Medan, Juli Penulis

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Medan, Juli Penulis"

Transkripsi

1 9. Seluruh teman-teman seperjuangan di Ekstensi Matematika Statistika, dan semua pihak yang turut membantu menyelesaikan skripsi ini. Sepenuhnya penulis menyadari bahwa dalam penulisan skripsi ini masih terdapat banyak kekurangan dan kelemahan dengan demikian penulis mengharapkan saran dan kritik yang bersifat membangun demi kesempurnaan skripsi ini. Akhirnya penulis berharap semoga penulisan skripsi ini dapat memberikan manfaat kepada semua pihak yang memerlukannya. Medan, Juli 2012 Penulis

2 ABSTRAK Estimasi parameter merupakan suatu metode untuk mengetahui sekitar berapa nilainilai populasi dengan menggunakan nilai-nilai sampel. Nilai populasi yang ditaksir adalah suatu nilai rata-rata dengan notasi dan nilai simpangan baku dengan notasi. Teori estimasi sendiri digolongkan menjadi estimasi titik (Point Estimate) dan pendugaan selang (Interval Estimation). Estimasi titik yang cukup penting adalah metode maksimum likelihood. Metode ini mempunyai beberapa criteria atau bersifat takbias (unbias), efisien dan konsisten, sehingga untuk mencapai estimasi titik yang baik dapat dicari dan diketahui dengan menggunakan metode estimasi Maksimum Likelihood. Distribusi gamma dapat diestimasi dengan metode Maksimum Likelihood karena mempunyai suatu fungsi padat peluang kontinu. Sehingga langkah-langkah estimasi Maksimum Likelihood adalah: menentukan fungsi padat peluang, membentuk fungsi padat peluang ke dalam bentuk fungsi likelihood, membentuk fungsi likelihood ke dalam bentuk log likelihood, menurunkan fungsi log likelihood terhadap parameter yang mengikutinya yakni dan, dan menentukan estimasi dari parameter dan. Sehingga didapatkan E(X) dari distribusi gamma adalah dan var(x) dari distribusi gamma adalah.setelah menentukan dan, maka dapat diketahui bahwa merupakan suatu estimasi dari. Begitu juga merupakan estimasi dari 2.

3 ABSTRACT Parameter estimation is a method to find out about how the values of the population using the sample values. population value which is estimated at an average value with the notation m and the deviation with standard notation s. Estimation theory itself is classified into a point estimate (Point Estimate) and prediction intervals (Interval Estimation). Point estimate is quite important is the maximum likelihood method. This method has several criteria or is takbias (unbias), efficient and consistent, so as to achieve A good point estimate can be searched and known by using the method Maximum Likelihood estimation. Gamma distribution can be estimated by the method of Maximum Likelihood because it has a solid chance of a continuous function. So that the steps Maximum Likelihood estimation is: determine the function of solid opportunities, form a solid opportunity to function in the form of likelihood function, form likelihood function in the form of log likelihood, reduce the function log likelihood of the parameter that follows the a and b, and define estimation of the parameters a and b. So we get E (X) of the gamma distribution is?? and var (X) of the gamma distribution is???. Having determined?? and???, It is known that?? is an estimate of the ab. So, too??? an estimate of AB

4 DAFTAR ISI Persetujuan Pernyataan Penghargaan Abstrak Abstract Daftar Isi Daftar Tabel Halaman ii iii iv vi vii viii x BAB 1 PENDAHULUAN LatarBelakang 1 1.2PerumusanMasalah BatasanMasalah Tinjauan Pustaka TujuanPenelitian Manfaat Penelitian Metode Penelitian 5 BAB 2 LANDASAN TEORI Peubah Acak dan Distribusinya Peubah Acak Distribusi Peubah Acak Distribusi Peubah Acak Diskrit Distribusi Peubah Acak Kontinu Ekspektasi dan Variansi Ekspektasi Variansi Estimasi Parameter 10

5 2.4 Maksimum Likelihood Fungsi Likelihood Estimasi Maksimum Likelihood Fungsi Gamma dan Distribusi Gamma Fungsi Gamma Distribusi Gamma 13 BAB 3 PEMBAHASAN Estimasi Parameter Distribusi Gamma dengan Metode Maksimum Likelihood Contoh Kasus 26 BAB 4 PENUTUP Kesimpulan Saran 31 DaftarPustaka 32

6 DAFTAR TABEL Tabel 3.1 Data Umur Baterai Mobil (Dalam Satuan Tahun) 26 Tabel 3.2 Nilai Rata- Rata Umur Baterai Mobil 27

PENAKSIRAN PARAMETER µ DAN σ PADA DISTRIBUSI NORMAL MENGGUNAKAN METODE BAYES DAN MAKSIMUM LIKELIHOOD SKRIPSI SUNARTO URJOYO PURBA

PENAKSIRAN PARAMETER µ DAN σ PADA DISTRIBUSI NORMAL MENGGUNAKAN METODE BAYES DAN MAKSIMUM LIKELIHOOD SKRIPSI SUNARTO URJOYO PURBA PENAKSIRAN PARAMETER µ DAN σ PADA DISTRIBUSI NORMAL MENGGUNAKAN METODE BAYES DAN MAKSIMUM LIKELIHOOD SKRIPSI SUNARTO URJOYO PURBA 09083005 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

PENGUJIAN ASUMSI-ASUMSI ANALISIS VARIANSI DENGAN METODE DIAGNOSTIK SISAAN DALAM RANCANGAN ACAK KELOMPOK LENGKAP MODEL TETAP SKRIPSI

PENGUJIAN ASUMSI-ASUMSI ANALISIS VARIANSI DENGAN METODE DIAGNOSTIK SISAAN DALAM RANCANGAN ACAK KELOMPOK LENGKAP MODEL TETAP SKRIPSI PENGUJIAN ASUMSI-ASUMSI ANALISIS VARIANSI DENGAN METODE DIAGNOSTIK SISAAN DALAM RANCANGAN ACAK KELOMPOK LENGKAP MODEL TETAP SKRIPSI SAHDANI FONNA NASUTION 090823047 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

oleh RIRIS LISTYA DAHYITA PUTRI M

oleh RIRIS LISTYA DAHYITA PUTRI M ESTIMASI PARAMETER DISTRIBUSI MARSHALL-OLKIN COPULA DENGAN METODE MAXIMUM LIKELIHOOD oleh RIRIS LISTYA DAHYITA PUTRI M0111073 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI Disusun Oleh: NANDANG FAHMI JALALUDIN MALIK NIM. J2E 009

Lebih terperinci

Non Linear Estimation and Maximum Likelihood Estimation

Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation We have studied linear models in the sense that the parameters are

Lebih terperinci

Analisis Data Panel Tidak Lengkap Model Komponen Error Dua Arah dengan Metode Minimum Variance Quadratic Unbiased Estimation (MIVQUE) SKRIPSI

Analisis Data Panel Tidak Lengkap Model Komponen Error Dua Arah dengan Metode Minimum Variance Quadratic Unbiased Estimation (MIVQUE) SKRIPSI Analisis Data Panel Tidak Lengkap Model Komponen Error Dua Arah dengan Metode Minimum Variance Quadratic Unbiased Estimation (MIVQUE) (Studi Kasus Model Return Saham Di BEJ) SKRIPSI Oleh: RATIH DWI ASTUTI

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya

Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya Alfensi Faruk Jurusan Matematika, Fakultas MIPA, Universitas Sriwijaya e-mail: alfensifaruk@unsri.ac.id Abstract: In this study,

Lebih terperinci

PENENTUAN SELANG KEPERCAYAAN YANG BERSIFAT FUZZY DARI KOEFISIEN MULTIPLE REGRESI SKRIPSI HANNARIA RH SINAGA

PENENTUAN SELANG KEPERCAYAAN YANG BERSIFAT FUZZY DARI KOEFISIEN MULTIPLE REGRESI SKRIPSI HANNARIA RH SINAGA PENENTUAN SELANG KEPERCAYAAN YANG BERSIFAT FUZZY DARI KOEFISIEN MULTIPLE REGRESI SKRIPSI HANNARIA RH SINAGA 080823003 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1.

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1. 11 BAB III UJI STATISTIK DAN SIMULASI 3.1 Interval Kepercayaan Sebuah interval kepercayaan terdiri dari berbagai nilai-nilai bersama-sama dengan persentase yang menentukan seberapa yakin bahwa parameter

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *email:

Lebih terperinci

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma (

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma ( I. PENDAHULUAN 1.1. Latar Belakang dan Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH

ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 2 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

MENENTUKAN MODEL KOEFISIEN REGRESI MULTIPLE VARIABEL DENGAN MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI BENNY SOFYAN SAMOSIR

MENENTUKAN MODEL KOEFISIEN REGRESI MULTIPLE VARIABEL DENGAN MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI BENNY SOFYAN SAMOSIR MENENTUKAN MODEL KOEFISIEN REGRESI MULTIPLE VARIABEL DENGAN MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI BENNY SOFYAN SAMOSIR 080823004 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

AUTOREGRESSIVE (MSVAR) SKRIPSI

AUTOREGRESSIVE (MSVAR) SKRIPSI PEMODELAN MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MSVAR) SKRIPSI Disusun Oleh: HAYUK PERMATASARI 24010210130066 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2014 PEMODELAN

Lebih terperinci

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50

Lebih terperinci

PEMODELAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION

PEMODELAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION PEMODELAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION (GWLR) DENGAN FUNGSI PEMBOBOT FIXED GAUSSIAN KERNEL DAN ADAPTIVE GAUSSIAN KERNEL (Studi Kasus Laju Pertumbuhan Penduduk Provinsi Jawa Tengah) SKRIPSI

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM)

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) oleh MIKA ASRINI M0108094 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada Estimasi Titik (Point Estimation) Minggu ke 1-3 Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada 2014 Prof. Dr. Sri Haryatmi, M. Sc. (UGM) Daftar Isi 2014 1 / 33 DAFTAR ISI 1 Minggu 1 Pertemuan 1

Lebih terperinci

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP TUGAS AKHIR SM 1330 KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF NUR SHOFIANAH NRP 1203 100 009 Dosen Pembimbing Dra. Laksmi Prita W, MSi Dra. Nuri Wahyuningsih, MKes JURUSAN MATEMATIKA Fakultas Matematika

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I. oleh NANDA HIDAYATI M

REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I. oleh NANDA HIDAYATI M REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I oleh NANDA HIDAYATI M0108098 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

ESTIMASI. A. Dasar Teori

ESTIMASI. A. Dasar Teori ESTIMASI A. Dasar Teori 1. Penaksiran atau Estimasi Penaksiran atau estimasi adalah metode untuk memperkirakan nilai populasi dengan menggunakan nilai sampel. Nilai penduga disebut estimator, estimator

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 4: Metode Evaluasi Estimator Statistika FMIPA Universitas Islam Indonesia Penggunaan metode estimasi yang berbeda dapat menghasilkan estimator yang sama maupun berbeda Dari hasil estimator yang berbeda,

Lebih terperinci

KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL

KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL SKRIPSI Oleh : RIANA AYU ANDAM PRADEWI J2E 009 012 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG 2014

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum likelihood estimation, penyensoran, bias relatif, penduga parameter distribusi Weibull dan beberapa istilah

Lebih terperinci

PENS. Probability and Random Process. Topik 8. Estimasi Parameter. Prima Kristalina Juni 2015

PENS. Probability and Random Process. Topik 8. Estimasi Parameter. Prima Kristalina Juni 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 8. Estimasi Parameter Prima Kristalina Juni 2015 1 2 Outline 1. Terminologi Estimasi Parameter

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI

ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgiyono Jurusan Matematika FMIPA UNDIP.

APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgiyono Jurusan Matematika FMIPA UNDIP. APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgiyono Jurusan Matematika FMIPA UNDIP Abstraks Diberikan populasi dengan densitas dengan parameter,

Lebih terperinci

ADLN Perpustakaan Universitas Airlangga

ADLN Perpustakaan Universitas Airlangga PERBANDINGAN METODE GENERALIZED CROSS VALIDATION DAN GENERALIZED MAXIMUM LIKELIHOOD DALAM REGRESI NONPARAMETRIK SPLINE UNTUK MEMPERKIRAKAN JUMLAH LEUKOSIT PADA TERSANGKA FLU BURUNG DI JAWA TIMUR RINGKASAN

Lebih terperinci

PERHITUNGAN VALUE AT RISK PORTOFOLIO SAHAM MENGGUNAKAN METODE SIMULASI MONTE CARLO

PERHITUNGAN VALUE AT RISK PORTOFOLIO SAHAM MENGGUNAKAN METODE SIMULASI MONTE CARLO PERHITUNGAN VALUE AT RISK PORTOFOLIO SAHAM MENGGUNAKAN METODE SIMULASI MONTE CARLO Adilla Chandra 1*, Johannes Kho 2, Musraini M 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

ESTIMASI PARAMETER DAN INTERVAL KREDIBEL DENGAN MODEL REGRESI LINIER BERGANDA BAYESIAN

ESTIMASI PARAMETER DAN INTERVAL KREDIBEL DENGAN MODEL REGRESI LINIER BERGANDA BAYESIAN ESTIMASI PARAMETER DAN INTERVAL KREDIBEL DENGAN MODEL REGRESI LINIER BERGANDA BAYESIAN Vania Mutiarani a, Adi Setiawan b, Hanna Arini Parhusip c a Program Studi Matematika FSM UKSW Jl. Diponegoro 52-6

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI PARETO DENGAN METODE KUADRAT TERKECIL, MAXIMUM PRODUCT OF SPACING DAN REGRESI RIDGE SKRIPSI MEILISA MALIK

ESTIMASI PARAMETER DISTRIBUSI PARETO DENGAN METODE KUADRAT TERKECIL, MAXIMUM PRODUCT OF SPACING DAN REGRESI RIDGE SKRIPSI MEILISA MALIK ESTIMASI PARAMETER DISTRIBUSI PARETO DENGAN METODE KUADRAT TERKECIL MAXIMUM PRODUCT OF SPACING DAN REGRESI RIDGE SKRIPSI MEILISA MALIK 070803005 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD

ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD Fitra1, Saleh2, La Podje3 Mahasiswa Program Studi Statistika, FMIPA Unhas 2,3 Dosen Program Studi Statistika,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH SKRIPSI Oleh : GIAN KUSUMA DIAH TANTRI NIM : 24010210130075 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

terhadap kesehatan persalinan. Sehingga tak heran jika negara-negara maju di

terhadap kesehatan persalinan. Sehingga tak heran jika negara-negara maju di Nama: Ummi Fadilah NIM: 12/339683/PPA/3995 Teori Resiko Aktuaria PROSES PEMODELAN PENDAHULUAN Salah satu ciri dari negara maju adalah pemerintah dan masyarakat yang peduli terhadap kesehatan persalinan.

Lebih terperinci

PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN SRAGEN DENGAN PENDEKATAN KERNEL SKRIPSI

PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN SRAGEN DENGAN PENDEKATAN KERNEL SKRIPSI PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN SRAGEN DENGAN PENDEKATAN KERNEL SKRIPSI Disusun Oleh : BITORIA ROSA NIASHINTA 24010211120021 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

KAJIAN MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY DAN APLIKASINYA PADA HARGA GABAH KERING PANEN T A M U R I H

KAJIAN MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY DAN APLIKASINYA PADA HARGA GABAH KERING PANEN T A M U R I H KAJIAN MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY DAN APLIKASINYA PADA HARGA GABAH KERING PANEN T A M U R I H SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI

ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 161-169 ISSN 1978 8568 ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI Annisa Ulfiyah 1), Rini Cahyandari

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1. Penaksiran Parameter Jika adalah nilai parameter populasi yang belum diketahui harganya, maka dapat ditaksir oleh nilai statistik, dan disebut sebagai penaksir atau fungsi keputusan.

Lebih terperinci

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN E-Jurnal Matematika Vol. 3, No.2 Mei 2014, 45-52 ISSN: 2303-1751 PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN NI PUTU NIA IRFAGUTAMI 1, I GUSTI

Lebih terperinci

ANALISIS TRANSFORMASI BOX COX UNTUK MENGATASI HETEROSKEDASTISITAS DALAM MODEL REGRESI LINIER SEDERHANA SKRIPSI DESRI KRISTINA S

ANALISIS TRANSFORMASI BOX COX UNTUK MENGATASI HETEROSKEDASTISITAS DALAM MODEL REGRESI LINIER SEDERHANA SKRIPSI DESRI KRISTINA S ANALISIS TRANSFORMASI BOX COX UNTUK MENGATASI HETEROSKEDASTISITAS DALAM MODEL REGRESI LINIER SEDERHANA SKRIPSI DESRI KRISTINA S 070803055 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE. Oleh : DEWI SETYA KUSUMAWARDANI

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE. Oleh : DEWI SETYA KUSUMAWARDANI SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE Oleh : DEWI SETYA KUSUMAWARDANI 24010210120007 Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana

Lebih terperinci

Prosiding ISBN :

Prosiding ISBN : Penggunaan Metode Bayesian Subyektif dalam Pengkonstruksian Grafik Pengendali-c Sekar Sukma Asmara a, Adi Setiawan b, Tundjung Mahatma c a Mahasiswa Program Studi Matematika Fakultas Sains Matematika Universitas

Lebih terperinci

PREMI ASURANSI JIWA BERJANGKA MENGGUNAKAN MODEL TINGKAT BUNGA VASICEK

PREMI ASURANSI JIWA BERJANGKA MENGGUNAKAN MODEL TINGKAT BUNGA VASICEK PREMI ASURANSI JIWA BERJANGKA MENGGUNAKAN MODEL TINGKAT BUNGA VASICEK Muslim 1*, Hasriati 2, Asli Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA Erpan Gusnawan 1, Arisman Adnan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT Oleh : ADE CANDRA SISKA NIM: J2E 006 002 SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

BAB I PENDAHULUAN. Item Response Model adalah model yang digunakan untuk. menganalisa apakah suatu soal dalam suatu alat tes baik atau tidak.

BAB I PENDAHULUAN. Item Response Model adalah model yang digunakan untuk. menganalisa apakah suatu soal dalam suatu alat tes baik atau tidak. BAB I PENDAHULUAN 1.1 Latar Belakang Item Response Model adalah model yang digunakan untuk menganalisa apakah suatu soal dalam suatu alat tes baik atau tidak. Baik tidaknya suatu soal ditentukan oleh karakteristik

Lebih terperinci

PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA 2 CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH

PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA 2 CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH PENDUGAAN PARAMETER WAKTU PERUBAHAN PROSES PADA CONTROL CHART MENGGUNAKAN PENDUGA KEMUNGKINAN MAKSIMUM SITI MASLIHAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 008 PERNYATAAN MENGENAI TESIS DAN

Lebih terperinci

PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI. Oleh : Pramita Elfa Diana Santi J2E

PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI. Oleh : Pramita Elfa Diana Santi J2E PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI Oleh : Pramita Elfa Diana Santi JE 005 40 PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

ADLN-Perpustakaan Universitas Airlangga

ADLN-Perpustakaan Universitas Airlangga PEMANFAATAN EOQ (ECONOMIC ORDER QUANTITY) DAN ANALISA ABC (ALWAYS BETTER CONTROL) UNTUK MENGEFISIENSIKAN BIAYA PERSEDIAAN OBAT DI UNIT USAHA APOTEK PRIMKOPAL RUMKITAL DR. RAMELAN SURABAYA DIAJUKAN UNTUK

Lebih terperinci

Inferensia Statistik parametrik VALID?? darimana sampel diambil

Inferensia Statistik parametrik VALID?? darimana sampel diambil Inferensia Statistik parametrik VALID?? Tergantung dari bentuk populasi Tergantung dari bentuk populasi darimana sampel diambil Uji kesesuaian (goodness of fit) ) untuk tabel frekuensi Goodness-of-fit

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di zaman sekarang, kemajuan sains dan teknologi sangat berkembang pesat. Salah satu ilmu yang berkembang adalah matematika yang merupakan induk dari semua ilmu

Lebih terperinci

ANALISA STATISTIKA UNTUK CURAH HUJAN HARIAN PADA DAS KAMPAR BERDASARKAN AIC (AKAIKE INFORMATION CRITERION)

ANALISA STATISTIKA UNTUK CURAH HUJAN HARIAN PADA DAS KAMPAR BERDASARKAN AIC (AKAIKE INFORMATION CRITERION) ANALISA STATISTIKA UNTUK CURAH HUJAN HARIAN PADA DAS KAMPAR BERDASARKAN AIC (AKAIKE INFORMATION CRITERION) Citra Dewi Simbolon, Bambang Sujatmoko, Mardani Sebayang Jurusan Teknik Sipil S1, Fakultas Teknik

Lebih terperinci

ESTIMASI CONFIDENCE INTERVAL BOOTSTRAP UNTUK ANALISIS DATA SAMPEL TERBATAS

ESTIMASI CONFIDENCE INTERVAL BOOTSTRAP UNTUK ANALISIS DATA SAMPEL TERBATAS ESTIMASI CONFIDENCE INTERVAL BOOTSTRAP UNTUK ANALISIS DATA SAMPEL TERBATAS Asep Solih A* Abstrak Dalam analisis data seringkali peneliti ingin mengetahui karakteristik data penelitian seperti jenis distribusi,

Lebih terperinci

SILABUS MATA KULIAH. : Dapat menganalisis tentang statistika inferensial secara teoritik beserta komponen dan sifat-sifatnya

SILABUS MATA KULIAH. : Dapat menganalisis tentang statistika inferensial secara teoritik beserta komponen dan sifat-sifatnya SILABUS MATA KULIAH Program Studi : Pendidikan Matematika Kode Mata Kuliah : 50603 Mata kuliah : Statistika Matematika Bobot : 3 SKS Semester : V Mata Kuliah Prasyarat : Probabilitas Deskripsi Mata Kuliah

Lebih terperinci

STUDI PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE THEIL DALAM MODEL PENENTUAN REGRESI LINIER SEDERHANA

STUDI PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE THEIL DALAM MODEL PENENTUAN REGRESI LINIER SEDERHANA STUDI PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE THEIL DALAM MODEL PENENTUAN REGRESI LINIER SEDERHANA USWATUN HASANAH HARAHAP 090823072 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

The Central Limit Theorem

The Central Limit Theorem Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel

Lebih terperinci

SKRIPSI. Disusun oleh LANDONG PANAHATAN HUTAHAEAN

SKRIPSI. Disusun oleh LANDONG PANAHATAN HUTAHAEAN MODEL REGRESI COX PROPORTIONAL HAZARDS PADA DATA LAMA STUDI MAHASISWA (Studi Kasus Di Fakultas Sains dan Matematika Universitas Diponegoro Semarang Mahasiswa Angkatan 2009) SKRIPSI Disusun oleh LANDONG

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data tahan hidup atau data survival adalah lama waktu sampai suatu peristiwa terjadi. Istilah data survival sendiri banyak digunakan dalam bidang ilmu kesehatan, epidemiologi,

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

USULAN PENGENDALIAN KUALITAS DENGAN ESTIMASI TINGKAT KEGAGALAN PROSES (DPMO)

USULAN PENGENDALIAN KUALITAS DENGAN ESTIMASI TINGKAT KEGAGALAN PROSES (DPMO) USULAN PENGENDALIAN KUALITAS DENGAN ESTIMASI TINGKAT KEGAGALAN PROSES (DPMO) Budi Aribowo 1 ABSTRACT Article discusses an alternative quality control that has the same function with controlling map that

Lebih terperinci

Ekspektasi Satu Peubah Acak Kontinu

Ekspektasi Satu Peubah Acak Kontinu Chandra Novtiar 0857948015 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan II. TINJAUAN PUSTAKA 2.1 Analisis Survival Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan menduga probabilitas kelangsungan hidup, kekambuhan, kematian, dan peristiwaperistiwa

Lebih terperinci

PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT

PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT PADA ESTIMASI PARAMETER MODEL REGRESI PRODUKSI JAGUNG DI JAWA TENGAH oleh KARINA PUTRIANI M0110047

Lebih terperinci

APLIKASI MODEL REGRESI POISSON TERGENERALISASI PADA KASUS ANGKA KEMATIAN BAYI DI JAWA TENGAH TAHUN 2007

APLIKASI MODEL REGRESI POISSON TERGENERALISASI PADA KASUS ANGKA KEMATIAN BAYI DI JAWA TENGAH TAHUN 2007 APLIKASI MODEL REGRESI POISSON TERGENERALISASI PADA KASUS ANGKA KEMATIAN BAYI DI JAWA TENGAH TAHUN 2007 SKRIPSI Oleh: Nurwihda Safrida Umami NIM : J2E006025 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA

Lebih terperinci

ESTIMASI. Widya Setiafindari

ESTIMASI. Widya Setiafindari ESTIMASI Widya Setiafindari Tujuan Pembelajaran Menjelaskan konsep-konsep dasar yang mendukung pendugaan rata-rata populasi, persentase dan varians Menghitung dugaan-dugaan (estimates) rata-rata populasi

Lebih terperinci

PENERAPAN REGRESI ZERO-INFLATED NEGATIVE BINOMIAL (ZINB) UNTUK PENDUGAAN KEMATIAN ANAK BALITA

PENERAPAN REGRESI ZERO-INFLATED NEGATIVE BINOMIAL (ZINB) UNTUK PENDUGAAN KEMATIAN ANAK BALITA E-Jurnal Matematika Vol. 2, No.4, Nopember 2013, 11-16 ISSN: 2303-1751 PENERAPAN REGRESI ZERO-INFLATED NEGATIVE BINOMIAL (ZINB) UNTUK PENDUGAAN KEMATIAN ANAK BALITA NI MADE SEKARMINI 1, I KOMANG GDE SUKARSA

Lebih terperinci

Sampling, Estimasi dan Uji Hipotesis

Sampling, Estimasi dan Uji Hipotesis Sampling, Estimasi dan Uji Hipotesis Tujuan Pembelajaran Memahami perlunya suatu sampling (pengambilan sampel) serta keuntungan- keuntungan melakukannya Menjelaskan pengertian sampel acak untuk sampling

Lebih terperinci

oleh YUANITA KUSUMA WARDANI M

oleh YUANITA KUSUMA WARDANI M ESTIMASI PARAMETER MODEL REGRESI PROBIT SPASIAL MENGGUNAKAN SOFTWARE R DENGAN ALGORITME GIBBS SAMPLING oleh YUANITA KUSUMA WARDANI M0111083 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract Estimasi Parameter (Mika Asrini) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Mika Asrini 1, Winita Sulandari 2, Santoso Budi Wiyono 3 1 Mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 23 28 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD FEBY RIDIANI Program

Lebih terperinci

RELIABILITAS ORDINAL PADA METODE TEST-RETEST

RELIABILITAS ORDINAL PADA METODE TEST-RETEST RELIABILITAS ORDINAL PADA METODE TEST-RETEST Yaqozho Tunnisa 1, Rianti Setiadi 2 Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 tunnisa.yaqozho@gmail.com 1, ririnie@yahoo.com.sg 2 Abstrak Dalam

Lebih terperinci

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU PERTUMBUHAN PENDUDUK KOTA SEMARANG TAHUN 2011 MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU PERTUMBUHAN PENDUDUK KOTA SEMARANG TAHUN 2011 MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU PERTUMBUHAN PENDUDUK KOTA SEMARANG TAHUN 2011 MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION SKRIPSI DisusunOleh : Catra Aditya Wisnu Aji NIM : J2E

Lebih terperinci