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal
BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag
