Pengertian Fungsi. Kalkulus Dasar 2
|
|
|
- Doddy Tedjo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Funsi
2 Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen di dalam B, artina : 1 A, jika 1,, maka 1 Kalkulus Dasar
3 Penertian Funsi Jika adalah unsi dari A ke B kita menuliskan : A B an artina memetakan A ke B. A disebut daerah asal (domain) dari dan B disebut daerah hasil (codomain) dari. Relasi di bawah ini merupakan unsi A a i u e o B Kalkulus Dasar 3
4 Penertian Funsi Relasi di bawah ini bukan merupakan unsi : A a i u e o a mempunai nilai B Himpunan an berisi semua nilai pemetaan disebut jelajah (rane) / jankauan dari. Perhatikan bahwa jelajah dari adalah himpunan baian dari B. Kalkulus Dasar 4
5 Penertian Funsi Jelajah :, A B Jelajah/rane/jankauan dinotasikan denan R Contoh : 1. Carilah domain dan rane dari unsi : Jawab : a. Mencari domain Kalkulus Dasar 5
6 Penertian Funsi sarat aar unsi tersebut terdeinisi adalah : Sehina D b. Mencari Rane 0 3 3,, 4 4 R,0 0, atau R atau 3 4 Hal ini dikarenakan () tidak munkin bernilai nol Kalkulus Dasar 6
7 Contoh. Carilah domain dan rane dari unsi : 3 1 a. Mencari domain Sarat aar unsi tersebut terdeinisi adalah : Sehina 0 D t 1 1,, 3 3 Kalkulus Dasar 7
8 Contoh b. Rane Sarat unsi tersebut terdeinisi, Jadi R Atau ,, Kalkulus Dasar 8
9 Contoh 3. Carilah domain dan rane dari unsi : 5 6 a. Mencari domain Sarat aar unsi tersebut terdeinisi adalah : TP = -, Jadi 3, D Kalkulus Dasar 9
10 Kalkulus Dasar 10 Contoh b. Mencari Rane Aar, maka D
11 Contoh TP, Jadi, R 1 1 1, 0, 1 1 0, Kalkulus Dasar 11
12 Macam-macam Funsi Macam-macam unsi : 1. Funsi polinom a a a... -Funsi konstan, 0 a0 -Funsi linier, a 0 a1 -Funsi kuadrat, a a a n a n Kalkulus Dasar 1
13 Macam-macam Funsi. Funsi Rasional Bentuk umum : p q contoh : 3 p(), q() = unsi polinom denan q() Funsi hara/nilai mutlak Funsi an menandun hara mutlak, contoh : 3 1 Kalkulus Dasar 13
14 Macam-macam Funsi 4. Funsi bilanan bulat terbesar n n n , 3 = Bilanan bulat terbesar an lebih kecil atau sama denan 1, 5. Funsi Genap Disebut unsi enap jika terhadap sumbu dan raikna simetris Kalkulus Dasar 14
15 Macam-macam Funsi Contoh : cos 6. Funsi Ganjil Disebut unsi anjil jika simetris terhadap titik asal, contoh : 3 sin dan raikna Kalkulus Dasar 15
16 Macam-macam Funsi 7. Funsi Komposisi dan Diberikan unsi, komposisi unsi antara dan ditulis. Domain dari adalah himpunan semua bilanan denan domain sehina di dalam D Sarat aar dua unsi bisa dikomposisikan, terpenuhi R D maka harus Kalkulus Dasar 16
17 Funsi Komposisi Hal tersebut dapat diilustrasikan sebaai berikut : (o)() () () D R D R R D Kalkulus Dasar 17
18 Kalkulus Dasar 18 Funsi Komposisi Denan cara an sama, Sarat aar dua unsi bisa dikomposisikan, terpenuhi maka harus R D Domain dari komposisi unsi dan dideinisikan sbb : D D D D D D Sedankan deinisi dari Rane komposisi unsi R t R t R R t t R R, R t R t R R t t R R, atau atau
19 Funsi Komposisi Siat-siat unsi komposisi : h h Contoh : 1. Jika diketahui D R 1 Tentukan dan beserta domain dan rane-na! 0, 0, D R,1 Kalkulus Dasar 19
20 Contoh Karena R = 0,, maka unsi terdeinisi D 1 a. Mencari Domain D D 0, 0 D Kalkulus Dasar 0
21 Contoh , 0 0,, b. Mencari Rane R R Jadi R t t R,1 1 t, t 0,,, 1,1,1 R Kalkulus Dasar 1
22 Contoh Karena D c.domain R D 1 0, terdeinisi denan D, 0,1 1 D 1 0, ,1 1,1 1, maka unsi Kalkulus Dasar
23 Contoh d. Rane R t R, t R 0, t, t,1 0 t,0 t , 0,1 0,1 1 Kalkulus Dasar 3
24 Contoh. Jika diketahui unsi 1 D Tentukan R R R D =, sehina terdeinisi a. Domain D D D beserta domain dan rane-na! D Kalkulus Dasar 4
25 Contoh b. Rane R t R, t R t 1, t Kalkulus Dasar 5
26 Graik dari unsi 1. Garis Lurus m c persamaan aris lurus an melewati (0,c) contoh : Kalkulus Dasar 6
27 Garis Lurus m 1 1 Persamaan aris lurus melalui 1 1 Persamaan aris lurus melalui 1 1 1, 1, & 1 1,. Graik unsi kuadrat (parabola) a b c Diskriminan D b 4ac Kalkulus Dasar 7
28 Graik Funsi Kuadrat Titik puncak = b a, D 4a a >0 D >0 D =0 D <0 Kalkulus Dasar 8
29 Graik Funsi Kuadrat Contoh : Gambarlah raik unsi 1 a =1 jadi a > 0 raik menhadap ke atas D b 4ac 1 4 = -3 < 0 tidak meninun sumbu Kalkulus Dasar 9
30 Graik Funsi Kuadrat Titik poton denan sumbu koordinat Karena D<0, maka titik poton denan sumbu tidak ada Titik poton denan sumbu = 0 = 1 denan demikian raik melalui (0,1) Titik puncak = b a, 1 3, 4 D 4a Kalkulus Dasar 30
31 Graik Funsi Kuadrat Gambar raik unsi 1 Untuk persamaan kuadrat a b c Titik puncak = Sumbu simetri = D 4a, b a b a -1 1 Kalkulus Dasar 31
32 Graik Funsi Majemuk 3. Graik Funsi Majemuk Contoh : 1. Gambarkan raik unsi ( ),, 0 0 =- = Kalkulus Dasar 3
33 Graik Funsi Majemuk. Gambarkan raik unsi 1 Graikna terdiri dari baian, aitu aris untuk dan aris untuk 1 1 Kalkulus Dasar 33
34 Graik Funsi Majemuk 3. Gambarkan raik dari unsi 4 () terdeinisi untuk setiap kecuali, sehina domain dari () adalah semua bilanan riil kecuali Funsi () dapat diuraikan sebaai berikut : Kalkulus Dasar 34
35 Graik Funsi Majemuk atau, jika Rane dari () adalah semua bilanan riil kecuali 4. Jadi raikna terdiri dari semua titik pada aris kecuali titik (,4). 4 Kalkulus Dasar 35
36 Graik Funsi Majemuk 3. Gambarkan raik dari unsi 1 3 Kita deinisikan : Kalkulus Dasar 36
37 Translasi Untuk unsi an dinatakan sebaai a raik raik a a raik a raik menalami pereseran sejauh a ke kanan menalami pereseran sejauh a ke kiri menalami pereseran sejauh a ke atas, a > 0 menalami pereseran sejauh a ke bawah Kalkulus Dasar 37
38 Translasi Untuk unsi an dinatakan sebaai a raik raik a a raik a raik menalami pereseran sejauh a ke atas menalami pereseran sejauh a ke bawah menalami pereseran sejauh a ke kanan, a > 0 menalami pereseran sejauh a ke kiri Kalkulus Dasar 38
39 Contoh Translasi 1. Gambarkan raik dari unsi dieser sejauh ke kanan Kalkulus Dasar 39
40 Contoh Translasi Kemudian maka akan terbentuk dieser sejauh 1 ke atas Kalkulus Dasar 40
41 Contoh Translasi. Gambarkan raik unsi Kita lihat dahulu raik : 3 Kalkulus Dasar 41
42 Contoh Translasi Graik dapat dipandan sebaai raik an dieser 1 ke atas sejauh 1 satuan Kalkulus Dasar 4
43 Soal Latihan Tentukan domain dan rane dari unsi di bawah ini , 5 Diketahui Apakah o terdeinisi? Bila a, tentukan rumusan dari o dan domain dari o. ( ) 4 ( ) Gambarkan raik dari unsi di bawah ini Kalkulus Dasar 43
Pengertian Fungsi. MA 1114 Kalkulus I 2
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat
Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam
MAT 602 DASAR MATEMATIKA II
MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B
FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi
FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh
FUNGSI DAN GRAFIK KED
FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan
BAB 1. FUNGSI DUA PEUBAH
BAB. FUNGSI DUA PEUBAH. PENDAHUUAN Pada baian ini akan dibahas perluasan konsep pada unsi satu peubah ke unsi dua peubah atau lebih. Setelah mempelajari bab ini anda seharusna dapat: - Menentukan domain
BAB II FUNGSI DAN GRAFIK FUNGSI
BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola
Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1
Kalkulus I Funsi Dan Graik Funsi Dr. Eko Pujiyanto, S.Si., M.T. [email protected] 081 2278 3991 eko.sta.uns.ac.id/kalkulus1 Materi Funsi ( Daerah deinisi, daerah asal dan daerah hasil ) Funsi Surjekti, Injekti,
Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota
Suatu pemetaan dari himpunan A ke himpunan B disebut ungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota dari himpunan B Suatu Fungsi biasanya dinyatakan dengan
BAB II FUNGSI DAN GRAFIK FUNGSI
BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan
1 Sistem Bilangan Real
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak
Matematika Dasar FUNGSI DAN GRAFIK
FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
Sistem Bilangan Riil. Pendahuluan
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
Sistem Bilangan Real. Pendahuluan
Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga
Sistem Bilangan Riil
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
Sistem Bilangan Ri l
Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π
1 Posisi, kecepatan, dan percepatan
1 Posisi, kecepatan, dan percepatan Posisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada
4. TURUNAN. MA1114 Kalkulus I 1
4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi
LIMIT & KEKONTINUAN IRA PRASETYANINGRUM
LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati
Sistem Bilangan Riil
Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
1 Posisi, kecepatan, dan percepatan
1 osisi, kecepatan, dan percepatan osisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)
FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya
FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2
Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa
MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari
MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi
KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA
KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian
Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers
Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar
FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63
FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 3
a home base to ecellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 3 a home base to ecellence TIU : Mahasiswa dapat memahami turunan unsi dan aplikasinya TIK : Mahasiswa mampu
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional?
Oleh: Endang Ded Sistem Bilangan Real Apa ang dimaksud dengan bilangan real, rasional dan bilangan irasional? Bilangan Real adalah bilangan-bilangan ang merupakan gabungan dari bilangan rasional dan bilangan
A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi
sumbu y F U N G S I Definisi Fungsi Fungsi adalah pemetaan atau kejadian khusus dari suatu relasi. Jika himpunan A dan B memiliki relasi R sedemikian rupa sehingga setiap elemen himpunan A terhubung dengan
BEBERAPA FUNGSI KHUSUS
BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2
a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi
FUNGSI DAN GRAFIK FUNGSI.
FUNGSI DAN GRAFIK FUNGSI Materi ke-4 [email protected] Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat
BAB II FUNGSI ANALITIK
BAB II FUNGSI ANALITIK Sekarang kita akan mempelajari ungsi dari variabel kompleks dan pengembanganna dalam teori dierensial. Sebagai awal dari bab ini kita mulai dari ungsi analitik, ang mana sangat berperan
ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR
ABSTRAK DAN EXECUTIVE SUMMARY HIBAH DISERTASI DOKTOR Judul: INTEGRAL HENSTOCK-KURZWEIL DI DALAM RUANG FUNGSI KONTINU C[a,b] Tim Peneliti Firdaus Ubaidillah, S.Si, M.Si NIDN 0006067003 UNIVERSITAS JEMBER
KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /
Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : [email protected] Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.
TUJUAN INSTRUKSIONAL KHUSUS
PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya
-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ [email protected] Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini
BAB 2. FUNGSI & GRAFIKNYA
. Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan
3. FUNGSI DAN GRAFIKNYA
3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,
03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa
0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :
KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag
KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
III. FUNGSI POLINOMIAL
III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan
2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2
SOLUSI. A. Waktu bola untuk jatuh diberikan oleh : t A= H B. Jarak d yan dibutuhkan adalah d=v 0 t A =v H 0 i. Karena bola tidak slip sama sekali dan tumbukan lentin sempurna maka eneri mekanik sistem
! 2 H g. &= 1 2 m 2 SOLUSI OSN A. Waktu bola untuk jatuh diberikan oleh : t A= Jarak d yang dibutuhkan adalah d =v 0 g
SOLUSI OSN 009. A. Waktu bola untuk jatuh diberikan oleh : t A=! H B.! Jarak d yan dibutuhkan adalah d =v 0 t A =v H 0 i. Karena bola tidak slip sama sekali dan tumbukan lentin sempurna maka eneri mekanik
Bab I. Fungsi Dua Peubah atau Lebih. Pengantar
Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah
PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT
LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana
RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi
RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,
Oleh: Tjandra Satria Gunawan
Soal dan Solusi (S 2 ) untuk: Olimpiade Sains Nasional Bidan Matematika SMA/MA Seleksi Tinkat Kota/Kabupaten Tahun 2010 Tanal: 14-29 April 2010 Oleh: Tjandra Satria Gunawan 1. Diketahui bahwa ada yepat
SRI REDJEKI KALKULUS I
SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI
BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan
LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.
LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com
PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI
FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat
Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub
Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap
Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka
Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )
Ringkasan Materi Kuliah Bab II FUNGSI
Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,
B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)
1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat
BAB 1. PENDAHULUAN KALKULUS
BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan
BAB 3 FUNGSI. f : x y
. Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,
Darpublic Nopember 2013
Darpublic Nopember 1 www.darpublic.com 1. Turunan Fungsi Polinom 1.1. Pengertian Dasar Kita telah melihat bahwa apabila koordinat dua titik ang terletak pada suatu garis lurus diketahui, misalna [ 1, 1
Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA
Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA
Fungsi dan Grafik Diferensial dan Integral
Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 9 Turunan Fungsi-Fungsi (1 (Fungsi Mononom, Fungsi Polinom 9.1. Pengertian Dasar Kita telah melihat bahwa apabila
KALKULUS UNTUK STATISTIKA
Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan
MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP
MODUL PERTEMUAN KE 4 MATA KULIAH : (4 sks) MATERI KULIAH: Gerak Peluru (Proyektil); Gerak Melinkar Beraturan, Gerak Melinkar Berubah Beraturan, Besaran Anular dan Besaran Tanensial. POKOK BAHASAN: GERAK
10/11/2014. CIG4E3 / Pengolahan Citra Digital BAB 8. Image Segmentation (Edge Detection) Definisi Egde. Cara Kerja Spatial Filter [1]
CI4E3 / Penolahan Citra Diital BAB 8. Imae Sementation Ede Detection Intellient Computin and Multimedia ICM Deinisi Ede Ede adalah batas antara dua daerah denan nilai ra-level an relati berbeda atau denan
FUNGSI DAN GRAFIK FUNGSI.
FUNGSI DAN GRAFIK FUNGSI Materi ke-4 [email protected] [email protected] Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi
SISTEM BILANGAN RIIL DAN FUNGSI
SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline
fungsi rasional adalah rasio dari dua polinomial. Secara umum,
fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7
Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan
Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier
Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi
*Tambahan Grafik Fungsi Kuadrat
*Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)
INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK
INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3
MODUL BAB 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS. Standar Kompetensi: 2. Menentukan komposisi dua fungsi dan invers suatu fungsi
MODUL BAB KOMPOSISI FUNGSI DAN FUNGSI INVERS Standar Kompetensi:. Menentukan komposisi dua ungsi dan invers suatu ungsi Kompetensi Dasar. Menentukan komposisi ungsi dari dua ungsi. Menentukan invers suatu
1. Pengertian Tentang Fungsi dan Grafik
Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan
I. SISTEM BILANGAN RIIL, PERTIDAKSAMAAN DAN NILAI MUTLAK. 3. Selesaikan pertidaksamaan berikut dan gambarkan solusinya pada garis bilangan.
I. SISTEM BILANGAN RIIL, PERTIDAKSAMAAN DAN NILAI MUTLAK. Buatlah diagram sistem bilangan riil.. Buktikan bahwa rata-rata dua buah bilangan terletak di antara kedua bilangan itu. a b a b a b. Selesaikan
FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)
FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan
YAYASAN PRAWITAMA SMK WIKRAMA BOGOR
Telp. 051-84411, email: [email protected], FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah
PERBANDINGAN DAN FUNGSI TRIGONOMETRI
PERBANDINGAN DAN FUNGSI TRIGONOMETRI E Gaik Funsi Tionometi Untuk memahami unsi tionometi secaa umum, telebih dahulu kita akan membahas aik unsi tionometi dasa, aitu aik unsi = sin, = cos dan = tan Gaik
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap
Materi Kuliah Matematika Komputasi FUNGSI
Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam
KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan
KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan
BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5
BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama
Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=
Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan
Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka
Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat
4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )
4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung
BEBERAPA MACAM FUNGSI DALAM ALJABAR
BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan
Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS
Lecture 3. Function (A) A. Definition of Function Definisi. f adalah fungsi dari himpunan A ke himpunan B yang ditulis dengan f: A B, yaitu merupakan suatu aturan yang memetakan (mengawankan) setiap xεa
Bagian 2 Matriks dan Determinan
Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika
FUNGSI. Matematika FTP UB. Matematika
FUNGSI FTP UB Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Memproses Bilangan Sebuah fungsi adalah
