MODEL PILIHAN KUALITATIF. Oleh Bambang Juanda
|
|
|
- Yanti Budiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 MODEL PILIHAN KUALITATIF Olh Bambang Juanda
2 Srngkal dalam suatu surv kta brhadapan dngan pubah kualtatf yang mmpunya skala pngukuran nomnal atau ordnal. Nla-nla pubah rspons kualtatf n trbatas lmtd dpndnt varabl, bahkan srng hanya brnla dua kmungknan saja. Msalnya, apakah ssorang mmbl mobl atau tdak; mmlh atau tdak dalam Plkada pmlhan kpala darah; punya pnyakt jantung koronr atau tdak; dan mash banyak contoh lannya. Pubah kualtatf yang hanya mmpunya dua kmungknan nla n dsbut pubah bnr.
3 Mskpun logs kta mmprkrakan suatu hubungan langsung antara pndapatan dan prlaku pmblan, namun kta tdak dapat yakn apakah masng-masng konsumn dngan pndapatan trtntu past akan mmbl produk. Olh karna tu, tujuan modl plhan kualtatf adalah mnntukan pluang bahwa ndvdu dngan karaktrstk-karaktrstk trtntu akan mmlh suatu plhan trtntu dar bbrapa altrnatf yang trsda. Jka plhannya hanya ada dua altrnatf dsbut modl plhan bnr.
4 Ovrvw Rspons Contnuous Catgorcal Analyss Lnar Rgrsson Analyss - -Modl Pluang Lnar -Modl Probt
5 Ilustras Stud mngna pngaruh tngkat pndapatan, jns klamn dan umur trhadap mmbl tdaknya ssorang pada suatu produk yang djual dngan harga trtntu. Pubah Pnjlas bbas: umur, jns klamn dan tngkat pndapatan Pubah RsponsY: mmbl = atau tdak =0
6 Ilustras utk Pubah Bbas Stud mngna pngaruh tk pndapatan atau jns klamn trhadap mmbl tdaknya ssorang Y pada suatu produk yang djual dngan harga trtntu. Pubah Pnjlas bbas: Tk Pndapatan: = Rp juta atau Jns Klamn: =, jka Pra 0, jka Wanta Pubah Rspons: Y =, jka mmbl 0, jka tdak mmbl
7 . Modl Pluang Lnar Y = + + ε 0. Dmana = nla karaktrstk msalnya pndapatan ndvdu k-, Y =, jka plhan ksatu dplh msalnya mmbl mobl 0, jka plhan kdua dplh tdak mmbl mobl. ε = pubah acak yang mnybar bbas dngan nla tngah 0. Untuk mngntrprtaskan prsamaan 0. kta tntukan nla harapan dar masng-masng pngamatan pubah rspons Y : EY = + 0. Karna Y hanya mmpunya kmungknan dua macam nla dan 0, kta dapat mnggambarkan sbaran pluang Y dngan mmsalkan: P = PY= dan -P = PY=0, shngga EY = P + 0 -P = P. 0.3 modl 0. pluang bahwa ndvdu konsumn k- dngan pndapatan trtntu akan mmbl mobl. Slop gars mngukur pngaruh prubahan unt pndapatan trhadap prubahan pluang mmbl mobl
8 Dugaan Modl Pluang Lnar +, jka 0<+< P =, jka + 0, jka
9 Sbaran Pluang bag ε Y ε Pluang - - P P
10 Eε = - - P P = 0 shngga P = + -P = - - Ragam komponn ssaan E Var Y E Y E Y P E Y [ E Y ] Jad, pubah Y mnybar mnurut sbaran dstrbus pluang Brnoul. Masalah htroskdaststas P P P P P E
11 Kndala dalam modl pluang lnar prlu transformas modl lnar awal sdmkan rupa shngga prdks nla Y brada dalam slang 0; untuk smua nla pubah bbas. Salah satu bntuk transformas yang mmpunya karaktrstk sprt n adalah fungs pluang kumulatf cumulatv probablty functon, F.[] Sbaran pluangnya dapat drprsntaskan dalam bntuk: P = F + = FZ Sbnarnya banyak fungs pluang kumulatf yang mungkn dapat dgunakan, namun dsn hanya dua macam yang dprtmbangkan, yatu fungs pluang normal dan logstk kumulatf. [] Fungs pluang kumulatf adalah Fx=Pluang x
12 Modl Probt P = F + = FZ asumskan ada suatu ndks Z yg brnla kontnu scara torts, yg dtntukan olh nla pubah pnjlas shg dapat dtuls: Z = + asumskan bahwa Z mrupakan pubah acak yang mnybar normal shngga pluang bahwa Z lbh kcl atau sama dngan Z dapat dhtung dar fungs pluang normal kumulatf. Untuk fungs pluang normal baku kumulatf dapat dtulskan dalam rumus: P F Z Z s dmana s: pubah acak mnybar normal dgn nla tngah 0 dan ragam. Dgn rumus transformas datas, pubah P akan brnla dlm slang 0;. P mnggambarkan pluang ndvdu brkaraktrstk brpndapatan mmlh plhan- bl mobl. Karna nla pluang n dukur brdasarkan luas darah dbawah kurva normal baku dar - sampa Z, maka pluang plhan- bl mobl makn tngg jka nla ndks Z makn tngg. Untuk mnduga ndks Z, kta mnggunakan kbalkan nvrs dar fungs normal baku kumulatf 0.9 dngan: Z = F - P = + ds
13 Hubungan Nla Indks Z dan Sbaran Pluang Normal Kumulatfnya Z FZ Z FZ
14 Modl Pluang Lnar vs Modl Probt Modl Lnar
15 Mskpun modl probt lbh mnark dar modl pluang lnar, namun untuk mnduga paramtr kofsnnya mnggunakan pndugaan kmungknan maksmum maxmum lklhood, ML non lnar. Slan tu, justfkas atau ntrprtas kofsnnya agak trbatas. Olh karna tu sbaknya mnggunakan modl logt yang dbahas dalam subbab brkut
16 mnggunakan pubah pnjlasnya dpt pubah katgork atau pubah numrk untuk mnduga pluang kjadan trtntu dar pubah rspons katgor. 0 0 / Y E Modl Rgrs Logstk Modl logt Modl Logt Sdrhana : 0 g P P Sbaran Logstk mnyrupa kurva brbntuk S, shngga ntrprtasnya logs. 0 EY/ Intrprtas: Pluang kjadan trtntu dar pubah rspons katgor msalnya mmbl jka pndapatannya
17 Transformas Logt Pluang kjadan trtntu dar pubah rspons katgor p, dtransformas shg p p logt p log g x 0 p ndks smua kasus obsrvas,,..,n. pluang kjadan msalnya, mmbl trjad untuk kasus k-. log adalah natural log blangan dasar. Fungs gx sudah Lnar dalam Paramtr, dan -~ gx ~, shg dpt dduga dgn OLS
18 Assumpton pubah brskala Intrval P Prdctor Transformas logt Prdctor
19 P Intrprtas Kofsn Modl Logt Utk Pubah Bbas bnr, ms Jns Klamn =, =0 0 = =0 0 Y= P 0 P Y=0 Jumlah 0 0 P : Pluang mmbl produk utk konsumn Pra 0 P 0 P 0 P Odd pra P0 : Pluang mmbl produk utk konsumn Wanta P P P0 OddsRato / P P0 Odd wanta 0 0 P0 P0
20 Intrprtas Kofsn = g+ g utk bnr: = g g0 Ukuran Asosas Odds Rato: P log P P P0 log log P P0 P / P0/ P P0 g P / log P0 / 0 P P0 Brapa kal Kmungknan mmbl utk konsumn Pra dbandngkan Konsumn Wanta Intrprtas Pndkatan Pluang Rlatf P/P0 n brlaku bla Px kcl Utk kontnu, xp : Brapa kal Kmungknan mmblnya jka nak unt
21 Proprts of th Odds Rato ODDS RATIO OF GROUP A TO GROUP B No Assocaton =x =x Not: ^ SK - 00% bag Odds Rato: xpc ± z / c s^ Dlm raltas Px jka x brbda unt dgn 0 dapat cukup brbda. Dlma utk pubah kontnu dmodlkan lnar dlm modl logt. Jka yakn bahwa logt tdk lnar dgn covarat groupng Dummy
22 Multpl Logstc Rgrsson Purchas Gndr Incom Ag logt p =
23 Ilustras modl utk mngkaj pngaruh jns klamn, umur, dan tngkat pndapatan trhadap mmbl tdaknya ssorang pada suatu produk yang djual dngan harga trtntu. logt p = g P log P logt p = g P P log Utk Pubah Bbas kontnu, srngkal unt trlalu kcl atau bsar utk dprtmbangkan Pndugaan utk prubahan c unt, c x c x c gx+c gx = c Odds Rato-nya:
24 Pngujan Modl dgn p Pubah Bbas Uj Modl scara ksluruhan: H 0 : = = = p =0 H : ada j 0 Lklhood Rato Tst Statstcs G ~ Uj parsal kofsn: H 0 : j =0 H : j 0 WaldTst Statstcs W ~ Z p
25
26 Adjustd Odds Rato Prdctor Outcom Gndr Purchas Controllng for
27 Typs of Logstc Rgrsson Rspons Varabl Bnary Two Catgors Ys No Thr or Mor Catgors Typ of Logstc Rgrsson Bnary Nomnal Ordnal
MODEL PILIHAN KUALITATIF. Oleh Bambang Juanda
MODEL PILIHAN KUALITATIF Olh Bambang Juanda Srngkal dalam suatu surv kta brhadapan dngan pubah kualtatf yang mmpunya skala pngukuran nomnal atau ordnal. Nla-nla pubah rspons kualtatf n trbatas lmtd dpndnt
ESTIMASI PARAMETER MODEL GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION (GWOLR)
ISBN : 978.60.36.00.0 ESIMASI PARAMEER MODEL GEOGRAPHICALLY WEIGHED ORDINAL LOGISIC REGRESSION (GWOLR) Sylf, Vta Ratnasar Mahasswa Jurusan Statstka Insttut knolog Spuluh Nopmbr (IS), Dosn Jurusan Statstka
LOGO. Analisis Sisaan HAZMIRA YOZZA- JUR.MATEMATIKA FMIPA UNIV.ANDALAS
Analss Ssaan HAZMIRA YOZZA- JUR.MATEMATIKA FMIPA UNIV.ANDALAS KOMPETENSI Stlah mmplajar topk n, mahasswa dharapkan dapat : mnjlaskan dfns ssaan dan nformasnformas yang dapat dprolh dar ssaan mnghtung nla
Hubungan antara K dengan koefisien fugasitas:
Hubungan antara K dngan kofsn fugastas: fˆ f K Kadaan standar untuk gas adalah gas murn pada kadaan gas dal pada tkanan kadaan standar sbsar 1 bar. (1) Karna fugastas gas dal sama dngan tkanannya, f =
UJI CHI KUADRAT (χ²) 1.1. Pengertian Frekuensi Observasi dan Frekuensi Harapan
UJI CHI KUADRAT (χ²) 1. Pndahuluan Uj Ch Kuadrat adalah pngujan hpotss mngna prbandngan antara : frkuns obsrvas/yg bnar-bnar trjad/aktual dngan frkuns harapan/kspktas 1.1. Pngrtan Frkuns Obsrvas dan Frkuns
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Blakang Mnmum spannng tr (MST) mrupakan sbuah prmasalahan dalam suatu graph yang mana banyak aplkasnya bak scara langsung maupun tdak langsung yang tlah dplajar. Salah satu
PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1. Kismiantini Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta
PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1 Ksmantn Jurusan Pnddkan Matmatka FMIPA Unvrstas Ngr Yogakarta Abstrak Pnduga rsko rlat mrupakan statstk ang dgunakan untuk mngtahu sbaran suatu pnakt.
FIXED EFFECT MODEL PADA REGRESI DATA PANEL
ta p-iss: 085-5893 -ISS: 54-0458 Vol. 3 o. opmbr 00, Hal. 34-45 ta 00 DOI: http://dx.do.org/0.044/btajtm.v9.7 FIED EFFECT MODEL PADA REGRESI DATA PAEL Alfra Mula Astut Abstrak: Pngamatan trhadap prlakuan
OPTIMISASI HARGA DENGAN MODEL MULTINOMIAL LOGIT (Studi Kasus Produk Flash Disk dengan Kapasitas Penyimpanan 4 GB dan 8 GB)
OPTIMISASI HARGA DENGAN MODEL MULTINOMIAL LOGIT (Stud Kasus Produk Flash Dsk dngan Kapastas Pnympanan 4 GB dan 8 GB) Skrps OLEH: DIAN SETYA ARINI I0307038 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS
BAB IV STUDI KASUS NILAI AVL SLJJ PT TELKOM
BAB IV STUDI KASUS NILAI AVL SLJJ PT TELKOM 4.1 Pndahuluan Ktga prtdaksamaan yang tlah dbahas sblumnya akan daplkaskan dalam suatu stud kasus mngna nla AVL (avalablty ntwork) dar sambungan langsung jarak
EFISIENSI SISTEM BONUS MALUS SEBAGAI MODEL RANTAI MARKOV
Jurnal Matmatka Vol. 9, No.3, Dsmbr 2006:207-214 EFISIENSI SISTEM BONUS MALUS SEBAGAI MODEL RANTAI MARKOV Supand Jurusan Tknk Informatka Unvrstas AKI Jl. Pmuda 95-97 Smarang [email protected] Abstract.
ANALISIS PEUBAH RESPON BINER
Analss Peubah Respon Bner... (Ksmantn) ANALISIS PEUBAH RESPON BINER Ksmantn Jurusan Penddkan Matematka FMIPA Unverstas Neger Yogyakarta Abstrak Pada regres lner klask, peubah respon dasumskan merupakan
II. BILANGAN KOMPLEKS. Untuk mencari nilai kuadrat menggunakan persamaan
II. BILANGAN KOMPLEKS. Pndahuluan Sstm blangan komplks pada dasarna mrupakan prluasan dar sstm blangan rl. Sstm blangan n dprknalkan untuk mmcahkan sstm-sstm prsamaan aljabar ang tdak mmpuna jawaban dalam
BAB IV FUNGSI KOMPLEKS
47 BAB IV FUNGSI KOMPLEKS 4.. BILANGAN KOMPLEKS. 4... Notas Blangan Komplks Brmacam - macam notas dar blangan komplks pada mulanya ddfnskan sbaga pasangan blangan rl, msal (, y ), namun scara umum notas
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
BAB 2 SISTEM MAKRO DAN MIKRO
BAB 2 SISTEM MAKRO DAN MIKRO Sstm yang akan d bahas dalam skrps n adalah sstm frmon yang mngkut kadah ksklus Paul, mrupakan partkl dntk dan mmlk sfat-sfat yang brbda jka d bandngkan dngan sstm boson. Olh
KAJIAN ANALISIS REGRESI DENGAN DATA PANEL
Prosdng Smnar Nasonal Pnlan, Pnddan dan Pnrapan MIPA Faultas MIPA, Unvrsas Ngr ogyaarta, 16 M 009 AJIAN ANALISIS REGRESI DENGAN DATA PANEL I Gd Nyoman Mndra Jaya Nnng Sunngsh Staf Pngajar Jurusan Statsta
BAB II KAJIAN TEORI. 2.1 Pendahuluan. 2.2 Pengukuran Data Kondisi
BAB II KAJIAN TEORI 2.1 Pendahuluan Model penurunan nla konds jembatan yang akan destmas mengatkan data penurunan konds jembatan dengan beberapa varabel kontnu yang mempengaruh penurunan kondsnya. Data
Aplikasi Integral. Panjang sebuah kurva w(y) sepanjang selang dapat ditemukan menggunakan persamaan
Aplikasi Intgral Intgral dapat diaplikasikan k dalam banyak hal. Dari yang sdrhana, hingga aplikasi prhitungan yang sangat komplks. Brikut mrupakan aplikasi-aplikasi intgral yang tlah diklompokkan dalam
Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :
Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data penelitian diperoleh dari siswa kelas XII Jurusan Teknik Elektronika
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. DESKRIPSI DATA Data pnlitian diprolh dari siswa klas XII Jurusan Tknik Elktronika Industri SMK Ma arif 1 kbumn. Data variabl pngalaman praktik industri, kmandirian
Gelombang Datar Lintas Medium
Rvs Fbruar 00 33 Modul 4 lktromagntka Tlkomunkas Glombang Datar Lntas Mdum Olh : Nachwan Muft Adransyah, ST, MT Organsas Modul 3 Glombang Datar Lntas Mdum A. Pndahuluan B. Glombang Jatuh Normal C. Konsp
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan
REGRESI LINEAR & KORELASI. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung REGRESI
9/08/0 REGREI LINEAR & KORELAI Elty arvia, T., MT. Fakultas Tknik Jurusan Tknik Industri Univrsitas Kristn Maranatha Bandung REGREI jauh ini,kita hanya mmbuat statistik dngan satu variabl pada waktu trtntu,
BAB II TINJAUAN PUSTAKA. penurunan akan permintaan pergerakan transportasi. [ 11]
BAB II TINJAUAN PUSTAKA II.1 Umum Tngkat playanan suatu jarngan jalan tntukan olh waktu prjalanan, baya prjalanan (tarf an bahan bakar), knyamanan, an kamanan pnumpang. Jka trja pnurunan tngkat playanan
ANALISIS DATA KATEGORIK (STK351)
Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat
Analisis Regresi 2. Mendeteksi pencilan dan penanganannya
Analss Regres Pokok Bahasan : Mendeteks penclan dan penanganannya TUJUAN INSTRUKSIONAL KHUSUS : Mahasswa dapat mendeteks adanya penclan pada regres lner berganda Penclan Penclan adalah pengamatan yang
BAB II IMPEDANSI SURJA KAWAT TANAH DAN MENARA
BAB II IMPEDANSI SUJA KAWA ANAH DAN MENAA II. UMUM Saluan tansms lbh tngg dbandngkan objk d skllngnya, kana tu saluan tansms mmlk sko bsa untuk tkna sambaan pt. Untuk mngatas hal tsbut maka saluan tansms
Model Regresi Berganda
Model Regres Berganda Huungan lnear (dlm parameter) antara peuah tak eas & atau leh peuah eas Intersep-Y Populas Slope Populas Random Error Y 0 p p Ŷ 0 p p e Peuah tak eas (Respons) utk sampel Peuah eas
BAB IV TRIP GENERATION
BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan
Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi
Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : [email protected] ABSTRAK
Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB
Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software
APLIKASI INTEGRAL TENTU
APLIKASI INTEGRAL TENTU Aplkas Integral Tentu థ Luas dantara kurva థ Volume benda dalam bdang (dengan metode cakram dan cncn) థ Volume benda putar (dengan metode kult tabung) థ Luas permukaan benda putar
UKURAN LOKASI, VARIASI & BENTUK KURVA
UKURAN LOKASI, VARIASI & BENTUK KURVA MARULAM MT SIMARMATA, MS STATISTIK TERAPAN FAK HUKUM USI @4 ARTI UKURAN LOKASI DAN VARIASI Suatu Kelompok DATA berupa kumpulan nla VARIABEL [ vaabel ] Ms banyaknya
PEMODELAN LUAS PANEN PADI DI KABUPATEN LAMONGAN DENGAN INDIKATOR EL NINO SOUTHERN OSCILLATION MELALUI PENDEKATAN ROBUST BOOTSTRAP LEAST TRIMMED SQUARE
PEMODELAN LUAS PANEN PADI DI KABUPATEN LAMONGAN DENGAN INDIKATOR EL NINO SOUTHERN OSCILLATION MELALUI PENDEKATAN ROBUST BOOTSTRAP LEAST TRIMMED SQUARE Bn Haryat dan Sutkno Jurusan Statstka, Fakultas Matmatka
LECTURE NOTES LIMITED DEPENDENT VARIABLE (LDV) MODEL
LECTURE NOTES LIMITED DEPENDENT VARIABLE (LDV) MODEL Pendahuluan Pada bahasan sebelumnya telah dbahas model regres lner dmana varabel dependen (respons) bertpe numerk dan dasumskan dapat mengambl nla berapapun
ANALISIS LOG-LOGISTIK UNTUK MENGGAMBARKAN HUBUNGAN DOSIS-RESPON HERBISIDA PADA TIGA JENIS GULMA
ANALISIS LOG-LOGISTIK UNTUK MENGGAMBARKAN HUBUNGAN DOSIS-RESPON HERBISIDA PADA TIGA JENIS GULMA Olh : Yanti Muliyaningsih G40026 PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
ESTIMASI SMALL AREA BERDASARKAN MODEL PADA RATA-RATA PENGELUARAN PERKAPITA RUMAH TANGGA DI KABUPATEN KEBUMEN
ESTIMASI SMALL AREA BERDASARKAN MODEL PADA RATA-RATA PENGELUARAN PERKAPITA RUMAH TANGGA DI KABUPATEN KEBUMEN A. Nna Rosana Chytrasar 1), Sr Haryatm 2), Danardono 3) 1) Mahasswa Jur. Matmatka FMIPA UGM
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan
BAB 3 Kesamaan Matriks Kovariansi. Bagian ini akan membahas tentang pengujian hipotesis kesamaan matriks kovariansi.
BAB 3 Ksamaan Matks Kovaans Bagan n akan mmahas tntang ngujan hotss ksamaan matks kovaans. 3. Uj Ksamaan Dua Matks Kovaans 3.. Ukuan Pnyaan Multvaat ( X ( ( Msalkan X suatu vkto acak d mana X dan X masngmasng
BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat
BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Menghadap era globalsas yang penuh tantangan, aparatur negara dtuntut untuk dapat memberkan pelayanan yang berorentas pada kebutuhan masyarakat dalam pemberan pelayanan
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel
BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga
Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh :
Pmbahasan Soal SELEKSI MASUK UNIVERSITAS INDONESIA Disrtai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Olh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pmbahasan Soal SIMAK UI 2011 Matmatika
Oleh : Deri Akhmad (9738) Johan Arifin (9834) Muhammad Alawido (10830) esi Hapsari (10832) Windu Pramana Putra (10835) Tya Hermoza (10849) Gempur
Oleh : Der Akhmad (9738) Johan Arfn (9834) Muhammad Alawdo (83) es Hapsar (83) Wndu Pramana Putra (835) Tya Hermoza (849) Gempur Safar (877) Febra Aryan (97) Asr Wdyasar (978) Nur Inayah (4) Adharsa Rakhman
KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani /
KORELASI DAN REGRESI LINIER 9 Debrna Puspta Andran www. E-mal : [email protected] / [email protected] 2 Outlne 3 Perbedaan mendasar antara korelas dan regres? KORELASI Korelas hanya menunjukkan sekedar hubungan.
BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi,
BAB LANDASAN TEORI.1 Populas dan Sampel Populas adalah keseluruhan unt atau ndvdu dalam ruang lngkup yang ngn dtelt. Banyaknya pengamatan atau anggota suatu populas dsebut ukuran populas, sedangkan suatu
BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan
METODE ELEMEN HINGGA UNTUK MASALAH SYARAT BATAS DARI OPERATOR DIFERENSIAL POSITIF. Sutrima Jurusan matematika FMIPA UNS. Abstract
JRNAL MATEMATIKA DAN KOMPTER Vol. 5. No., 4-4, Aprl, ISSN : 4-858 METODE ELEMEN INGGA NTK MASALA SARAT BATAS DARI OPERATOR DIFERENSIAL POSITIF Sutrma Jurusan matmatka FMIPA NS Abstract Th purpos of ths
Independent Var. Dependent Var. Test. Nominal Interval Independent t-test, ANOVA. Nominal Nominal Cross Tabs, Chi Square, dan Koefisien Kontingensi
Independent Var. Dependent Var. Test Nomnal Interval Independent t-test, ANOVA Nomnal Nomnal Cross Tabs, Ch Square, dan Koefsen Kontngens Nomnal Ordnal Mann Whtney, Kolmogorov- Smrnow, Kruskall Walls Ordnal
IV. HASIL DAN PEMBAHASAN
IV. HASIL DAN PEMBAHASAN Data terdr dar dua data utama, yatu data denyut jantung pada saat kalbras dan denyut jantung pada saat bekerja. Semuanya akan dbahas pada sub bab-sub bab berkut. A. Denyut Jantung
BAB 2 DISTRIBUSI INDUK DAN DISTRIBUSI SAMPEL
BAB DISTRIBUSI IDUK DA DISTRIBUSI SAMEL.. EDAHULUA Jika suatu bsaran mmiliki nilai ssungguhnya sdangkan hasil ukurnya adalah maka kita mngharapkan hasil pngamatan mndkati, namun knyataannya tidak slalu
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
BAB 2 LANDASAN TEORI
7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut
ANALISIS BENTUK HUBUNGAN
ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel
Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh
Analss Regres 1 Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya E[Y x] E[Y x] y b
FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PRESTASI MAHASISWA FSM UNIVERSITAS DIPONEGORO SEMASTER PERTAMA DENGAN MOTODE REGRESI LOGISTIK BINER
UNIVERSITAS DIPONEGORO 013 ISBN: 978-60-14387-0-1 FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PRESTASI MAHASISWA FSM UNIVERSITAS DIPONEGORO SEMASTER PERTAMA DENGAN MOTODE REGRESI LOGISTIK BINER Saftr Daruyan
ANALISIS EFISIENSI TEKNIS PRODUKSI USAHATANI CABAI MERAH BESAR DAN PERILAKU PETANI DALAM MENGHADAPI RISIKO
ANALISIS EFISIENSI TEKNIS PRODUKSI USAHATANI CABAI MERAH BESAR DAN PERILAKU PETANI DALAM MENGHADAPI RISIKO Saptana 1, Arf Daryanto 2, Hny K. Daryanto 2, dan Kuntjoro 2 1 Pusat Analss Sosal Ekonom dan Kbjakan
BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas
9 BAB.3 METODOLOGI PENELITIN 3. Lokas dan Waktu Peneltan Peneltan n d laksanakan d Sekolah Menengah Pertama (SMP) N. Gorontalo pada kelas VIII. Waktu peneltan dlaksanakan pada semester ganjl, tahun ajaran
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
ANALISIS PEUBAH RESPONS KONTINU NON NEGATIF DENGAN REGRESI GAMMA DAN REGRESI INVERSE GAUSSIAN 1
ANALISIS PEUBAH RESPONS KONTINU NON NEGATIF DENGAN REGRESI GAMMA DAN REGRESI INVERSE GAUSSIAN Ksmantn Jurusan Penddkan Matematka, FMIPA Unverstas Neger Yogyakarta Emal : [email protected] Abstrak Peubah respons
Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012
Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar
BAB III MODEL LINEAR TERGENERALISASI. Perkembangan pemodelan stokastik, terutama model linier, dapat dikatakan
BAB III MODEL LINEAR TERGENERALISASI 3.1 Moel Lnear Perkembangan pemoelan stokastk, terutama moel lner, apat katakan mula paa aba ke 19 yang asar oleh teor matematka yang elaskan antaranya oleh Gauss,
Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN
BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan
ANALISIS REGRESI. Catatan Freddy
ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :
PowerPoint Slides by Yana Rohmana Education University of Indonesian
SIFAT-SIFAT ANALISIS REGRESI PowerPont Sldes by Yana Rohmana Educaton Unversty of Indonesan 2007 Laboratorum Ekonom & Koperas Publshng Jl. Dr. Setabud 229 Bandung, Telp. 022 2013163-2523 Hal-hal yang akan
STK511 Analisis Statistika. Pertemuan 8 ANOVA (2)
STK5 Analss Statstka Pertemuan 8 ANOVA () 8. ANOVA () Dagnoss Model Hpotess Klasfkas satu arah : Y atau Y j j j j Klasfkas dua arah : Yj j j??? Pengaruh perlakuan: H 0 : = 0 H : palng sedkt ada satu dmana
BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap
5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap
UJI KESELARASAN FUNGSI (GOODNESS-OF-FIT TEST)
UJI CHI KUADRAT PENDAHULUAN Distribusi chi kuadrat mrupakan mtod pngujian hipotsa trhadap prbdaan lbih dari proporsi. Contoh: manajr pmasaran suatu prusahaan ingin mngtahui apakah prbdaan proporsi pnjualan
Oleh : Bustanul Arifin K BAB IV HASIL PENELITIAN. Nama N Mean Std. Deviation Minimum Maximum X ,97 3,
Kpdulian trhadap sanitasi lingkungan diprdiksi dari tingkat pndidikan ibu dan pndapatan kluarga pada kluarga sjahtra I klurahan Krtn kcamatan Lawyan kota Surakarta Olh : Bustanul Arifin K.39817 BAB IV
PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR
PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR Resa Septan Pontoh 1), Neneng Sunengsh 2) 1),2) Departemen Statstka Unverstas Padjadjaran 1) [email protected],
Transformasi Peubah Acak (Lanjutan)
Dpt. Statistika IPB, 0 Transormasi Pubah Acak Lanjutan B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod ungsi sbaran. Misalkan diktahui kp bagi p.a. adalah x. Jika didinisikan p.a. lainna
BAB II PENDEKATAN PROBABILITAS DAN MODEL TRAFIK
Dktat Rekayasa Trafk BB II PDKT PROBBILITS D MODL TRFIK 2. Pendahuluan Trafk merupakan perstwa-perstwa kebetulan yang pada dasarnya tdak dketahu kapan datangnya dan berapa lama akan berlangsung. Maka untuk
MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari
MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuh Tugas Matakulah Multvarat yang dbmbng oleh Ibu Tranngsh En Lestar oleh Sherly Dw Kharsma 34839 Slva Indrayan 34844 Vvn Octana 34633 UNIVERSITAS
RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007
RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan
PENENTUAN NILAI UMUM ASURANSI MENGGUNAKAN TEORI KONTROL OPTIMUM RAFIDHA
PENENTUAN NILAI UMUM ASURANSI MENGGUNAKAN TEORI KONTROL OPTIMUM RAFIDHA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 9 ABSTRACT RAFIDHA. Prcng of Gnral
A v V i. Gambar 5.1. Rangkaian ekuivalen Thevenin dari suatu penguat tegangan
Mata kula LKTONKA ANALOG. LOLOH ALK Pngglngan pnguat ( amplr) dapat pula dglngkan dalam 4 macam glngan umum, yatu pnguat tgangan, pnguat aru, pnguat tranantaran dan pnguat trantaanan. Pngglngan n brdaarkan
ANALISIS STABILITAS DAN ADAPTABILITAS GALUR PADI DATARAN TINGGI DI LIMA LINGKUNGAN
65 ANALISIS STABILITAS DAN ADAPTABILITAS GALUR PADI DATARAN TINGGI DI LIMA LINGKUNGAN (Stability and Adaptability Analysis of Highland Ric Gnotyps across Fiv Diffrnt Environmnts) Shrly Rahayu 1,2, Dsta
ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK
REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres
Muatan Bergerak. Muatan hidup yang bergerak dari satu ujung ke ujung lain pada suatu
Muatan rgrak Muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksik disbut bb bban brgrak Sbuah kndaraan mlalui suatu jmbatan, maka akan timbul prubahanbh nilai i raksi kimaupun gaya
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan quas expermental dengan one group pretest posttest desgn. Peneltan n tdak menggunakan kelas pembandng namun sudah menggunakan
Configural Frequency Analysis untuk Melihat Penyimpangan pada Model Log Linear
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Confgural Frequency Analyss untuk Melhat Penympangan pada Model Log Lnear Resa Septan Pontoh 1, Def Y. Fadah 2 1,2 Departemen Statstka FMIPA
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA 2010 ANALISIS DISKRIMINAN DISKRIT UNTUK MENGELOMPOKKAN KOMPONEN
AALISIS DISKRIMIA DISKRIT UTUK MEGELOMPOKKA KOMPOE Bernk Maskun Jurusan Statstka FMIPA UPAD [email protected] Abstrak Untuk mengelompokkan hasl pengukuran yang dukur dengan p buah varabel dmana penlaan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Data Katgor Data statst yang dprhatan dalam stap analss atau pnltan pada umumnya mmuat banya varabl numr maupun varabl atgor Shngga analss data uga dapat dlauan dngan mmaa dua macam
