, ω, L dan C adalah riil, tunjukkanlah
|
|
|
- Widyawati Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk sederhana dari : a. ( j)( j)( j) b. ( j )( j ) ( j) cos j sin c. cos j sin. Jika titik-titik, B, C, D dalam diagram rgand berturut-turut menyatakan bilangan kompleks 9j, j, -j, --j, buktikanlah bahwa BCD adalah bujursangkar.. Nyatakanlah dalam bentuk eksponensial : o o (a) z dan (b) z Dari sini tentukanlah ln zdan ln z. Diketahui bahwa z R R jω L; z R; z dan z R dan juga jωc jωc bahwa z z zz, nyatakanlah R dan L dalam konstanta-konstanta riil R, R dan C. R, R, R jωl R. Jika R R j ωc CRR bahwa : L ω C R, dengan R, R, R, R, ω, L dan C adalah riil, tunjukkanlah
2 PROBLEM SE # DERE K HINGG. entukanlah apakah deret-deret berikut konvergen atau divergen : (i) n (ii) n n n (iii) n (iv) ( n )! n. entukan daerah harga agar deret : (n ) mutlak. konvergen. Buktikanlah bahwa deret :... divergen dan deret... konvergen. entukanlah apakah deret-deret berikut konvergen atau divergen : n (i) (ii) n(n ) n (iii) n ( n ) n (iv) n. unjukkan daerah harga dimana deret tersebut konvergen : ( ) ( ) ( ) ( )... n n...
3 PROBLEM SE # Sistem Persamaan Linier dan Matriks. Manakah persamaan berikut ini merupakan persamaan linier : ( ) ( ) ) ( c b a ( ) () ( ) f e d. Selesaikan masing-masing sistem persamaan linier dibawah ini dengan menggunakan eliminasi Gauss-Jordan : (a) a b c (b) y z -a-b c - y z a- b c y z -. injau matriks-matriks :, B, C, D Hitunglah yang berikut ini (jika mungkin) : a. B C b. C. D c. B. C d. (C D). Diketahui :, B, 9 C a dan b - unjukkan bahwa : (a). ( ) (b). ( ) B B (c) ( ) ac ac. Dengan mengunakan Operasi Baris Elementer carilah invers matriks :
4 PROBLEM SE # Determinan. Carilah semua nilai dimana det() (a). (b).. Hitung determinan dari matriks yang diberikan dengan mereduksi matriks menjadi eselon baris tereduksi. (a) 9 (b).. Untuk nilai k berapakah, tidak bisa dibalik : (a). k k (b). k. Diketahui : (a) Carilah semua minor. (b). Cari semua Kofaktornya.. Cari invers matriks berikut dengan menggunakan aturan Kofaktor dan aturan Cramer. (a). (b). B
5 PROBLEM SE # urunan Parsial. Carilah turunan parsial pertama fungsi yang diberikan terhadap tiap peubah bebasnya : f, y y cos y (a). ( ) ( ) (b). f ( r, θ ) r cos θ. z Jika z y y dan r cosθ dan y r sinθ, tentukanlah r dan bentuknya yang paling sederhana.. Diketahui persamaan ellips sederhana : f (, y), y kendala/constraint (, y) y y maksimumnya. φ, memiliki fungsi z dalam θ, dengan menggunakan pengali La Grange tentukan dan. entukan turunan parsial pertama dan kedua untuk fungsi-fungsi berikut : a. z y y b. z cos( y)
6 PROBLEM SE # Integral Lipat. ndaikan f berupa fungsi tangga dari Gambar, yakni andaikan, y < f (, y), y <, y Hitung: f (, y) d dengan R {(, y) :, y } R. Hitung yzdv dengan B adalah kotak B B (, y, z) :, y, z ) { }. Hitung Integral lipat : dzdyd. Hitunglah integral-integral lipat berikut : a (a). ( y) y y π cosθ (b). (c) θ r π π ϕ θ ddy r sinθdrdθ. r sinθddθdϕ y, dengan y ( a ). Diketahui transformasi antara koordinat bola dan cartesius diberikan oleh ρ sinφ cosθ, y ρ sinφ sinθ dan z ρ cosφ. unjukkan bahwa Jacobi untuk penggantian dari koordinat cartesius ke koordinat bola bernilai ρ sinφ.
7 PR.. Vektor-vektor dalam Ruang Berdimensi Dua dan Ruang Berdimensi iga. nggap u ( -,, ), v (,, -) dan w (, -, - ). Cari komponen-komponen dari : (a). v w (b) u v (c) v u (d). (v u ) (e). (v w) (f). (u-w)-(vu). nggap P adalah titik (,, -) dan Q titik (, -, ) (a). Cari titik tengah ruas garis yang menghubungkan P dan Q. (b). Cari titik pada ruas garis yang menghubungkan P dan Q yang berada di tigaperempat jarak dari P ke Q.. nggap p (, k) dan q (, ). Cari k sedemikian sehingga : (a). p dan q sejajar. (b). p dan q orthogonal. (c). sudut antara p dan q adalah π /. (d). sudut antara p dan q adalah π /.. Cari semua vektor satuan dalam bidang yang dibentuk oleh u (,, ) dan v(, -, ) yang tegak lurus dengan vektor w(,, ).. (a). Cari persamaan parametrik untuk garis l yang melalui titik-titik P (,, -) dan Q (,,). (b). Dimanakah garis tersebut memotong bidang-y.. entukan apakah bidang-bidang dibawah ini sejajar : (a). -yz dan -yz (b). -y-z- dan -y-9z- (c). y-z dan z y. Cari jarak antara bidang-bidang sejajar berikut : (a). -yz dan -yz (b). y-z dan -yz (c). -yz dan yz-
8 UGS. Persamaan Diferensial Biasa. Bentuklah persamaan diferensial dari fungsi : (a). y sin B cos (b). y (c). y B. Carilah penyelesaian dari persamaan diferensial orde satu dibawah ini : dy (a). ( y ) y ( ) d dy (b). ( y ) y, jika diberikan y bila. d dy (c). y tan sin d dy v (d). y ( y ) ( y y ), misalkan y d (e). dy y tan y sec d. entukan penyelesaian persamaan diferensial orde dua homogen berikut : (a). y d d (b). y d d (c). y d d. entukan penyelesaian persamaan diferensial orde dua tak homogen berikut : (a). 9y d d (b). y cos d d d y (c). 9y e sin d. Dengan menggunakan operator D tentukan penyelesaian persamaan diferensial berikut : (a). 9y d d (b). y cos d d d y (c). 9y e sin d
9 PR.. ransformasi Laplace. Dengan menggunakan definisi : L f () t Laplace dari : at (a). f () t e (b). f () t sin at st { } F s) e f ( t) ( dt,tentukanlah ransformasi. entukan ransformasi Laplace dari : (a). sin t cos t} (b). L{ t sin t} t (c).l sin u du L cost (d). { }. Dengan menggunakan tabel ransformasi Laplace, carilah invers ransformasi Laplace dari fungsi berikut : s (a). L s s s (b). L s s s (c). L (d). L ( )( )( ) s ( )( ) s s s s 9 s. Dengan menggunakan ransformasi Laplace entukan penyelesaian dari persamaan diferensial berikut : (a).y -y y (b).y -y y e t (c). y -y -y dengan syarat awal y() dan y () 9
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
dimana a 1, a 2,, a n dan b adalah konstantakonstanta
Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.
i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z
MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan
TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017
A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.
Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.
1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial
(A) 3 (B) 5 (B) 1 (C) 8
. Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1
Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian
ALJABAR LINEAR ELEMENTER
BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.
panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d
INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T.
DESKIPSI MATA KULIAH EL-121 Matematika Teknik I: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika
ALJABAR LINEAR [LATIHAN!]
Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari
PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan
Pertemuan 13 persamaan linier NON HOMOGEN
Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, yk, k ) B y B k y k // [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,
Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:
SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau
Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma
Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi
Fisika Matematika II 2011/2012
Fisika Matematika II 2/22 diterjemahkan dari: Mathematical Methods for Engineers and Scientists, 2, dan 3 K. T. Tang Penterjemah: Imamal Muttaqien dibantu oleh: Adam, Ma rifatush Sholiha, Nina Yunia, Yudi
Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A =
Bab 2 cakul fi080 by khbasar; sem1 2010-2011 Matriks Dalam BAB ini akan dibahas mengenai matriks, sifat-sifatnya serta penggunaannya dalam penyelesaian persamaan linier. Matriks merupakan representasi
SATUAN ACARA PERKULIAHAN. : Mahasiswa Mampu memecahkan soal-soal Bilangan Komplek (kompetensi) :
: TE-300 Terapan (2 SKS)/D3 : Bilangan Komplek : Mahasiswa Mampu memecahkan soal-soal Bilangan Komplek : 2 (dua)...kali 1,2 1. Menjelaskan tentang definisi Bilangan Komplek 2. Menyelesaikan soalsoal samaan
Pertemuan 1 Sistem Persamaan Linier dan Matriks
Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan
dengan vektor tersebut, namun nilai skalarnya satu. Artinya
1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
Kalkulus Multivariabel I
dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar
Soal Babak Penyisihan OMITS 2008
Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....
I. Sistem Persamaan Diferensial Linier Orde 1 (Review)
I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu
= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,
000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar
Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR
Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK
BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis
KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: [email protected] Hak
JURUSAN TEKNIK ELEKTRO
DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik I Dosen Heru Dibyo Laksono
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS
JURUSAN TEKNIK ELEKTRO
JURUSAN TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik
BAB X SISTEM PERSAMAAN LINIER
BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan
ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor
ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran
SATUAN ACARA PERKULIAHAN
Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif
Pembahasan Simak UI Matematika Dasar 2012
Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan
Adri Priadana. ilkomadri.com
Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat
Pertemuan 14. persamaan linier NON HOMOGEN
Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat
KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan
KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)
APLIKASI MATRIKS KOMPANION PADA PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN TUGAS AKHIR
APLIKASI MATRIKS KOMPANION PADA PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika
digunakan untuk menyelesaikan integral seperti 3
Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat
BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.
BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan
DINAS PENDIDIKAN KABUPATEN BOGOR SOAL SOLUSI TRY OUT BERSAMA
DINAS PENDIDIKAN KABUPATEN BOGOR SOAL SOLUSI TRY OUT BERSAMA Jumat, Pebruari 0. Fungsi kudarat yang persamaannya dinyatakan dalam y m n 6 mempunyai nilai minimum memotong sumbu X di titik A dan Jika absis
Bab 1 : Skalar dan Vektor
Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar
TE Teknik Numerik Sistem Linear
TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E. Objektif.
Sistem Persamaan Linier dan Matriks
Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua
TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember
TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF
III HASIL DAN PEMBAHASAN
Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =
BAB 3 : INVERS MATRIKS
BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan
Materi Aljabar Linear Lanjut
Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA
( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75
Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran
Bab I. Bilangan Kompleks
Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Rekap Dari materi sebelumnya telah dipelajari operasi dalam bilangan kompleks (penambahan,
a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE
a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b
FUNGSI KHUSUS DALAM BENTUK INTEGRAL
FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).
IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd
IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5
A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi
sumbu y F U N G S I Definisi Fungsi Fungsi adalah pemetaan atau kejadian khusus dari suatu relasi. Jika himpunan A dan B memiliki relasi R sedemikian rupa sehingga setiap elemen himpunan A terhubung dengan
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.
. INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling
MATRIKS SATUAN ACARA PERKULIAHAN
MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran
I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu
I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu 1 Muatan Listrik Contoh klassik: Penggaris digosok-gosok pada kain kering tarik-menarik dengan
BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F
BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka
Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan
C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks
Matematika EBTANAS Tahun 1986
Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo
SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN
SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga
Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika
Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya
SISTEM KOORDINAT VEKTOR. Tri Rahajoeningroem, MT T. Elektro - UNIKOM
SISTEM KOORDINAT VEKTOR Tri Rahajoeningroem, MT T. Elektro - UNIKOM Tujuan Pembelajaran Mahasiswa dapat memahami koordinat vektor Mahasiswa dapat menggunakan sistem koordinat vektor untuk menyelesaikan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.
MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR
MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR Disusun oleh : 1. Supriyani (0903040095) 2. Sri Hartati (0903040113) 3. Anisatul M. (0903040065) TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS
Vektor di ruang dimensi 2 dan ruang dimensi 3
Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 ([email protected]) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 [email protected] Vektor
INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y
INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x
MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd
MODUL PEMBELAJARAN KALKULUS II ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. Daftar Isi Kata Pengantar Peta Konsep Materi. BAB I Analisis Vektor a. Vektor Pada Bidang.6
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
