PEMBENTUKAN ISOMORFISMA DARI GELANGGANG FAKTOR KE GELANGGANG FAKTOR LOKAL. Amir Kamal Amir

Ukuran: px
Mulai penontonan dengan halaman:

Download "PEMBENTUKAN ISOMORFISMA DARI GELANGGANG FAKTOR KE GELANGGANG FAKTOR LOKAL. Amir Kamal Amir"

Transkripsi

1 EMBENTUKAN ISOMORFISMA ARI GELANGGANG FAKTOR KE GELANGGANG FAKTOR LOKAL Air Kl Air Kelopok Kehlin Aljr Fkult Mtetik dn Ilu engethun Al Univerit Hnuddin (UNHAS) Jl. erinti Keerdekn KM.10 Mkr 90245, Indonei Atrk Sutu gelnggng lokl dlh gelnggng yng hny epunyi tu idel kil. Idel pri utu gelnggng dpt dipki untuk encri gelnggng locl dn dpt jug dipki untuk eentuk gelnggng fktor. Sedngkn idel kil dri gelnggng lokl dpt dipki untuk eentuk gelnggng fktor lokl. Tulin ini kn eprkn ecr leih terperinci dn jel, ehingg kn leih udh diengerti, engeni gelnggng fktor dn peentukn ioorfi ntr gelnggng fktor dengn gelnggng fktor lokl. Keyword: fktor, gelnggng lokl, kil, ultipliktif, idel pri. ENAHULUAN ri utu derh integrl dpt dientuk utu lpngn yng dieut lpngn frki. l utu lpgn frki dpt diteukn utu gelnggng yng hny epunyi tu idel kil. Gelnggng eperti ini dieut gelnggng lokl. Slh tu cr untuk endptkn gelnggng locl yitu dengn enggunkn hipunn gin ultipliktif. Sedngkn untuk endptkn hipunn ultipliktif dpt digunkn idel pri. erlhn yng kn dih dl tulin ini dlh gin erncng tu eentuk tu ioorfi dri gelnggng fktor ke gelnggng fktor lokl. l tulin ini eprkn ecr leih terperinci dn jel, ehingg leih udh untuk diengerti, engeni hipunn gin ultipliktif, gelnggng lokl, dn tu ioorfi dri gelngggng fktor ke gelnggng fktor lokl. engn terentukny 38

2 eentukn Ioorfi... (Air Kl Air) ioorfi ini, k gelnggng fktor kn ioorfik dengn gelnggng fktor lokl. engn deikin untuk engethui truktur dri gelnggng fktor lokl dpt dielidiki ellui gelnggng fktor yng leih ederhn. Untuk eperudh pehn, k pd gin wl dri tulin ini dijikn eerp pengertin, dn noti yng kn digunkn dl pehn elnjutny. EMBAHASAN Untuk eperudh pehn, k pd gin wl dri gin ini dijikn eerp pengertin, dn noti yng kn digunkn dl pehn elnjutny. efinii 1.1 Sutu gelnggng R dieut gelnggng lokl jik i epunyi tept tu idel kil. Contoh 1.2 Milkn R dlh egi erikut, R =, Z, 0, gnjil, k R dlh gelnggng lokl, dengn Z dlh hipunn ilngn ult. Akn ditunjukkn hw M =, Z, 0, gnjil, genp dlh tu-tuny idel kil dri R. engn udh dpt diti hw M dlh utu idel dl R. Selnjutny ilkn I dlh utu idel dl R dengn I R. Untuk enunjukkn hw M dlh tu-tuny idel kil, k kn ditunjukkn hw I terut dl M. Andikn I tidk terut dl M, errti terdpt I dengn 0, gnjil, dn gnjil. Kren gnjil, k R. engn deikin 1 =. I. Kren 1 I, k I = R. Hl ini kontrdiki dengn pernytn eeluny. 39

3 efinii 1.3 Milkn dlh utu derh integrl. Terdpt utu lpngn K yng eut dengn yrt untuk etip c K, c dpt dituli dl entuk c = 1,, dn 0. Lpngn eperti ini dieut lpngn frki dri. Contoh 1.4 Q dlh lpngn frki dri Z, dengn Q dlh hipunn ilngn rionl dn Z dlh hipunn ilngn ult. efinii 1.5 Milkn dlh utu derh integrl dengn lpngn frki K. utu hipunn gin S dri dieut hipunn gin ultipliktif jik 0 S, 1 S, dn S tertutup terhdp operi perklin. Selnjutny, jik S dlh utu hipunn gin ultipliktif, k didefiniikn utu ugelnggng dri K. 1 =. Hipunn ini jel erupkn S K S Contoh 1.6 { 1, 2 1, 2 2,2 3, } S = L dlh hipunn gin ultipliktif dri derh integrl Z, yitu hipunn ilngn ult. ultipliktif. d teori erikut dierikn huungn ntr idel pri dengn hipunn gin Teore 1.7 Jik dlh utu idel pri dri, k S = \ dlh utu hipunn gin ultipliktif dri. 40

4 eentukn Ioorfi... (Air Kl Air) Kren 0, k 0 S. Kren 1, k 1 S. Selnjutny, il, S errti,. engn enggunkn ift pri dri diperoleh. engn diikin S. l pehn elnjutny, S dituli egi. Segi contoh, jik = 3, k Z = Q tidk hi digi oleh 3, dengn Q dlh hipunn ilngn rionl dn Z dlh hipunn ilngn ult. Slh tu cr untuk eentuk gelnggng lokl yitu enggunkn idel pri. Secr lengkp ttcr peentuknny dierikn oleh teori erikut. Teore 1.8 Jik dlh utu idel pri dri, k dlh utu gelnggng lokl. Kren dlh idel pri, k eut eu idel-idel pri yng terpih dri S. engn deikin, idel erupkn tu-tuny idel kil dl. Milne (1998) eerikn entuk korepondeni tu-tu dn pd dri hipunn idelidel pri dl ke hipunn idel-idel pri dl tereut dijikn erikut. S. Secr lengkp teori Teore 1.9 (Milne, 1998) Milkn dlh utu derh integrl dn ilkn S dlh utu hipunn gin ultipliktif dri, k peetn 1 S =, S erupkn peetn tu-tu dn pd dri hipunn idel-idel pri dl yng eenuhi S = ke hipunn idel-idel pri dl S. Inver dri peetn tereut dlh Q Q, dengn Q dlh idel dl S. 41

5 engn udh dpt diliht hw, jik dlh utu idel pri yng terpih dri S, k S dlh utu idel pri dn jik Q dlh idel pri dl S, k Q dlh utu idel dl yng terpih dri S. Jdi, untuk elengkpi peuktin, elnjutny ditunjukkn hw. Akn ditunjukkn hw ( ) ( ) ( ) S = dn S Q = Q. S =. Jel terliht hw ( ) ( ) S. Untuk keliknny, ilkn S,, S. erhtikn pernytn.. = Kren kedu dn erd dl dn dlhi idel pri dl, k pling edikit tu dintr tu erd dl. Tetpi kren (diuikn), k.. Akn ditunjukkn hw ( ) Jel terliht hw ( ) S Q = Q. S Q Q kren Q Q dn Q dlh utu idel dl S. Untuk keliknny, ilkn Q. Kren Q dlh idel dl S, ( ) k dpt ditulikn eperti =. Q. Jdi d gin pehn elnjutny = dengn, S, ehingg (( ) ) ( ) = =. S Q. gelnggng fktor,, ke gelnggng fktor lokl. Q Teore 1.10 dijikn entuk ioorfi dri Milkn dlh utu idel kil dri gelnggng, dn ilkn Q dlh utu idel yng dingun dl, yitu Q =., k peetn dengn turn Q + + Q dlh utu ioorfi. 42

6 eentukn Ioorfi... (Air Kl Air) Milkn : Q ϕ dengn ( ) Q. ϕ + = + ert kn ditunjukkn hw peetn di t dlh peetn tu-tu. l hl ini ditunjukkn hw Q =, egi lngkh wl. Nun deikin, dri proe peentukn Q, dpt diliht hw, Q = S dn S = \, ehingg untuk enunjukkn hw = cukup ditunjukkn ( ) Q = S. d tu ii, jel terliht hw ( ) eleen ( ) S. Untuk keliknny, utu S dpt dituli = dengn, S, dn. Sehingg. Jdi ( + )( + ) = + = (2.1). d ii lin, tu-tuny idel kil yng eut dlh (kren jik M dlh idel kil dengn M, k M. Hl ini kontrdiki kren dlh idel kil). engn deikin kil idel dl hnylh. Kren + tidk erd dl, k + dlh unit dl. Sehingg er dengn pern (2.1) diipulkn hw + = 0 +. Jdi. Spi diini udh ditunjukkn hw, tu-tu dilnjutkn. Milkn ( ϕ c ) ϕ ( d ) Q =. Selnjutny peuktin ift + = +, k c + Q = d + Q, ehingg c d Q. Kren Q =, k c d. engn deikin diperoleh c + = d + yng elengkpi peuktin ift tu-tu. Selnjutny kn ditunjukkn hw peetn di t erift pd. Ail + Q. Q Berrti. Kren dn dlh idel kil, k + =. Oleh kren itu, terdpt dn q edeikin ehingg + q = 1. engn deikin 43

7 ( ) ϕ ( )( ) ( ) = = ϕ ( + ). ϕ ( + ) + ϕ ( q + ) ϕ ( + )( + Q ). 1+ Q = ϕ + q + Q = q + ri pern dit diipulkn hw ϕ ( ) ( ) ϕ ( + ) = + Q. ( + ) = + Q. ehingg SIMULAN ri pehn di t diipulkn eerp hl erikut: Gelnggng fktor yng dientuk oleh gelnggng tereut dengn idel priny kn ioorfik dengn gelnggng fktor yng dientuk oleh gelnggng lokl dengn idel kilny, dengn cttn hw gelnggng lokl ini erkorepondeni dengn idel pri tereut. AFTAR USTAKA Milne, J.S Algeric Nuer Theory. Lecture note t the Univerity of Michign. L, T.Y Lecture on Module nd Mthetic, Springer. Ring. New York: Grdute Text in McConnell, J.C. & Roon, J.C Noncouttive Noetehrin Ring. Chicheter: John Wiley nd Son, Inc. n,.s A Coure in Ring Theory. Cliforni: Wdworth & Brook/Cole Advnced Book & Softwre. Spindler, K Atrct Alger With Appliction. New York: Mrcel ekker, INC. Kepf, G.R Algeric Structure. Brunchweig: Viewieg & Sohn Verlggeellchft H. 44

V B Gambar 3.1 Balok Statis Tertentu

V B Gambar 3.1 Balok Statis Tertentu hn jr Sttik ulyti, ST, T erteun, I, II III Struktur lk III endhulun lk (e) dlh sutu nggt struktur yng ditujukn untuk eikul en trnsversl sj, sutu lk kn ternlis dengn secr lengkp pil digr gy geser dn digr

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh Intitut Teknologi Sepuluh Nopemer Sury Anli Ketiln Routh Pengntr Mteri Contoh Sol Ringkn Ltihn Aemen Pengntr Mteri Contoh Sol Konep Stil Proedur Ketiln Routh Ringkn Ltihn Aemen Pengntr Pengntr Mteri Contoh

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

Analisa Kestabilan Sistem. Dr. Fatchul Arifin, MT.

Analisa Kestabilan Sistem. Dr. Fatchul Arifin, MT. Anli Ketiln Sitem Dr Ftchul Arifin, MT ftchul@unycid Pole - Zero Untuk mempermudh nli repon utu item digunkn Pole - Zero Pole : Nili vriel Lplce yng menyekn nili trnfer function tk hingg Akr permn dri

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga

Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga udrytn udirh nlii Kedn Mntp Rngkin ite eng ii 9 Pebebnn k eibng Pd pebebnn eibng, del tu f eperudh nlii ite tig f. pbil bebn tidk eibng, ite kn engndung fr-fr tidk eibng, bik ru upun tegngnny. pbil fr-fr

Lebih terperinci

02. OPERASI BILANGAN

02. OPERASI BILANGAN 0. OPERASI BILANGAN A. Mm-mm Bilngn Rel Dlm kehidupn sehri-hri dn dlm mtemtik ergi keterngn seringkli menggunkn ilngn yng is digunkn dlh ilngn sli. Bilngn dlh ungkpn dri penulisn stu tu eerp simol ilngn.

Lebih terperinci

TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA)

TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA) TEORI BAHASA DAN OTOMATA FINITE STATE AUTOMATA (FSA) Finite Stte Automt Seuh Finite Stte Automt dlh: Model mtemtik yng dpt menerim input dn mengelurkn output Kumpuln terts (finite set) dri stte (kondisi/kedn).

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO]

PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] Jenis FSA Deterministic Finite Automt (DFA) Dri sutu stte d tept stu stte erikutny untuk setip simol msukn yng diterim Non-deterministic Finite Automt (NFA) Dri

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitin ini dilkukn untuk mengethui hrg kut trik sert dn kut geser rektn pd interfce sert sut kelp yng dienmkn ke dlm epoksi. Pengujin jug dimksudkn untuk mengethui

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusn Mtemtik FMIPA UNS e-mil: muslich_mus@yhoo.com ABSTRAK: Pernytn fungsi f :[, terintegrl Riemnn pd [, jik dn hny jik f kontinu hmpir

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

5. Tampilan Menu Dosen terdiri dari beberapa bagian, yaitu:

5. Tampilan Menu Dosen terdiri dari beberapa bagian, yaitu: 1. Almt Server : http://si.unmuh..id/unmuh 2. Stndr Kode Thun Akdemik: 3. Tmpiln depn seperti terliht pd gmr erikut: 4. Inputkn Kode Login dn Pssword yng dierikn oleh Administrtor SIA (huungi Pust Sistem

Lebih terperinci

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed

PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed Prosiding Seminr Nsionl Thunn Mtemtik, Sins dn Teknologi 0 Universits Teruk Convention Center, 1 Oktoer 0 PERSAMAAN DIOPHANTINE NON LINEAR z Agus Sugndh 1, Agustini Tripen Surkti, Agung Prowo 3 1,,3) Stf

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

Algoritma Simpleks dalam Notasi Matriks

Algoritma Simpleks dalam Notasi Matriks HAFIDH MUNAWIR Algoritm Simplek dlm Noti Mtrik m t z n n n n n n LP Ser umum: ) ( n i i m n mn m m n n LP yng ereuin untuk Dkot 5 6 6 m t z 5 5 5 Tleu Optiml dri LP Dkot Tleu z rh ri 5 z= ri - - = ri -

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

SEMI KUASA TITIK TERHADAP ELIPS

SEMI KUASA TITIK TERHADAP ELIPS RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: rnidsri@hoo.com

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR

INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR Integrl Henstock-Stieltjes... (Ui Mhnun Hnung) INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR Ui Mhnun Hnung dn Ch. Rini Indrti Jurusn Mtetik FMIPA UGM, Yogykrt, Indonesi hnung_ug@yhoo.co Astrct This

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

DIAGRAM DARI PRESENTASI SEMIGRUP dan. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

DIAGRAM DARI PRESENTASI SEMIGRUP dan. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia DIAGRAM DARI PRESENTASI SEMIGRUP dn Welly Aziz 1*, Sri Gemwti 2, Asli Sirit 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Univerits Riu Kmpus Bin Widy 28293 Indonesi

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

Struktur Balok. Balok (Beam) adalah suatu anggota struktur yang ditujukan untuk memikul beban transversal saja.

Struktur Balok. Balok (Beam) adalah suatu anggota struktur yang ditujukan untuk memikul beban transversal saja. Struktur lok lok e dlh sutu nggot struktur yng ditujukn untuk eikul en trnsversl sj Sutu lok kn ternlis dengn secr lengkp pil digr gy geser dn digr oenny telh diperoleh Digr gy geser dn oen sutu lok dpt

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

BAB 4 FUNGSI TRANSFER DAN DIAGRAM BLOK SISTEM

BAB 4 FUNGSI TRANSFER DAN DIAGRAM BLOK SISTEM BAB 4 FUNGSI RANSFER DAN DIAGRAM BLOK SISEM Bb 4 ebh tentng fungi trnfer dn digr blok ite ert pernnny dl peodeln, nlii, dn intei ite kendli. Urinny eliputi pengertin fungi trnfer, penurunn fungi trnfer

Lebih terperinci

OSN 2015 Matematika SMA/MA

OSN 2015 Matematika SMA/MA Sol 5. Mislkn,, c, d dlh ilngn sli sehingg c d dn d c. Buktikn hw () (cd) mx{,}. Jw: Klim hw c. Jik = 1 mk jels memenuhi pernytn. Mislkn p prim dn = p t s dengn p s. Untuk menunjukkn hw c cukup kit tunjukkn

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika

BILANGAN BULAT. 1 Husein Tampomas, Rumus-rumus Dasar Matematika BILANGAN BULAT. Oprersi Hitung pd Bilngn Bult Bilngn ult (integer) memut semu ilngn cch dn lwn (negtif) ilngn sli, yitu:,, 4,,, 1, 0, 1, 2, 3, 4,, Bilngn ult disjikn dlm gris ilngn segi erikut. Bilngn

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL VII TEORI BAHASA DAN AUTOMATA Tujun : Mhsisw memhmi ekspresi reguler dn dpt menerpknny dlm ergi penyelesin persoln. Mteri : Penerpn Ekspresi Regulr Notsi Ekspresi Regulr Huungn Ekspresi Regulr dn

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan (Oleh: Winit Sulndri, M.Si) A. Kompetensi Dsr : Menyelesikn sistem persmn liner B. Mteri :. Sistem Persmn Liner dn Mtriks. Determinn C. Indiktor :. Mendefinisikn persmn liner dn sistem persmn liner. Mengenl

Lebih terperinci

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya Kurikulum 2013 kimi K e l s XI LARUTAN PENYANGGA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi pengertin lrutn penyngg dn penggunnny dlm kehidupn sehri-hri.

Lebih terperinci

ALJABAR LINIER. Ruang Hasil Kali Dalam. Oleh : Kelompok VI / VB

ALJABAR LINIER. Ruang Hasil Kali Dalam. Oleh : Kelompok VI / VB ALJABAR LINIER Rung Hsil Kli Dlm Dosen Pengmpu : DARMADI, S.Si, M.Pd Oleh : Kelompok VI / VB 1. Agustin Syrswri ( 08411.060 ) 2. Chndr Andmri ( 08411.095 ) 3. Mei Citr D.A ( 08411.186 ) 4. Nur Alfin Lil

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd.

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd. Generted y Foxit PDF Cretor Foxit Softwre http://www.foxitsoftwre.om For evlution only. RANGKUMAN INTEGRAL Di Susun Oleh : Syiful Hmzh Nsution, S.Si., S.Pd. Di dukung oleh : Portl eduksi Indonesi Open

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Relasi Ekuivalensi dan Automata Minimal

Relasi Ekuivalensi dan Automata Minimal Relsi Ekuivlensi dn Automt Miniml Teori Bhs dn Automt Semester Gnjil 01 Jum t, 1.11.01 Dosen pengsuh: Kurni Sputr ST, M.Sc Emil: kurni.sputr@gmil.com Jurusn Informtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci