Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010
|
|
|
- Hartanti Makmur
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
2 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk nilai-nilai x di sekitar x 0 dan x 2 [a, b], f dapat dinyatakan dalam deret Taylor f (x) = f (x 0 ) + f 0 (x 0 ) 1! + f (n) (x 0 ) n! (x x 0 ) + f 00 (x 0 ) 2! (x x 0 ) n + (x x 0 ) 2 + (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
3 Ekspansi Maclaurin Untuk x 0 = 0, maka deretnya dinamakan Deret Maclaurin f (x) = f (0) + f 0 (0) 1! x + f 00 (0) 2! x f (n) (0) x n + n! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
4 Contoh Ekspansikan fungsi f (x) = cos x di sekitar x = π 2! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
5 Contoh f 0 (x) = sin x f 0 π 2 = 1 f 00 (x) = cos x f 00 π 2 = 0 f 000 (x) = sin x f 000 π 2 = 1 f (4) (x) = cos x f (4) π 2 = 0 f (5) (x) = sin x f (5) π 2 = 1 f (6) (x) = cos x f (6) π 2 = 0 cos x = x π 2 + x π 3 2 3! x π ! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
6 Contoh Ekspansi fungsi f (x) = sin x, f (x) = cos x, f (x) = e x, dan f (x) = ln (x + 1) di sekitar 0 sin x = x cos x = 1 x 3 3! + x5 5! x 2 2! + x4 4! x 7 e x = 1 + x + x2 2! + ln (1 + x) = x x x3 3 7! + x 6 6! + x (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
7 Latihan Ekspansikan fungsi-fungsi berikut di sekitar 0 : 1. f (x) = e x2 2. f (x) = p 1 + x 3. f (x) = 1 1 x 0.4 R p 4. Hitunglah 1 + x 4 dx 0 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
8 Galat Eksak Galat Mutlak: ε = jx bxj (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
9 Galat Eksak Galat Mutlak: Galat Relatif: ε = jx bxj ε R = ε x atau ε R = ε x.100% (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
10 Galat Hampiran ε RA = x r+1 x r+1 Proses iterasi dihentikan jika jε RA j < toleransi x r (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
11 Contoh Soal: Hitunglah akar persamaan x 3 + 6x 3 = 0! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
12 Metode Contoh Soal: Hitunglah akar persamaan x 3 + 6x 3 = 0! Jawab: x n+1 = x3 n + 3, x 1 = 0, 5 6 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
13 Sumber Galat 1 Galat Bawaan (inheren): Galat dalam nilai data disebabkan oleh ketidakpastian dalam pengukuran atau oleh perlunya pendekatan untuk menyatakan suatu bilangan yang angkanya tidak secara tepat dapat dinyatakan dengan banyaknya angka yang tersedia (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
14 Metode Sumber Galat 1 Galat Bawaan (inheren): Galat dalam nilai data disebabkan oleh ketidakpastian dalam pengukuran atau oleh perlunya pendekatan untuk menyatakan suatu bilangan yang angkanya tidak secara tepat dapat dinyatakan dengan banyaknya angka yang tersedia 2 Galat Pemotongan: Galat yang timbul karena penggunaan aproksimasi sebagai pengganti metode eksak (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
15 Metode Sumber Galat 1 Galat Bawaan (inheren): Galat dalam nilai data disebabkan oleh ketidakpastian dalam pengukuran atau oleh perlunya pendekatan untuk menyatakan suatu bilangan yang angkanya tidak secara tepat dapat dinyatakan dengan banyaknya angka yang tersedia 2 Galat Pemotongan: Galat yang timbul karena penggunaan aproksimasi sebagai pengganti metode eksak 3 Galat Pembulatan: Galat yang timbul karena keterbatasan (komputer) menyajikakn bilangan real (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
16 memiliki suku tak hingga buah Galat Pemotongan f (x) = f (x 0 ) + (x x 0) f 0 (x 0 ) + (x x 0) 2 f 00 (x 0 ) + 1! 2! + (x x 0) n f (n) (x 0 ) + n! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
17 memiliki suku tak hingga buah Galat Pemotongan f (x) = f (x 0 ) + (x x 0) f 0 (x 0 ) + (x x 0) 2 f 00 (x 0 ) + 1! 2! + (x x 0) n f (n) (x 0 ) + n! Karena keterbatasan alat, maka dilakukan pemotongan f (x) = f (x 0 ) + (x x 0) 1! f 0 (x 0 ) + (x x 0) 2 f 00 (x 0 ) + 2! + (x x 0) n f (n) (x 0 ) + + R n (x) n! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
18 Galat Pemotongan f (x) = P n (x) + R n (x) dengan R n (x) = (x x 0) n+1 f (n+1) (x 0 ), (n + 1)! x 0 < c < x (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
19 Rumus Besarnya Galat Pemotongan pada adalah: jr n (x)j < max f (n+1) (c) (x x 0) n+1 x 0 <c<x (n + 1)! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
20 Contoh Soal: Gunakan deret Taylor orde 4 di sekitar 0 untuk menghitung ln (1, 1) dan berikan taksiran untuk galat pemotongan maksimum yang dibuat! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
21 Contoh Soal: Gunakan deret Taylor orde 4 di sekitar 0 untuk menghitung ln (1, 1) dan berikan taksiran untuk galat pemotongan maksimum yang dibuat! Jawab: ln (1 + x) = x x x3 x R 4 (x) ln (1.1) = R 4 (x) = R 4 (x) (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
22 Contoh R 4 (1.1) < max 0<c< c 5 (0.1 0) 5. 5! (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret / 16
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
Galat & Analisisnya. FTI-Universitas Yarsi
BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian
Konsep Deret & Jenis-jenis Galat
Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk
Triyana Muliawati, S.Si., M.Si.
SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. [email protected] 1. Pengenalan Metode
Deret Taylor. dengan radius kekonvergenan positif. Maka, dengan menggunakan teorema turunan deret pangkat, (x a) + f 00 (a) 2! (x a) 2 + f 000 (a) 3!
oki neswan (fmipa-itb) Deret Taylor Sebelumnya kita telah melihat bagaimana sebuah deret pangkat membangkitkan sebuah fungsi dengan domain merupakan interval kekonvergenan deret pangat tersebut. Sekarang
Barisan dan Deret Agus Yodi Gunawan
Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk
DeretTaylor dananalisisgalat
DeretTaylor dananalisisgalat Kuliah ke-2 IF4058 Topik Khusus Informatika I Oleh; Rinaldi MunirIF-STEI ITB) 1 DeretTaylor Kakastools) yang sangat penting dalam metode numerik adalah derettaylor. Deret Taylor
BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.
BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!
Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),
BAB I ARTI PENTING ANALISIS NUMERIK
BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1
Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
METODE NUMERIK. MODUL 1 Galat dalam Komputasi Numerik 1. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2008 年 09 月 21 日 ( 日 )
METODE NUMERIK MODUL Galat dalam Komputasi Numerik Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 008 年 09 月 日 ( 日 ) Galat dalam Komputasi Numerik Dalam praktek sehari-hari, misalkan
Pengantar Metode Numerik
Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan
Metode Numerik Analisa Galat & Deret Taylor. Teknik Informatika-Unitomo Anik Vega Vitianingsih
Metode Numerik Analisa Galat & Deret Taylor Teknik Inormatika-Unitomo Anik Vega Vitianingsih TEORI KESALAHAN (GALAT) -Penyelesaian numerik dari suatu persamaan matematik hanya memberikan nilai perkiraan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Ujian Tengah Semester
Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)
BAB I METODE NUMERIK SECARA UMUM. dengan rumus rumus aljabar yang sudah baku atau lazim.
BAB I METODE NUMERIK SECARA UMUM 1.1 Pengertian Metode Numerik Metode numerik merupakan teknik untuk menyelesaikan masalah matematika dengan pengoperasian aritmatika (hitungan), metode penyelesaian model
BANK SOAL METODE KOMPUTASI
BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....
Pembahasan Matematika IPA SIMAK UI 2009
Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa
CNH2B4 / KOMPUTASI NUMERIK
CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:
INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use
INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua
LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U
Ilustrasi Persoalan Matematika
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti
Bab 2 Deret Taylor dan Analisis Galat
Bab Deret Taylor dan Analisis Galat Matematik selalu memperlihatkan rasa ingin tahu untuk dapat diterapkan di alam, dan ini dapat mengungkapkan kaitan yang dalam antara pikiran kita dan alam. Kita membicarakan
Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1
Kunci Jawaban Quis (Bab,2 dan 3) tipe. Tentukan representasi deret Taylor dari f(x) = ln( + x) di sekitar a =. Tuliskan sampai turunan ke 5. Kemudian estimasilah ln(.2) dengan menggunakan deret Taylor
Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR
Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma
Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi
p2(x)
BAB 1 Konsep Dasar 1.1 Denisi dan Teorema Dalam Kalkulus Pengembangan metoda numerik tidak terlepas dari pengembangan beberapa denisi dan teorema dalam mata kuliah kalkulus yang berkenaan dengan fungsi
METODE NUMERIK 2- PENDEKATAN DAN KESALAHAN. Buku : Metode Numerik untuk Teknik Penulis : Steven C Chapra & Raymond P.Canale
METODE NUMERIK 2- PENDEKATAN DAN KESALAHAN Buku : Metode Numerik untuk Teknik Penulis : Steven C Chapra & Raymond P.Canale Pengantar Pendekatan dan Kesalahan Angka Signifikan (Penting) Akurasi dan Presisi
PENDAHULUAN METODE NUMERIK
PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum
Metode Numerik: 3 SKS
Metode Numerik: 3 SKS Materi: 1. Galat 2. Penyelesaian SPL secara Numerik 3. Penyelesaian persamaan nonlinier secara numerik 4. Interpolasi 5. Integrasi Numerik 6. Turunan fungsi secara Numerik 7. Penyelesaian
Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Kajian Pokok Metode Numerik Tujuan: Menyelesaikan suatu persamaan menggunakan model matematika. Pemodelan penyelesaian matematika
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH
BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan
BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi
II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah
II. LANDASAN TEORI Peubah acak X(s) merupakan sebuah fungsi X yang menetapkan setiap anggota sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah peubah acak diskrit, yaitu banyaknya
Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin
Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,
BAB 1 PENDAHULUAN. Metode Numerik
Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah
METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika
BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan
BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi
Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin
Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki
Definisi Metode Numerik
Definisi Metode Numerik Seringkali kita menjumpai suatu model matematis yang berbentuk persamaan, baik itu linier ataupun non-linier, sistem persamaan linier ataupun sistem persamaan non-linier, differensial,
SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP
METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis
Akar-Akar Persamaan. Definisi akar :
Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1
MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI
MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI
TRY OUT MATEMATIKA PAKET 3B TAHUN 2010
. Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh
08/02/2017 Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : KMM 090 Bobot SKS : 2 (dua) Semester : Ganjil Hari Pertemuan : 1 (pertama) Tempat Pertemuan : Ruang kuliah Koordinator MK : Khairul Umam,
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret
Modul KALKULUS MULTIVARIABEL II
Modul KALKULUS MULTIVARIABEL II Oleh Ayundyah Kesumawati, S.Si., M.Si. (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 26 Daftar Isi Daftar Isi iv Daftar
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT
METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam
Pembahasan Matematika IPA SNMPTN 2012 Kode 132
Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,
MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.
KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI
BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK
BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas
METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR
METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Disusun Oleh: Juliani
5.1 Fungsi periodik, fungsi genap, fungsi ganjil
Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk
Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga
Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang
Minggu 11. MA2151 Simulasi dan Komputasi Matematika
Minggu 11 MA2151 Simulasi dan Komputasi Matematika Model Berdasarkan Data Model Berdasarkan Data Kadangkala kita dituntut untuk membangun suatu model berdasarkan data (yang terbatas). Untuk melakukan ini,
UM UGM 2017 Matematika Dasar
UM UGM 07 Matematika Dasar Soal UTUL UGM - Matematika Dasar 07 (Kode Soal 84) Halaman 0. Tujuh bilangan membentuk barisan aritmetika. Jika jumlah tiga bilangan pertama sama dengan 33 dan jumlah tiga bilangan
SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA
SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai
Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14
Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi
MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG
MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang
DIKTAT PRAKTIKUM METODE NUMERIK
DIKTAT PRAKTIKUM METODE NUMERIK LABORATORIUM KOMPUTER PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2014 KATA PENGANTAR Diktat ini disusun untuk pedoman dalam
BAB Solusi Persamaan Fungsi Polinomial
BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial. Norm Denisi.. (Norm vektor) Norm vektor adalah pemetaan dari suatu fungsi terhadap setiap x IR N yang
Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB
Kalkulus Variasi Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Toni Bakhtiar Departemen Matematika IPB Februari 2014 [email protected] (IPB) MAT332 Kontrol Optimum
PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI
PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik
METODE NUMERIK. ROBIA ASTUTI, M.Pd. STKIP Muhammadiyah Pringsewu Lampung
METODE NUMERIK ROBIA ASTUTI, M.Pd. STKIP Muhammadiyah Pringsewu Lampung BAB I METODE NUMERIK SECARA UMUM Metode numerik : Teknik yang di gunakan untuk memformulasikan persoalan matematika sehingga dapat
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1.1 Latar Belakang BAB 1 PENDAHULUAN Persamaan diferensial adalah suatu persamaan yang mengandung derivatif dari variabel terikat terhadap satu atau lebih variabel bebas. Persamaan diferensial sendiri
Matematika Ebtanas IPS Tahun 1997
Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =
Pengantar Metode Perturbasi Bab 1. Pendahuluan
Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait
II. TINJAUAN PUSTAKA
II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan
Soal Latihan Matematika
Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi
RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER
RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER Mata Kuliah: Metode Numerik Semester : 7 (tujuh); Kode : KMM 090; SKS : 2 (dua) Program Studi : Pendidikan Matematika Dosen : Khairul Umam, S.Si,
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika
a b c d e nol di belakang pada representasi desimalnya adalah... a b c d e. 40.
Soal Babak Penyisihan OMITS 0 Soal Pilihan Ganda. Banyaknya pasangan bilangan bulat non negatif O, M, I, T, S yang memenuhi : O + M + I + T + S = Dimana O, M 4, I 5, T 6, dan S 7, adalah... a. 80 b. 80
PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3
Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log
B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0
UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...
Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.
Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.
Ujian Nasional Tahun Pelajaran 2005/2006
Ujian Nasional Tahun Pelajaran 005/006 P Copyright oke.or.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan kembali dalam berbagai bentuk dengan tetap
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
Matematika Proyek Perintis I Tahun 1980
Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,
Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010
Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)
Perbandingan Skema Numerik Metode Finite Difference dan Spectral
Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
