Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD."

Transkripsi

1 Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung

2 Tentang MA4183 Model Risiko Jadwal kuliah: Senin, 13- (R. StudyHall); Kamis, 9- (R. 9025) Penilaian: Ujian: 9/9/16; 30/9/16; 21/10/16 25%) Kuis dan Tugas Besar (25%) Buku teks: Yiu-Kuen Tse, 2009, Nonlife Actuarial Models: Theory, Methods and Evaluation Stuart Klugman, Harry Panjer, Gordon Willmot, 2012, Loss Models: From Data to Decisions 4th ed. Jadwal Perkuliahan: M1 (22/8): Pengantar: risiko stokastik; kerugian acak, momen dan persentil, ekor distribusi M2 (29/8): Model frekuensi kerugian (klaim): Poisson, Binomial, Geometrik; mixed and mixture distributions M3 (5/9): Model frekuensi kerugian (klaim): kelas distribusi (a, b, 0) dan (a, b, 1); zero-modified and zero-truncated distributions M3 (5/9): Ujian 1, Jumat 9/9/16 M4 (12/9): Nilai kerugian (klaim) dan distribusi kontinu: normal, eksponensial, gamma, Pareto, Weibull; fungsi kesintasan, fungsi kegagalan M5 (19/9): Nilai kerugian (klaim) dan distribusi kontinu: deductibles, policy limits, coinsurance M6 (26/9): Model risiko agregat: momen dan fungsi pembangkit momen M6 (26/9): Ujian 2, Jumat 30/9/16 M7 (3/10): Model risiko agregat: mixed and compound Poisson models M8 (10/10): Ukuran risiko: definisi, sifat koheren, Value-at-Risk (VaR) M9 (17/10): Ukuran risiko: Expected Shortfall, transformasi M9 (17/10): Ujian 3, Jumat 21/10/16 2

3 Pengantar: Risiko Stokastik Risiko berkonotasi negatif dan sering diterjemahkan sebagai kerugian. Risiko adalah sistem yang dapat diukur dan dikendalikan. Risiko bersifat tidak pasti (uncertain). Pengukuran risiko dapat dilakukan secara stokastik. Model risiko merupakan salah satu cara untuk menerjemahkan fenomena kerugian melalui distribusi statistik. Pemodelan risiko dapat digunakan untuk memprediksi risiko di masa yang akan datang (forecasting future risk). Artinya, pemahaman konsep proses stokastik (deret waktu) sangat esensial. Salah satu bidang yang berkaitan erat dengan risiko adalah asuransi. Ini terjadi karena dengan produk asuransi-lah terjadi perpindahan (tranfer) risiko dari pemegang polis kepada pihak asuransi. Pada pemodelan kerugian klaim (claim losses) terdapat dua ukuran penting yang harus diperhatikan yaitu frekuensi kerugian klaim (claim frequency) dan besar atau nilai atau severitas kerugian klaim (claim severity). Kerugian Acak dan Sifat Statistik Misalkan X peubah acak yang menyatakan kerugian (selanjutnya disebut sebagai kerugian acak atau random loss). Sebagai peubah acak, X memiliki karakteristik utama yaitu memiliki distribusi. Akibatnya, sifat-sifat statistik akan melekat pada peubah acak. Contoh: Misalkan X kerugian acak yang memiliki fungsi distribusi: F 1 (x) = x/100, 0 x < 100. F 2 (x) = 1 ( ) 2000, x 0. x Apa yang dapat kita lakukan terhadap fungsi distribusi tersebut? 1. Membuat grafik/plot fungsi distribusi. 2. Mencari (find) fungsi peluang. 3. Menentukan nilai peubah acak X yang mungkin. 3

4 4. Menghitung mean, median, modus. 5. Mencari fungsi kesintasan (survival function). 6. Mengkaji fungsi laju kegagalan (hazard rate, failure rate, force of mortality). Sifat Momen dan Ekor Distribusi Kerugian acak dan distribusinya dapat dikaji lebih jauh melalui sifat momen (khususnya hingga momen ke-4) dan perilaku ekor distribusi. Kedua sifat ini dapat digunakan sebagai indikator adanya observasi ekstrem yang penting dalam menghitung risiko. Misalkan X kerugian acak dengan fungsi peluang f X (x). Fungsi pembangkit moment (fpm) untuk X adalah M X (t) = E(e tx ) = e tx f(x) dx. Perhatikan bahwa: e t X = 1 + tx + t2 X 2 Jadi, M X (t) =. (*) 2! + + tn X n n! +. Misalkan M X (t) adalah fpm untuk kerugian acak X. Turunan pertama fpm terhadap t adalah: M X(t) = dm X(t) dt = d dt E(etX ) = E ( ) d dt etx = E ( Xe tx). Jika fungsi tersebut dievaluasi di t = 0, kita peroleh M X (0) = E(X) atau momen pertama dari X. Kita dapat pula menentukan momen ke-k secara simultan menggunakan (*). Latihan: 1. Tentukan momen ke-k dari kerugian acak X. 2. Tentukan kondisi agar seluruh momen ke-k dari peubah acak X ada. 3. Misalkan X 1 dan X 2 kerugian acak-kerugian acak yang saling bebas. Tentukan fpm dari X 1 + X 2. 4

5 4. Misalkan X kerugian acak dengan M X (t) sebagai fungsi pembangkit momen. Didefinisikan f(t) = ln M X (t). Tunjukkan bahwa f (0) = V ar(x). 5. Jelaskan momen ke-k dalam kaitannya dengan sifat ekor tebal suatu distribusi. 6. Misalkan N kerugian acak dengan fungsi peluang: P (N = n) = e n n!, n = 0, 1, 2,.... Hitung E(3 N ). Petunjuk: Fungsi pembangkit peluang (fpp) G X (s) = E(s X ). 5

6 Bab 1 - Distribusi Frekuensi Kerugian (Klaim) Silabus: Distribusi Poisson, binomial, geometrik; kelas distribusi (a, b, 0); zero-modified and zero-truncated distributions; Kegiatan berasuransi pada dasarnya berkaitan dengan kerugian (klaim), baik frekuensi maupun nilai atau severitas. Frekuensi klaim dapat dikaji melalui kerugian acak diskrit, khususnya distribusi Poisson, binomial dan geometrik. 1.1 Distribusi Poisson Misalkan N kerugian acak yang menyatakan frekuensi kerugian klaim (yang masuk atau diajukan) pada suatu periode waktu. Distribusi untuk N adalah Poisson dengan parameter λ. Ciri khas distribusi ini adalah nilai mean dan variansi yang sama yaitu λ, E(N) = V ar(n) = λ. Dalam praktiknya, mungkinkah kita memperoleh data dengan nilai mean sama dengan variansi? (selanjutnya nanti akan dipelajari konsep overdispersion dan underdispersion). Jika kita memiliki kerugian acak Poisson (atau kerugian acak diskrit lainnya) maka kita dapat menentukan (i) peluang frekuensi kerugian melalui fungsi peluang atau fungsi pembangkit peluang atau fungsi pembangkit momen (ii) ekspektasi (bersyarat) frekuensi kerugian. Latihan: 1. Diketahui N kerugian acak berdistribusi Poisson dengan parameter mean 0.1. Tentukan P (N = 1 N 1). 2. Diketahui N P OI(0.2). Hitung E(1/(N + 1)). 3. Diketahui N P OI(2). Hitung E(N N > 1). 4. Tentukan E(3 N ), jika N kerugian acak Poisson dengan mean λ. 6

7 Teorema: Jika N 1,..., N k kerugian acak-kerugian acak yang saling bebas dengan X i P OI(λ i ) maka N N k P OI(λ λ k ). Perhatikan kasus n = 2. Distribusi N 1 + N 2 dapat ditentukan melalui teknik (i) fungsi peluang (ii) fungsi pembangkit momen. Misalkan N 1 dan N 2 kerugian acak Poisson dengan parameter, berturut-turut, λ 1 dan λ 2. Apa yang dapat kita katakan tentang kerugian acak N 1 N 1 + N 2 = m? Bagaimana kita dapat menentukan distribusi kerugian acak tersebut? 1.2 Distribusi Binomial Misalkan kerugian acak N menyatakan frekuensi kerugian klaim yang diproses dari semua klaim yang masuk. Distribusi yang tepat untuk N adalah distribusi binomial dengan parameter m (frekuensi klaim yang masuk) dan θ (peluang klaim diproses). Notasi: N B(m, θ). Fungsi peluang untuk N adalah P (N = k) = C m k θ k (1 θ) m k, k = 0, 1, 2,..., m Sifat momen, atau momen ke-r, dapat ditentukan dengan memanfaatkan fungsi peluang yaitu E(X r ) = m x r P (X = k). k=0 Untuk m = 1, misalnya, didapat E(X) = m θ. Momen kedua dan seterusnya (jika ada) dapat ditentukan dengan menggunakan fungsi pembangkit momen (fpm): M X (t) = (1 θ + θe t ) m Catatan: Fpm suatu kerugian acak berkorespondensi satu-satu dengan distribusi kerugian acak tersebut. Bagaimana dengan fungsi pembangkit peluang (fpp), manfaat apa yang dapat diperoleh dengan fpp? Bagaimana menentukan peluang secara rekursif? 7

8 Misalkan N 1, N 2,..., N k sampel acak dari N yang berdistribusi binomial dengan parameter (m, θ). Parameter θ dapat ditaksir dengan menggunakan metode likelihood maksimum sbb: Fungsi likelihood dan log-likelihood:... Turunan pertama terhadap parameter dan normalisasi:... Penaksir θ:... Turunan kedua terhadap parameter:... Latihan: 1. AXAh menjamin 60 risiko secara bebas. Setiap risiko memiliki peluang 0.04 untuk terjadi rugi setiap tahunnya. Seberapa sering lima atau lebih risiko akan diharapkan merugi pada tahun yang sama? Distribusi Geometrik Distribusi lain yang dapat digunakan untuk memodelkan frekuensi kerugian klaim adalah distribusi geometrik. Pertanyaannya, definisi peubah acak apakah yang tepat untuk menggambarkan distribusi ini? Misalkan N Geo(α) dengan fungsi peluang p(n) = (1 α) n 1 α, n = 1, 2,... Kita dapat menentukan sifat momen seperti sebelumnya, E(X) = 1 α, V ar(x) = 1 α 2, serta fpm dan fpp. Selain itu, misalkan N Geo(α), kita dapat pula menentukan sifat distribusi dari N + 1. Namun yang menarik untuk dikaji adalah apakah sifat khusus yang hanya dimiliki distribusi geometrik? Jelaskan! 8

9 Latihan: 1. Diketahui N Geo(0.2). Hitung P (N = 1 N 1) Mixed and Mixture Distributions Kita dapat memiliki suatu kerugian acak yang bersifat diskrit dan kontinu secara bersamaan. Distribusi tersebut dikatakan distribusi campuran atau mixed distribution. Misalkan X kerugian acak yang menyatakan nilai atau severitas klaim; nilai klaim berada pada [0, 100]. Definisikan: 0, X 20, Y = X 20, X > 20. Tentukan fungsi peluang, fungsi kesintasan, mean dan momen pusat kedua dari nilai kerugian acak Y. Misalkan N kerugian acak dengan fungsi peluang f N. Kita dapat membangun kerugian acak baru (dan juga distribusi baru) dengan memanfaatkan proporsi beberapa klasifikasi dari kerugian acak N. atau mixture distribution. Distribusi yang dihasilkan disebut distribusi atas proporsi kerugian acak Contoh: Frekuensi kegagalan bisnis suatu perusahaan adalah kerugian acak N berdistribusi Poisson dengan parameter λ. Kegagalan bisnis yang dimaksud dapat 60% dapat berupa kegagalan atau risiko kredit, sisanya berupa risiko operasional. Kerugian acak yang menyatakan frekuensi kegagalan bisnis adalah N P OI(λ) dengan fungsi peluang f N (n) = a 1 f N1 (n) + a 2 f N2 (n), dengan N i frekuensi kegagalan bisnis karena, berturut-turut, risiko kredit dan risiko operasional. Dengan demikian, N i adalah kerugian acak baru berdistribusi Poisson dengan parameter λ i = a i λ. 9

10 1.5 Kelas Distribusi (a, b, 0) Perhatikan fungsi peluang dari kerugian acak Poisson(λ): f(n) = e λ λ n, n = 0, 1, 2,... n! yang dapat dituliskan rekursif dengan memperhatikan fungsi peluang untuk N = n 1, Diperoleh f(n 1) = e λ λ x 1 (x 1)!. f(n) f(n 1) = e λ λ n / e λ λ n 1 n! (n 1)! = λ n atau f(n) = ( ) λ f(n 1), n = 1, 2,... n Distribusi-distribusi diskrit yang sudah dikenalkan sebelumnya (binomial, geometrik, binomial negatif, Poisson) dapat dikelompokkan menjadi sebuah Kelas Distribusi (a, b, 0) dengan fungsi peluang memenuhi sifat rekursif: f(n) = ( a + b ) f(n 1), n = 1, 2,..., n dengan a, b konstanta dan f(0) diberikan. Catatan: Kelas distribusi (a, b, 1) dapat pula dibentuk dengan analogi. 1.6 Zero-Modified and Zero-Truncated Distributions Misalkan kerugian acak N B(3, 0.4). Dalam aplikasi teori peluang, seringkali kita dihadapkan pada fenomena dimana peluang terjadinya 0 telah ditentukan, misalnya P (N = 0) = 0.3, atau bahkan mungkin tidak ada, P (N = 0) = 0. 10

11 Untuk itu, perlu adanya modifikasi fungsi peluang dibawah. Distribusi yang dihasilkan dikatakan sebagai distribusi modifikasi nol (zero-modified distribution) dan distribusi bernilai nol (zerotruncated distribution). N P (N = k) Misalkan kerugian acak N dari suatu distribusi (a, b, 0) memiliki fungsi peluang f(n). Misalkan f mod (n) fungsi peluang yang merupakan modifikasi dari f(n); f mod (n) adalah fungsi peluang dari distribusi (a, b, 1). Untuk f mod (0) yang ditentukan, hubungan antara f mod (n) dan f(n) adalah f mod (n) = c f(n), n = 1, 2,... dengan c konstanta. Fungsi peluang f mod (n) haruslah terdefinisi dengan baik; akibatnya, c dapat diperoleh, c = 1 f mod (0). 1 f(0) Untuk distribusi binomial dengan parameter (3, 0.4) diatas, kita dapat menghitung f mod (k), k = 1, 2, 3 sebagai berikut: f mod (1) = 1 f mod (0) f(1) 1 f(0) = = Dengan cara sama, kita peroleh f mod (2) = dan f mod (3) =

12 Untuk distribusi bernilai nol (zero-truncated distribution), nilai P (N = 0) = 0. Diperoleh nilai seperti tabel berikut: N P (N = k) Zero-Modified Zero-Truncated Latihan: 1. Tentukan zero-modified distribution untuk N yang berdistribusi Poisson dengan parameter Misalkan N adalah zero-truncated distribution dari N. Diketahui, fungsi peluang dan fungsi pembangkit peluang N, berturut-turut, adalah f N (n) dan G N (s). Tentukan fungsi pembangkit peluang untuk N. 12

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3 Kuis Selamat Datang MA4183 Model Risiko Tanggal 22 Agustus 2015, Waktu: suka-suka menit Misalkan X peubah acak dengan fungsi distribusi berikut: 0, x < 0 1 + x, 0 x < 1 3 5 F (x = 3, 1 x < 2 5 9, 2 x

Lebih terperinci

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks Catatan Kuliah MA48 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2 Tentang MA48 Model Risiko A. Jadwal kuliah:

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Distribusi Binomial Negatif-Lindley pada Data Frekuensi Klaim Asuransi Kendaraan Bermotor di Indonesia Binomial Negative-Lindley Distribution in the Frequency Data

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan Control your risk! Konsep Surplus 1 Perusahaan asuransi memiliki modal awal atau initial surplus 2 Perusahaan menerima premi dan membayarkan klaim 3 Premi bersifat

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Asuransi merupakan suatu kegiatan pemindahan atau pengalihan risiko untuk mencegah terjadinya kerugian besar yang disebabkan oleh risiko-risiko tertentu. Risiko-risiko

Lebih terperinci

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia Vol.8 No. () Hal. 6-8 UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM Aprida Siska Lestia Program Studi Matematika, FMIPA Universitas Lambung Mangkurat. Email : as_lestia@unlam.ac.id

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Penentuan Distribusi Kerugian Agregat Tertanggung Asuransi Kendaraan Bermotor di Indonesia Menggunakan Metode Rekursif Panjer Determination of Aggregate Insured Losses

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang Statistika, Vol. 17 No. 1, 45 51 Mei 2017 Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang Indah permatasari, aceng komarudin mutaqin, lisnur wachidah Program

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Penaksiran Besar Klaim Optimal Menggunakan Metode Linear Empirical Bayesian yang Diaplikasikan untuk Perhitungan Premi Asuransi Kendaraan Bermotor di Indonesia 1 Hilda

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

/ /16 =

/ /16 = Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan

Lebih terperinci

BAB I PENDAHULUAN. banyak orang agar mau menjadi pemegang polis pada perusahaan tersebut. Salah

BAB I PENDAHULUAN. banyak orang agar mau menjadi pemegang polis pada perusahaan tersebut. Salah BAB I PENDAHULUAN 1.1 Latar Belakang Perusahaan asuransi menawarkan berbagai produk untuk menarik minat banyak orang agar mau menjadi pemegang polis pada perusahaan tersebut. Salah satu produk asuransi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014

UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014 SOLUSI UJIAN PAI A70 UJIAN A70 PERIODE JUNI 2014 A70-Pemodelan Teori Risiko 9/14/2014 Berikut merupakan solusi ujian PAI yang saya buat secara khusus untuk teman-teman PT Padma Radya Aktuaria, secara umum

Lebih terperinci

Uji Hipotesis dan Aturan Keputusan

Uji Hipotesis dan Aturan Keputusan Uji Hipotesis dan Aturan Keputusan oleh: Khreshna Syuhada, PhD. 1. Pendahuluan Pada perkuliahan tingkat 2, telah dikenalkan masalah uji hipotesis sebagai berikut: Seorang peneliti memberikan klaim bahwa

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG Anita Andriani Universitas Hasyim Asy ari Tebuireng, Jombang anita.unhasy@gmail.com Abstrak Asuransi kendaraan bermotor

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

PERSATUAN AKTUARIS INDONESIA

PERSATUAN AKTUARIS INDONESIA PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A70 Pemodelan dan Teori Risiko TANGGAL : 25 Juni 2013 JAM : 13.30 16.30 WIB LAMA UJIAN : 180

Lebih terperinci

4. Misalkan peubah acak X memiliki fungsi distribusi:

4. Misalkan peubah acak X memiliki fungsi distribusi: Diskusi 1 Tanggal 19 Februari 2014, Waktu: suka-suka menit 1. Enam laki-laki dan 5 perempuan melamar suatu pekerjaan di PT KhrshFin. Empat dari mereka terpilih secara acak untuk diwawancarai. Misalkan

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools.

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools. AK6083 Manajemen Risiko Kuantitatif Referensi: Silabus: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools Seputar risiko dan volatilitas Peubah acak dan fungsi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI Puspitaningrum Rahmawati, Bambang Susanto, Leopoldus Ricky Sasongko Program Studi Matematika (Fakultas Sains dan Matematika,

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA2081 Statistika

Lebih terperinci

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 229-240 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON Tina

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN PEMBAHASAN Pada bab ini akan dianalisis dan dibahas tentang pengukuran risiko operasional klaim asuransi kesehatan pada PT. XYZ menggunakan metode EVT. Pengukuran risiko operasional

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia

TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia 3 TINJAUAN PUSTAKA Asuransi Asuransi berasal dari kata assurance atau insurance, yang berarti jaminan atau pertanggungan. Asuransi dalam Undang-Undang No.2 Th 1992 tentang usaha perasuransian adalah perjanjian

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci