Transformasi Peubah Acak (Lanjutan)
|
|
|
- Liani Iskandar
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Dpt. Statistika IPB, 0 Transormasi Pubah Acak Lanjutan B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod ungsi sbaran. Misalkan diktahui kp bagi p.a. adalah x. Jika didinisikan p.a. lainna aitu = hx, maka ingin diktahui kp bagi aitu. Prhatikan bahwa dalam transormasi p.a. ungsina, aitu hx, harus ungsi satu-satu on-to-on. = h = h - F = P = Ph = P h - = F h - F = F h - slanjutna tntukan turunan dari F di atas untuk mndapatkan : = df df [ h ] df [ h ] d[ h ] d d d[ h ] d karna = h -, maka prsamaan di atas mnjadi: = df [ h ] d[ h ] df x dx x d[ h ] d dx d dx d atau = dh h d
2 Dpt. Statistika IPB, 0 Torma: Misalkan adalah p.a. dngan kp x pada gugus S R, dan didinisikan ungsi h : S T sbagai tranormasi satu-satu on-to-on, shingga invrsna x = h -, T. Anggap bahwa untuk T, turunan dh - d ada, kontinu dan tidak sama dngan 0. Maka ungsi kpkatan pluang bagi p.a. ang didinisikan = h adalah: = dh h d, T Catatan : dh d disbut sbagai Jacobi atau disingkat J. Kasus Misalkan p.a. kontinu mmpunai kp sbagai brikut: x = x, 0 < x < Jika didinisikan p.a. = 8 3, ingin diktahui kp bagi aitu. Prhatikan bahwa dalam transormasi p.a. ungsina harus ungsi satu-satu on-to-on. Pada transormasi di atas, = 3, mrupakan ungsi satu-satu. = h = 8 3 = h - = 8 dan karna 0 < x < maka 0 < < = dh d = d d 6 3 3
3 Dpt. Statistika IPB, 0 = h h 3 dh d Shingga kp bagi p.a. adalah, 0 < < Coba ck bahwa trsbut mrupakan kp! Kasus Misalkan p.a. kontinu U,. Jika kmudian didinisikan p.a. =, akan ditntukan kp bagi aitu. Karna U, maka < x < dan < < = h = = h - = ln dh d = d ln d = dh h d Shingga kp bagi p.a. adalah, < < Coba ck bahwa trsbut mrupakan kp!
4 Dpt. Statistika IPB, 0 Kasus 3 Misalkan p.a. kontinu U0,. Jika kmudian didinisikan p.a. = -ln, akan ditntukan kp bagi aitu. Karna U0, maka 0 < x < dan > 0 = h = -ln = h - = - dh d = d d = h dh d. Shingga kp bagi p.a. adalah, > 0 Coba ck bahwa trsbut mrupakan kp. Catatan, kp ini mrupakan sbaran dngan drajat bbas. Kasus 4 Misalkan p.a. kontinu mmpunai kp sbagai brikut: x = x x, - < x < Jika didinisikan p.a. = adalah Normal0,., tunjukkan bahwa kp bagi
5 Dpt. Statistika IPB, 0 Kasus 5 Misalkan p.a. kontinu N,. Jika kmudian didinisikan p.a. = a - b, akan ditntukan kp bagi aitu. Karna N, maka - < x < dan - < < = h = a - b = h - = b a dh d = d b d a a a = b dh a h xp. d a xp a a b a Shingga kp bagi p.a. = a - b adalah Normala - b, a Kasus 6 Bukan Fungsi Satu-Satu Misalkan p.a. kontinu mnbar Normal0, aitu x = x, - < x < Jika didinisikan p.a. =, ingin diktahui kp bagi aitu. Prhatikan bahwa dalam transormasi di atas, =, bukan ungsi satu-satu on-to-on. Shingga transormasi trsbut harus dipcah dulu agar mnjadi ungsi satu-satu, aitu:
6 Dpt. Statistika IPB, 0 Untuk - < x 0 = h = = h - = dan karna - < x 0 maka 0 <. d dh = d d. d dh h Untuk 0 < x < = h = = h - = dan karna 0 < x < maka 0 < <. d dh = d d. d dh h Shingga kp bagi p.a. adalah 0, Prhatikan bahwa kp p.a. trsbut mrupakan sbaran Khai- Kuadrat dngan drajat bbas aitu.
7 Dpt. Statistika IPB, 0 Jadi jika N0, maka =. Catatan : sbaran Khai-Kuadrat dngan drajat bbas r dapat dinatakan sbagai brikut: r, 0 r r untuk r = maka r =, shingga., 0 Kasus 7 Pubah Acak Diskrt Untuk transormasi pubah acak diskrt dilakukan sprti pada pubah acak kontinu di atas, hana saja untuk pubah acak diskrt Jacobi slalu sama dngan satu, aitu = h, T Misalkan p.a. diskrt mmpunai sbaran Poisson, aitu: x x =, x = 0,,,... x! Jika didinisikan p.a. = 5, akan ditntukan kp bagi aitu. = h = 5 = h - = 5 karna mrupakan p.a. diskrt maka Jacobian =, shingga = h = 5 = 5, = 0, 5, 0,... 5!
8 Dpt. Statistika IPB, 0
Transformasi Satu Peubah Acak (Lanjutan) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2016
Transformasi Satu Pubah Acak (Lanjutan) Dr. Kusman Sadik, M.Si Dpartmn Statistika IPB, 06 Transformasi Pubah Acak (Lanjutan) B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod fungsi sbaran.
Transformasi Satu Peubah Acak (Bagian II) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2017
Transformasi Satu Pubah Acak Bagian II) Dr. Kusman Sadik, M.Si Dpartmn Statistika IPB, 07 Transformasi Pubah Acak Lanjutan) B. Mtod Pnggantian Pubah Mtod ini mrupakan pngmbangan dari mtod fungsi sbaran.
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde I
Univrsitas Indonusa Esa Unggul Fakultas Ilmu Komputr Tknik Informatika Prsamaan Difrnsial Ord I Dfinisi Prsamaan Difrnsial Prsamaan difrnsial adalah suatu prsamaan ang mmuat satu atau lbih turunan fungsi
Ringkasan Materi Kuliah METODE-METODE DASAR PERSAMAAN DIFERENSIAL ORDE SATU
Ringkasan atri Kuliah ETODE-ETODE DASAR PERSAAAN DIFERENSIAL ORDE SATU Pndahuluan Prsamaan dirnsial adalah prsamaan ang mmuat turunan satu atau bbrapa) ungsi ang takdiktahui skipun prsamaan sprti itu harusna
Transformasi Dua atau Lebih Peubah Acak. Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 2016
Transormasi Dua atau Lebih Peubah Acak Dr. Kusman Sadik M.Si Departemen Statistika IPB 06 Transormasi Dua atau Lebih Peubah Acak Misalkan diketahui kp bersama bagi p.a. X dan X adalah X X x ). Jika kemudian
8. FUNGSI TRANSENDEN MA1114 KALKULU I 1
8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Fungsi Invrs Misalkan : D R a y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi
8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik
8. Fungsi Logaritma Natural, Eksponnsial, Hiprbolik 8.. Fungsi Logarithma Natural. Sudaratno Sudirham Dfinisi. Logaritma natural adalah logaritma dngan mnggunakan basis bilangan. Bilangan ini, sprti halna
Bab 6 Sumber dan Perambatan Galat
Mtod Pnlitian Suradi Sirgar Bab 6 Sumbr dan Prambatan Galat 6. Sumbr galat. Data masukan, misal hasil pngukuran (galat bawaan). Slama komputasi (galat pross), galat ang timbul akibat komputasi 3. Galat
8. FUNGSI TRANSENDEN MA1114 KALKULU I 1
8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Invrs Fungsi Misalkan : D R! y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi
BAB I METODE NUMERIK SECARA UMUM
BAB I METODE NUMERIK SECARA UMUM Aplikasi modl matmatika banyak muncul dalam brbagai disiplin ilmu pngtahuan, sprti isika, kimia, konomi, prsoalan rkayasa (tknik msin, sipil, lktro). Modl matmatika yang
II. LANDASAN TEORI. digunakan sebagai landasan teori pada penelitian ini. Teori dasar mengenai graf
II. LANDASAN TEORI 2.1 Konsp Dasar Graf Pada bagian ini akan dibrikan konsp dasar graf dan dimnsi partisi graf yang digunakan sbagai landasan tori pada pnlitian ini. Tori dasar mngnai graf yang akan digunakan
Materike April 2014
Matrik-6 Pnggunaan Intgral Tak Tntu 10 April 014 Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna ( difrnsial Contoh ' ' '' ' Prsamaan Difrnsial dan Pnggunaanna
TURUNAN RANGKUMAN MATERI. '( x) lim. '( x) lim lim 0. Turunan fungsi f(x) terhadap x didefinisikan sebagai berikut. f (x+h) f (x) x x + h
TURUNAN RANGKUMAN MATERI Turunan fungsi f() traap ifinisikan sbagai brikut f f ( ) f ( ) '( ) lim 0 f (+) f () + Scara gomtri turunan fungsi i = mrupakan grain/kmiringan kurva fungsi trsbut i =. Torma:
Materi ke - 6. Penggunaan Integral Tak Tentu. 30 Maret 2015
Matri k - 6 Pnggunaan Intgral Tak Tntu 30 Mart 015 Industrial Enginring UNS [email protected] Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna difrnsial Contoh '
Hendra Gunawan. 29 November 2013
MA1101 MATEMATIKA 1A Hndra Gunawan Smstr I, 013/014 9 Novmbr 013 Latihan (Kuliah yang Lalu) Ssorangygtingginya~1,60 m brdiri ditpiatastbing, mlihat lh k laut yang brada ~18,40 m di bawahnya. Pada saatitu
Pada gambar 2 merupakan luasan bidang dua dimensi telah mengalami regangan. Salah satu titik yang menjadi titik acuan adalah titik P.
nurunan Kcpatan Glombang dan Glombang S Glombang sismik mrupakan gtaran yang mrambat pada mdium batuan dan mnmbus lapisan bumi. njalaran mnybabkan dformasi batuan.strss atau tkanan didfinisikan gaya prsatuan
Bab 1 Ruang Vektor. I. 1 Ruang Vektor R n. 1. Ruang berdimensi satu R 1 = R = kumpulan bilangan real Menyatakan suatu garis bilangan;
Bab Ruang Vktor I. Ruang Vktor R n. Ruang brdimnsi satu R = R = kumpulan bilangan ral Mnyatakan suatu garis bilangan; -3 - - 0. Ruang brdimnsi dua R = bidang datar ; Stiap vktor di R dinyatakan sbagai
Aplikasi Integral. Panjang sebuah kurva w(y) sepanjang selang dapat ditemukan menggunakan persamaan
Aplikasi Intgral Intgral dapat diaplikasikan k dalam banyak hal. Dari yang sdrhana, hingga aplikasi prhitungan yang sangat komplks. Brikut mrupakan aplikasi-aplikasi intgral yang tlah diklompokkan dalam
TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER
TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER HannaA Parhusip Cntr of Applid Mathmatics Program Studi Matmatika Industri dan Statistika Fakultas Sains dan Matmatika Univrsitas Kristn Sata
UJI KESELARASAN FUNGSI (GOODNESS-OF-FIT TEST)
UJI CHI KUADRAT PENDAHULUAN Distribusi chi kuadrat mrupakan mtod pngujian hipotsa trhadap prbdaan lbih dari proporsi. Contoh: manajr pmasaran suatu prusahaan ingin mngtahui apakah prbdaan proporsi pnjualan
Oleh : Bustanul Arifin K BAB IV HASIL PENELITIAN. Nama N Mean Std. Deviation Minimum Maximum X ,97 3,
Kpdulian trhadap sanitasi lingkungan diprdiksi dari tingkat pndidikan ibu dan pndapatan kluarga pada kluarga sjahtra I klurahan Krtn kcamatan Lawyan kota Surakarta Olh : Bustanul Arifin K.39817 BAB IV
FUNGSI EKSPONEN, TRIGONOMETRI DAN HYPERBOLIK BAB I FUNGSI EKSPONEN
BAB I FUNGSI EKSPONEN Dfinisi Fungsi ksponn aalah fungsi f yang mnntukan k. Rumusnya ialah f(. Fungsi ksponn ngan pubah bbas + yi ( an y bilangan ral aalah (cos y + i sin y. Dari finisi ini, jika : y 0
BAB VI MODEL ELEKTRON BEBAS ( GAS FERMI )
A VI MODL LKRON AS GAS RMI MARI 6.1. ltron bbas dalam satu dimnsi. 6.1.1.tingat nrgi 6.1..distribusi rmi-dirac 6.1..nrgi rmi 6.. ltron bbas dalam tiga dimnsi. 6..1.nrgi rmi untu tiga dimnsi. 6...cpatan
Muatan Bergerak. Muatan hidup yang bergerak dari satu ujung ke ujung lain pada suatu
Muatan rgrak Muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksik disbut bb bban brgrak Sbuah kndaraan mlalui suatu jmbatan, maka akan timbul prubahanbh nilai i raksi kimaupun gaya
Presentasi 2. Isi: Solusi Persamaan Diferensial pada Saluran Transmisi
Prsntasi Isi: Solusi Prsamaan Difrnsial pada Saluran Transmisi Rprsntasi sinyal dalam bntuk phasor Pmikiran Dasar Sinyal harmonis mudah untuk diturunkan dan diintgralkan Smua sinyal fungsi waktu bisa dirprsntasikan
Pertemuan XIV, XV VII. Garis Pengaruh
ahan jar Statika ulyati, ST., T rtmuan X, X. Garis ngaruh. ndahuluan danya muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksi disbut bban brgrak. isalkan ada sbuah kndaraan mlalui
PENDUGAAN SEBARAN LAMA PERAWATAN NASABAH ASURANSI KESEHATAN (STUDI KASUS: ASURANSI KESEHATAN P.T. ASURANSI JIWA BRINGIN JIWA SEJAHTERA) NOVALIA
PENDUGAAN SEBARAN LAMA PERAWATAN NASABAH ASURANSI KESEHATAN (STUDI KASUS: ASURANSI KESEHATAN P.T. ASURANSI JIWA BRINGIN JIWA SEJAHTERA) NOVALIA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 211 PERNYATAAN
BAB 2 LANDASAN TEORI
6 BAB LANDASAN TEORI Pada bab ini akan diuraikan mngnai tori dan trminologi graph, yaitu bntuk-bntuk khusus suatu graph. Di sini uga akan dilaskan mngnai minimum spanning tr, pmrograman 0-, dan aplikasi
MODUL PERKULIAHAN REKAYASA FONDASI 1. Penurunan Tanah pada Fondasi Dangkal. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh
MODUL PERKULIAHAN REKAYASA FONDASI 1 Pnurunan Tanah pada Fondasi Dangkal Fakultas Program Studi Tatap Muka Kod MK Disusun Olh Tknik Prnanaan Tknik A41117AB dan Dsain Sipil 9 Abstrat Modul ini brisi bbrapa
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 7
Mata Kuliah : Matmatika Diskrit Program Studi : Tknik Informatika Minggu k : 7 MATRIK GRAPH Sbuah graph dapat kita sajikan dalam bntuk matrik, yaitu : a. Matrik titik (Adjacnt Matrix) b. Matrik rusuk (Edg
KARAKTERISASI ELEMEN IDEMPOTEN CENTRAL
Jurnal Barkng Vol 5 No Hal 33 39 (0) KAAKTEISASI ELEMEN IDEMPOTEN CENTAL HENY W M PATTY, ELVINUS ICHAD PESULESSY, UDI WOLTE MATAKUPAN 3,,3 Staf Jurusan Matmatika FMIPA UNPATTI Jl Ir M Putuhna, Kampus Unpatti,
HASIL DAN PEMBAHASAN. Gambar 3 Proses penentuan perilaku api.
6 yang diharapkan. Msin infrnsi disusun brdasarkan stratgi pnalaran yang akan digunakan dalam sistm dan rprsntasi pngtahuan. Msin infrnsi yang digunakan dalam pngmbangan sistm pakar ini adalah FIS. Implmntasi
BAB 3 METODOLOGI PERANCANGAN. 35 orang. Setiap orang diambil sampel sebanyak 15 citra wajah dengan
BAB 3 METODOLOGI PERANCANGAN 3.1 Input Data Citra Wajah Pada pnlitian ini, digunakan sbanyak 525 citra ajah yang trdiri dari 35 orang. Stiap orang diambil sampl sbanyak 15 citra ajah dngan pncahayaan yang
METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yuli Syafti Purnama 1 ABSTRACT
METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yuli Syafti Purnama Mahasiswa Program Studi S Matmatika Fakultas Matmatika dan Ilmu Pngtahuan Alam Univrsitas Riau Kampus
Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh :
Pmbahasan Soal SELEKSI MASUK UNIVERSITAS INDONESIA Disrtai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Olh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pmbahasan Soal SIMAK UI 2011 Matmatika
Tekanan pra-konsolidasi = 160 kn/m 2
Soal: Dibrikan suatu lapisan tana sprti trliat pada Gambar 1a. Tbal lapisan pasir 4m dan tbal lapisan lmpung 8m. Muka air tana (MAT) trdapat pada kdalaman 3m dari prmukaan tana. Brat isi pasir di atas
Tinjauan Termodinamika Sistem Partikel Tunggal Yang Terjebak Dalam Sebuah Sumur Potensial. Oleh. Saeful Karim
Tinjauan Trmodinamika Sistm artikl Tunggal Yang Trjbak Dalam Sbua Sumur otnsial Ol Saful Karim Jurusan ndidikan Fisika Fakultas ndidikan Matmatika dan Ilmu ngtauan Alam Univrsitas ndidikan Indonsia 00
PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1. Kismiantini Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta
PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1 Ksmantn Jurusan Pnddkan Matmatka FMIPA Unvrstas Ngr Yogakarta Abstrak Pnduga rsko rlat mrupakan statstk ang dgunakan untuk mngtahu sbaran suatu pnakt.
Labtek VIII Jl Ganesha 10 Bandung. Abstrak
PENGGUNAAN DISTRIBUSI NORMAL DALAM MEMODELKAN SEBARAN PERSEPSI BIAYA PERJALANAN DAN TRANSFORMASI BOX-MULLER PADA PENGAMBILAN SAMPEL ACAK MODEL PEMILIHAN RUTE DAN PEMBEBANAN STOKASTIK R. Didin Kusdian Mahasiswa
Deret Fourier, Transformasi Fourier dan DFT
Drt Fourir, Transformasi Fourir dan DFT A. Drt Fourir Drt fourir adalah drt yang digunakan dalam bidang rkayasa. Drt ini prtama kali ditmukan olh sorang ilmuan prancis Jan-Baptist Josph Fourir (1768-18).
BAB II PERSAMAAN DIFFERENSIAL ORDO SATU
BAB II PERSAAA DIERESIAL ORDO SATU Tjan Pmblajaran Bab. ini, mrpakan lanjtan dari pmbahasan PD bab, ait jnis-jnis prsamaan diffrnsial ordo sat dan ara-ara pnlsaianna. Diantarana adalah Prsamaan Trpisah,
BAB 2 LANDASAN TEORI
6 A ANDAAN TEORI Pngrtian MM Multi vl Markting MM adalah salah satu contoh unit usaha yang brpola bisnis unik, yang sdang brkmbang di dalam bidang pnjualan barangbarang kbutuhan manusia, mulai brupaya
Penentuan Lot Size Pemesanan Bahan Baku Dengan Batasan Kapasitas Gudang
Pnntuan Lot Siz Pmsanan Bahan Baku Dngan Batasan Kapasitas Gudang Dana Marstiya Utama 1 Abstract. This papr xplains th problm o dtrmining th lot siz o ordring raw matrials with warhous capacity limitation
8. FUNGSI TRANSENDEN
8. FUNGSI TRANSENDEN 8. Fngsi Invrs Misalkan : D R dngan Dinisi 8. Fngsi = disbt sat-sat jika = v maka = v ata jika v maka v v ngsi = sat-sat ngsi =- sat-sat ngsi tidak sat-sat INF8 Kalkls Dasar Scara
Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern
Fisika Dasar II Listrik, Magnt, Glombang dan Fisika Modrn Pokok Bahasan Mdan Listrik dan Dipol Listrik Abdul Waris Rizal Kurniadi Novitrian Sparisoma Viridi Mdan Listrik Artinya daripada ini... Mrka lbih
Analisis Rangkaian Listrik
Sudaryatno Sudirham Analisis Rangkaian Listrik Mnggunakan Transformasi Fourir - Sudaryatno Sudirham, Analisis Rangkaian Listrik (4) BAB Analisis Rangkaian Mnggunakan Transformasi Fourir Dngan pmbahasan
Energi total sistem A dan tandon A`
Ensambl dan Sistm Intaktif Ensambl dan Sistm Intaktif Tpik-tpik ang akan dibahas: Ensambl Mikkannik (tanpa intaksi, bab IV Ensambl Kannik (intaksi tmal Ensambl Kannik Bsa (intaksi difusif Ensambl Kannik
SOLUSI PERSAMAAN KESEIMBANGAN MASSA REAKTOR MENGGUNAKAN METODE PEMISAHAN VARIABEL
SOLSI PERSAMAAN KESEIMBANGAN MASSA REAKTOR MENGGNAKAN METODE PEMISAHAN VARIABEL 1Moh. Syaifu Arif, 2 Mohammad Jamhuri 1 Jurusan Matmatika, nivrsitas Isam Ngri Mauana Maik Ibrahim Maang 2 jurusan Matmatika,
FUNGSI DOMINASI ROMAWI PADA LINE GRAPH
Bultin Ilmiah Mat. Stat. dan Trapannya (Bimastr) Volum 04, No. 2 (2015), hal 119 126. FUNGSI DOMINASI ROMAWI PADA LINE GRAPH Ysi Januarti, Mariatul Kiftiah, Nilamsari Kusumastuti INTISARI Himpunan D disbut
Tinjauan Termodinamika Pada Sistem Partikel Tunggal Yang Terjebak Dalam Sebuah Sumur Potensial
injauan rmodinamika ada Sistm artikl unggal Yang rjbak Dalam Sbua Sumur otnsial Dngan mngmbangkan ubungan trmodinamik yang sdrana untuk pngumpulan partikl yang tunggal yang ditmpatkan pada dara potnsial.
Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma
Modul Intgral Fungsi Eksponn, Fungsi Trigonomtri, Fungsi Logaritma Dr. Subanar D PENDAHULUAN alam mata kuliah Kalkulus I Anda tlah mngnal bahwa intgrasi adalah pross balikan dari difrnsiasi. Jadi untuk
SIMULASI NUMERIK PENGARUH PROTUBERANCE PADA KOEFISIEN AERODINAMIKA AIRFOIL NACA PADA KECEPATAN SUBSONIK. Abstrak
adi Suradi K. dkk, (0) MTrik Polban, Vol., No., -44 ISSN : 4-04 SIMULSI NUMEIK PENGUH POTUBENCE PD KOEFISIEN EODINMIK IFOIL NC 34 PD KECEPTN SUBSONIK adi Suradi Kartangara +, Tria Ma riz ri +, Sugianto
IDE - IDE DASAR MEKANIKA KUANTUM
IDE - IDE DASAR MEKANIKA KUANTUM A. Radiasi Bnda Hitam 1. Hasil-Hasil Empiris Gambar 1. Grafik fungsi radiasi spktral bnda hitam smpurna a. Hukum Stfan Hukum Stfan dapat dituliskan sbagai total = f df
BAB II DISTRIBUSI PEUBAH ACAK
H. Maman Suherman,Drs.,M.Si BAB II DISTIBUSI PEUBAH ACAK. Peubah Acak Variable andom Pada bab anda telah mengenal ruang peluang S, Ω, P dimana S adalah ruang sampel dari eksperimen acak, Ω adalah lapangan
IV. Konsolidasi. Pertemuan VII
Prtmuan VII IV. Konsolidasi IV. Pndahuluan. Konsolidasi adalah pross brkurangnya volum atau brkurangnya rongga pori dari tanah jnuh brpmabilitas rndah akibat pmbbanan. Pross ini trjadi jika tanah jnuh
Online Jurnal of Natural Science, Vol.3(1): ISSN: March 2014
Onlin Jurnal of Natural Scinc, ol.3(1): 65-74 ISSN: 338-0950 March 014 PELABELAN TOTAL SISI AJAIB SUPER (TSAS) PADA GABUNGAN GRAF ULAT BULU DAN BIPARTITE LENGKAP I W. Sudarsana 1, Fitria and S. Musdalifah
BAB V BEBERAPA MODEL DISTRIBUSI PELUANG PEUBAH ACAK KONTINU
H. Maman Suhrman,Drs.,M.Si BAB V BEBERAPA MODEL DISTRIBUSI PELUANG PEUBAH ACAK KONTINU Pada bab sblumnya, khususnya pada BAB II kita tlah mngnal distribusi pluang scara umum baik untuk pubah acak diskrit
PELABELAN TOTAL SISI ANTI AJAIB SUPER (PTSAAS) PADA GABUNGAN GRAF BINTANG GANDA DAN LINTASAN
JIMT ol. 9 No. 1 Juni 01 (Hal. 16 8) Jurnal Ilmiah Matmatika dan Trapan ISSN : 450 766X PELABELAN TOTAL SISI ANTI AJAIB SUPER (PTSAAS) PADA GABUNGAN GRAF BINTANG GANDA DAN LINTASAN Nurainun 1, S. Musdalifah,
ISOMORFISMA PADA GRAF P 4
ISOMORFISMA PADA GRAF P Eka Adhistiasari, I Ktut Budayasa 2 Jurusan Matmatika, Fakultas Martmatika dan Ilmu Pngtahuan Alam, UNESA Kampus Ktintang 6023,Surabaya Email : tias-adhis@yahoocoid, ktutbudayasa@yahoocom
METODE ITERASI TANPA TURUNAN BERDASARKAN EKSPANSI TAYLOR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI TANPA TURUNAN BERDASARKAN EKSPANSI TAYLOR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR E. Yuliani, M. Imran, S. Putra Mahasiswa Program Studi S Matmatika Laboratorium Matmatika Trapan, Jurusan
ANALISIS LOG-LOGISTIK UNTUK MENGGAMBARKAN HUBUNGAN DOSIS-RESPON HERBISIDA PADA TIGA JENIS GULMA
ANALISIS LOG-LOGISTIK UNTUK MENGGAMBARKAN HUBUNGAN DOSIS-RESPON HERBISIDA PADA TIGA JENIS GULMA Olh : Yanti Muliyaningsih G40026 PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
PENENTUAN NILAI e/m ELEKTRON
Pnntuan Nilai E/m Elktron 013 PENENTUAN NILAI /m ELEKTRON Intan Masruroh S, Anita Susanti, Rza Ruzuqi, Zaky Alam Laboratorium Fisika Radiasi, Dpartmn Fisika Fakultas Sains Dan Tknologi, Univrsitas Airlangga
BAB 2. TURUNAN PARSIAL
BAB TURUNAN PARSIAL PENDAHULUAN Pada bagian ini akan dilajari rlasan kons trnan ngsi sat bah k trnan ngsi da bah ata lbih Stlah mmlajari bab ini anda akan daat: - Mnntkan trnan arsial ngsi da bah ata lbih
Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)
DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/
HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS
18Novmbr 17 Tma 7: Ilmu-Ilmu Murni (Matmatika, Fisika, Kimia dan Biologi) HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS Olh Agung Prabowo
BAB 2 DASAR TEORI 2.1 TEORI GELOMBANG LINIER. Bab 2 Teori Dasar
BAB 2 DASAR TEORI Glombang air mrupakan manifstasi dari suatu rambatan nrgi yang mmiliki frkunsi dan priod. Glombang air yang trjadi di laut dapat disbabkan olh angin, grakan kapal, gmpa atau gaya gravitasi
BAB 3 PERSAMAAN DIFFERENSIAL UNTUK MENENTUKAN HARGA SUATU ASET TURUNAN
BAB 3 PERSAMAAN DIFFERENSIAL UNTUK MENENTUKAN HARGA SUATU ASET TURUNAN Pmbahasan harga opsi idak dapa dilpaskan dari pmbahasan nang skurias lain yang brhubungan dngan haga opsi. Shingga prlu dibahas masalah
Reduksi data gravitasi
Modul 5 Rduksi data gravitasi Rduksi data gravitasi trdiri dari:. Rduksi g toritis. Rduksi fr air 3. Rduksi Bougur 4. Rduksi mdan/trrain. Rduksi g toritis Pnlaahan tntang konsp rduksi data gravitasi lbih
UJI PERFORMANCE MEJA GETAR SATU DERAJAT KEBEBASAN DENGAN METODE STFT
UJI PERFORMANCE MEJA GETAR SATU DERAJAT KEBEBASAN DENGAN METODE STFT Jhon Malta (1) (1) Laboratorium Dinamika Struktur Jurusan Tknik Msin Fakultas Tknik Univrsitas Andalas, Padang. Email: [email protected]
APLIKASI METODE STATED PREFERENCE PADA PEMILIHAN MODA ANGKUTAN UMUM PENUMPANG (RUTE MAKASSAR MAJENE)
APLIKASI METODE STATED PREFERENCE PADA PEMILIHAN MODA ANGKUTAN UMUM PENUMPANG (RUTE MAKASSAR MAJENE) Abdul Gaus Program Studi Tknik Siil Fakultas Tknik Univrsitas Khairun Trnat Tl/Fax (091) 38049 Irnawaty
Hukum Gauss. f = fluks listrik = jumlah garis gaya yang menembus luas A E r = medan listrik = elemen luas q i
Hukum Gauss Pv. Jumlah gais gaya yang klua dai pmukaan ttutup S bbanding luus dngan jumlah muatan yang dilingkupinya. dimana : f = E d A = q i f = fluks listik = jumlah gais gaya yang mnmbus luas A E =
BAB VII SISTEM DAN JARINGAN PIPA
BAB VII SISTEM AN JARINGAN PIPA Tujuan Intruksional Umum (TIU) Maasiswa diarapkan dapat mrncanakan suatu bangunan air brdasarkan konsp mkanika luida, tori idrostatika dan idrodinamika. Tujuan Intruksional
model pengukuran yang menunjukkan ukur Pengukuran dalam B. Model Mode sama indikator dan 1 Pag
Modl Modl Pngukuran dalam Pmodlan Prsamaan Struktural Wahyu Widhiarso Fakultas Psikologi UGM Tulisan ini akan mmbahas bbrapa modl dalam SEM yang unik. Dikatakan unik karna jarang dipakai. Tulisan hanya
MODEL PERSEDIAAN DETERMINISTIK DENGAN MEMPERTIMBANGKAN MASA KADALUARSA DAN PENURUNAN HARGA JUAL
ISSN : 407 846 -ISSN : 460 846 MODEL PERSEDIAAN DETERMINISTIK DENGAN MEMPERTIMBANGKAN MASA KADALUARSA DAN PENURUNAN HARGA JUAL Chrish Rikardo *, Taufik Limansyah, Dharma Lsmono Magistr Tknik Industri,
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data penelitian diperoleh dari siswa kelas XII Jurusan Teknik Elektronika
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. DESKRIPSI DATA Data pnlitian diprolh dari siswa klas XII Jurusan Tknik Elktronika Industri SMK Ma arif 1 kbumn. Data variabl pngalaman praktik industri, kmandirian
BAB V DISTRIBUSI PROBABILITAS DISKRIT
BAB V DISTRIBUSI ROBABILITAS DISKRIT 5.. Distribusi Uniform Disrit Bila variabl aca X mmilii nilai,,... dngan probabilitas yang sama, maa distribusi uniform disrit dinyataan sbagai: f (, ) ;,,... paramtr
A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua
PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN
PENENTUAN PELUANG BETAHAN DALAM MODEL ISIKO KLASIK DENGAN MENGGUNAKAN TANSFOMASI LAPLACE AMIUDDIN SEKOLAH PASCASAJANA INSTITUT PETANIAN BOGO BOGO 8 PENYATAAN MENGENAI TESIS DAN SUMBE INFOMASI Dngan ini
OPERASI GABUNGAN, JOIN, KOMPOSISI DAN HASIL KALI KARTESIAN PADA GRAF FUZZY SERTA KOMPLEMENNYA. Tina Anggitta Novia 1 dan Lucia Ratnasari 2
OPERASI ABUNAN JOIN KOMPOSISI DAN HASIL KALI KARTESIAN PADA RAF FUZZY SERTA KOMPLEMENNYA Tina Anggitta Novia Lucia Ratnasari Program Studi Matmatika FMIPA UNDIP Jl Prof Sodarto SH Smarang 5075 Abstract
23. FUNGSI EKSPONENSIAL
BAB III FUNGSI-FUNGSI ELEMENTER Paa bagian ini kita slalu mmprtimbangkan fungsi lmntr yang iplajari alam kalkulus an mnfinisikan hubungannya ngan fungsi ari suatu variabl komplks. Khususnya, kita finisikan
Teori graf. Graf digunakan untuk merepresentasikan objekobjek dan hubungan antara objek-objek tersebut.
06//0 Tori graf Sumiyatun, S.Kom Pndahuluan Graf digunakan untuk mrprsntasikan objkobjk dan hubungan antara objk-objk trsbut. Gambar di bawah ini sbuah graf yang mnyatakan pta jaringan jalan raya yang
1. Proses Normalisasi
BAB IV PEMBAHASAN A. Pr-Procssing Pross pngolahan signal PCG sblum dilakukan kstaksi dan klasifikasi adalah pr-procssing. Signal PCG untuk data training dan data tsting trdapat dalam lampiran 5 (halaman
PERKEMBANGAN TEORI ATOM & PENEMUAN PROTON, NEUTRON, ELEKTRON. Putri Anjarsari, S.Si., M.Pd
PERKEMBANGAN TEORI ATOM & PENEMUAN PROTON, NEUTRON, ELEKTRON Putri Anjarsari, S.Si., M.Pd [email protected] PERKEMBANGAN TEORI ATOM Dmokritus Dalton Thomson Ruthrford Bohr Mkanika glombang Dmokritus
RANCANG BANGUN PATCH RECTANGULAR ANTENNA 2.4 GHz DENGAN METODE PENCATUAN EMC (ELECTROMAGNETICALLY COUPLED)
RANCANG BANGUN PATCH RECTANGULAR ANTENNA 2.4 GHz DENGAN METODE PENCATUAN EMC (ELECTROMAGNETICALLY COUPLED) Winny Friska Uli,Ali Hanafiah Ramb Konsntrasi Tknik Tlkomunikasi, Dpartmn Tknik Elktro Fakultas
BAB I PENDAHULUAN 1.1.Latar Belakang
BAB I PENDAHULUAN 1.1.Latar Blakang Sarana dan prasarana transportasi di suatu ngara mmpunyai pranan yang sangat pnting dalam pngmbangan suatu kawasan trtntu, baik konomi, sosial, budaya dan sbagainya.
BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR
3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik
ANALISIS NOSEL MOTOR ROKET RX LAPAN SETELAH DILAKUKAN PEMOTONGAN PANJANG DAN DIAMETER
Analisis Nosl Motor Rokt RX-1 LAPAN... (Ahmad Jamaludin Fitroh, Sari) ANALISIS NOSEL MOTOR ROKET RX - 1 LAPAN SETELAH DILAKUKAN PEMOTONGAN PANJANG DAN DIAMETER Ahmad Jamaludin Fitroh, Sari Pnliti Pnliti
DISTRIBUSI DUA PEUBAH ACAK
0 DISTRIBUSI DUA PEUBAH ACAK Dala hal ini akan dibahas aca-aca fungsi peluang atau fungsi densitas ang berkaitan dengan dua peubah acak, aitu distribusi gabungan, distribusi arginal, distribusi bersarat,
PELABELAN PRIME CORDIAL UNTUK GRAF BUKU DAN GRAF MATAHARI YANG DIPERUMUM
JIMT Vol. 4 No. Juni 07 (Hal 56-69) ISSN : 450 766X PELABELAN PRIME CORDIAL UNTUK GRAF BUKU DAN GRAF MATAHARI YANG DIPERUMUM S.Pranata, I. W. Sudarsana dan S.Musdalifah 3,,3 Program Studi Matmatika Jurusan
DIANDRA PARAMITA TIMUR
Modl Multinomial Logit Untuk Mnntukan Harga Optimal Pakt Blackbrry Intrnt Srvic (BIS) Tlkomsl dan Indosat (Studi Kasus : Mahasiswa Fakultas Tknik UNS Pngguna Blackbrry) Skripsi DIANDRA PARAMITA TIMUR I0308038
REGRESI LINEAR & KORELASI. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung REGRESI
9/08/0 REGREI LINEAR & KORELAI Elty arvia, T., MT. Fakultas Tknik Jurusan Tknik Industri Univrsitas Kristn Maranatha Bandung REGREI jauh ini,kita hanya mmbuat statistik dngan satu variabl pada waktu trtntu,
Pemodelan Faktor-faktor yang Mempengaruhi Prestasi Mahasiswa Pasca Sarjana ITS dengan Regresi Logistik dan Neural Network
JURNAL SAINS DAN SENI ITS Vol., No., (Spt. 202) ISSN: 230-928X D-36 Pmodlan Faktor-faktor yang Mmpngaruhi Prstasi Mahasiswa Pasca Sarjana ITS dngan Rgrsi Logistik dan Nural Ntwork Wijdani Anindya Hadi
KAJIAN POTENSI PENGGUNA JALAN TOL MALANG KEPANJEN
KAJIAN POTENSI PENGGUNA JALAN TOL MALANG KEPANJEN Ad Yudha Iswara, Fahry Husin, Ludfi Djakfar, Hndi Bowoputro Jurusan Tknik Sipil Fakultas Tknik Univrsitas Brawijaya Jalan MT. Haryono 167 Malang 65145,
BAB IV TURUNAN FUNGSI. Setelah mengikuti pokok bahasan ini mahasiswa diharapkan mampu menentukan turunan fungsi yang diberikan.
BAB IV TURUNAN FUNGSI Sla kia mmbaas i an kkoninuan fungsi paa bab sblumna, kia akan mmbaas nang urunan ang konspna ikmbangkan ari konsp i Pmbaasan urunan ibagi mnjai ua bagian, bagian prama mmbaas pngrian,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. MICRO BUBBLE GENERATOR Micro Bubbl Gnrator (MBG) mrupakan suatu alat yang difungsikan untuk mnghasilkan glmbung udara dalam ukuran mikro, yaitu glmbung dngan diamtr 00 μm []. Aplikasi
Penggunaan Algoritma RSA dengan Metode The Sieve of Eratosthenes dalam Enkripsi dan Deskripsi Pengiriman
Pnggunaan Algoritma RSA dngan Mtod Th Siv of Eratosthns dalam Enkripsi dan Dskripsi Pngiriman Email Muhammad Safri Lubis Jurusan Tknologi Informasi Fak. Ilmu Komputr dan Tknologi Informasi, USU Mdan, Indonsia
SIMULASI DESAIN COOLING SYSTEM DAN RUNNER SYSTEM UNTUK OPTIMASI KUALITAS PRODUK TOP CASE
SIMULASI DESAIN COOLING SYSTEM DAN RUNNER SYSTEM UNTUK OPTIMASI KUALITAS PRODUK TOP CASE Fabio Dwi Bagus Irawan 1,a, Cahyo Budiyantoro 1,b, Thoharudin 1,c 1 Program Studi Tknik Msin, Fakultas Tknik, Univrsitas
