BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1 PENDAHULUAN. 1.1 Latar Belakang"

Transkripsi

1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun Distribusi ini diambil dari salah satu fungsi kepadatan kumulatif yang digunakan pada pertengahan abad 19 (Gompertz-Verhulst) untuk membandingkan tabel kematian dan menghasilkan laju pertumbuhan penduduk. Dimana salah satu dari tiga parameternya distandarisasi menjadi satu. Distribusi eksponensial tergenaralisir memilki parameter α sebagai alat untuk mengestimasi nilai kegagalan awal, dimana semakin besar nilai α maka distribusi tersebut mendekati distribusi normal. Berbeda dengan distribusi eksponensial biasa yang memiliki parameter λ, dimana semakin besar nilai λ maka distribusi tersebut berbentuk linier negatif. Dalam kajiannya Gupta dan Kundu menggunakan maksimum likelihood estimator untuk menghitung estimasi dari parameter α nya. Dan kemudian memperoleh observasi, dimana satu set data telah dianalisis ulang dan diamati bahwa distribusi eksponensial tergeneralisir memberikan hasil yang lebih baik daripada distribusi eksponensial biasa. Untuk itu penulis ingin mengkaji lebih mendalam lagi distribusi eksponensial tergenaralisir dengan mencari estimator parameter µ dan σ. Banyak metode yang digunakan untuk mencari estimator parameter µ dan σ, diantaranya dengan menggunakan metode momen, fungsi pembangkit momen, fungsi karakteristik, dan estimasi maksimum likelihood. Tetapi dalam penelitian ini hanya akan digunakan fungsi pembangkit momen (Moment Generating Function) sebagai alat transformasi

2 dan estimator parameter µ dan σ variabel. pada distribusi eksponensial tergenaralisir dua Dua variabel digunakan tidak hanya untuk harapan estimasi tersebut tidak berbias, tetapi juga untuk membandingkan bahwa kedua variabel tersebut memiliki hasil yang sama dari nilai rata-rata dan variansi keseluruhan distribusinya. Menurut Walpole (1995) kegunaan yang jelas dari fungsi pembangkit momen ialah untuk menentukan momen distribusi. Bila fungsi pembangkit momen suatu peubah acak memang ada, fungsi itu dapat dipakai untuk membangkitkan atau menemukan seluruh momen dari peubah acak tersebut, dengan menurunkan fungsi pembangkit momen hingga n kali. Dapat diketahui bahwa turunan pertamanya adalah rata-rata dan turunan kedua adalah variansinya. Dari latar belakang di atas, penulis akan mengkaji tentang Estimasi Parameter µ dan σ Pada Distribusi Eksponensial Tergeneralisir Dua Variabel Menggunakan Fungsi Pembangkit Momen 1. Perumusan Masalah Pada penelitian ini rumusan masalah yang dibahas adalah bagaimanakah transformasi distribusi eksponensial tergeneralisir dua variabel dengan menggunakan fungsi pembangkit momen untuk mencari marginal fungsi pembangkit momennya, kemudian mencari estimator parameter rata-rata (µ) dan parameter variansinya (σ ) dan mengestimasi kedua parameter tersebut. 1.3 Tinjauan Pustaka Dijelaskan oleh Gupta dan Kundu (1999) bahwa distribusi ekponensial tergeneralisir (Univariate Generalized Eponential Distribution (GE)) dengan fungsi kepadatan

3 kumulatif (fkk) dan fungsi kepadatan peluang (fkp) dengan > 0, adalah sebagai berikut : F GE ( ; λ α α, λ) = (1 e ) F GE ( ; α, λ) = αλe λ (1 e λ ) α 1 Dengan : = peubah acak α = parameter bentuk λ e =,7183 = parameter skala Jika (X 1, X ) merupakan distribusi eksponensial tergeneralisir dua variabel dengan asumsi saling bebas, maka fungsi kepadatan peluang gabungan dari (X 1, X ), untuk 1 > 0, > 0 adalah : F 1 α1 1 α 1 1 (, 1 ) = α 1 α (1 e ) (1 e ) e Untuk mentransformasi distribusi eksponensial tergeneralisir dua variabel di atas dengan fungsi pembangkit momen. Maka akan disubtitusikan dengan persamaan fungsi pembangkit momen yang di jelaskan sebagai berikut : Dijelaskan oleh Walpole dan Myers (1995) bahwa fungsi pembangkit momen atau Moment generating function (MGF) dari sebuah peubah acak X dapat didefinisikan sebagai: M ( t) = E( e t ) untuk t dalam R di mana T = {t R : M (t) < }. Karena distribusi yang akan ditransformasi merupakan distribusi gabungan maka fungsi pembangkit momennya harus dalam bentuk gabungan (Joint Moment Generating Function), yang di notasikan sebagai berikut: M t11 + t ( t, t ) = E( e ) 1 1

4 Untuk peubah acak X 1 dan X yang kontinu dan bebas satu sama lain (saling lepas), dinotasikan dengan : M t11 + t ( t1, t) e f1( 1) f( ) d 1 = 1d Berdasarkan fungsi pembangkit momen gabungan dari X 1 dan X, dapat ditentukan fungsi pembangkit momen masing-masing dari X 1 dan X yang dinamakan fungsi pembangkit momen marginal dari X 1 dan fungsi pembangkit momen marginal dari X. Fungsi pembangkit momen marginal dari X1 diperoleh dari fungsi pembangkit momen gabungan dengan mensubstitusikan t = 0, sehingga: 11 M ( t1,0) = M ( t1) = E( e t ), dan Fungsi pembangkit momen marginal dari X diperoleh dari fungsi pembangkit momen gabungan dengan mensubstitusikan t 1 = 0, sehingga: t M ( 0, t ) = M ( t ) = E( e ) Kemudian dapat ditentukan momen momen dari peubah acak X 1 berdasarkan fungsi pembangkit momen marginalnya. Dimana momen ke-1 yang juga merupakan nilai parameter rata-rata (µ), dihitung dengan meggunakan rumus : µ = E( X ) = M ( t1,0) M (0,0) = t1 t1= 0 t1 Dan momen ke-nya dihitung dengan menggunakan rumus: E( X M ( t,0) 1 M (0,0) ) = = t1 t1 = 0 t1

5 Dari rumus momen ke-1 dan momen ke-, maka dapat di hitung nilai parameter variansi (σ )nya dengan menggunakan rumus : Var M (0,0) M (0,0) ( σ ) = t t 1 1 Perhitungan yang sama juga dapat dilakukan dalam menentukan nilai parameter rata-rata (µ) dan nilai parameter variansi (σ ) dari peubah acak X berdasarkan fungsi pembangkit momen marginalnya dengan menggunakan rumus di atas. 1.4 Tujuan Penelitian Penelitian ini bertujuan untuk mentransformasi distribusi eksponensial tergeneralisir dua variabel dengan menggunakan fungsi pembangkit momen untuk mencari marginal fungsi pembangkit momennya, kemudian mencari estimator parameter rata-rata (µ) dan parameter variansinya (σ ) dan mengestimasi kedua parameter tersebut. 1.5 Kontribusi Penelitian Kesimpulan yang diperoleh setelah dilakukan penelitian, diharapkan : 1. Memudahkan penggunaan distribusi eksponensial tergeneralisir dua variabel secara praktis.. Sebagai bahan kajian untuk menganalisis distribusi eksponensial tergeneralisir dua variabel lebih mendalam. 3. Memperkaya literatur dalam bidang statistika terutama yang berhubungan dengan fungsi pembangkit momen dan distribusi eksponensial tergeneralisir dua variabel.

6 1.6 Metode Penelitian Metode yang digunakan dalam penelitian ini adalah: 1. Dengan melakukan studi literatur terlebih dahulu mengenai fungsi pembangkit momen dan distribusi eksponensial tergeneralisir dua variabel.. Memaparkan dan menjelaskan pengertian fungsi pembangkit momen dan distribusi eksponensial tergeneralisir dua variabel. 3. Mensubtitusi persamaan fungsi pembangkit momen dengan persamaan distribusi eksponensial tergeneralisir dua variabel. 4. Mentransformasikan persamaan yang didapat dari hasil subtitusi dengan mengintegralkan persamaan tersebut. 5. Mencari estimator parameter rata-rata (µ) dan parameter variansi (σ ) dengan mencari turunan pertama dan turunan kedua dari hasil transformasi persamaannya. 6. Mengestimasi parameter rata-rata (µ) dan parameter variansi (σ ) dengan menguji nilai kedua parameter tersebut pada contoh kasus. 7. Menarik kesimpulan dari hasil transformasi dan estimasi yang diperoleh.

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan: II. TINJAUAN PUSTAKA Dalam tinjauan pustaka penelitian Karakteristik Penduga Parameter Distribusi Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan beberapa definisi dan teorema yang

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,,

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,, 4 II. LANDASAN TEORI Pada bab ini akan dijelaskan beberapa definisi yang berhubungan dengan penelitian mengenai pendekatan distribusi GE ke distribusi GLL melalui distribusi eksponensial dengan menyamakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Estimasi reliabilitas adalah estimasi yang menggambarkan sebuah taksiran terhadap suatu komponen tertentu, dimana dan adalah variabel random yang independen dengan

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data antar kejadian (time-to-event data) adalah data lama waktu sampai suatu peristiwa terjadi atau sering disebut data survival. Untuk memperoleh data antar

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma (

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma ( I. PENDAHULUAN 1.1. Latar Belakang dan Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi

Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari

Lebih terperinci

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK Adri Arisena 1, Anna Chadidjah 2, Achmad Zanbar Soleh 3 Departemen Statistika Universitas Padjadjaran 1 Departemen Statistika

Lebih terperinci

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat

Lebih terperinci

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar Statistika Matematika II Distribusi Sampling Atina Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com Bila sampling berasal dari populasi yang

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 3: Statistika FMIPA Universitas Islam Indonesia Bila sampling berasal dari populasi yang digambarkan melalui fungsi peluang f X (x θ), pengetahuan tentang θ menghasilkan karakteristik mengenai keseluruhan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

Perbandingan Estimasi Parameter Pada Distribusi Eksponensial Dengan Menggunakan Metode Maksimum Likelihood Dan Metode Bayesian

Perbandingan Estimasi Parameter Pada Distribusi Eksponensial Dengan Menggunakan Metode Maksimum Likelihood Dan Metode Bayesian Perbandingan Estimasi Parameter Pada Distribusi Eksponensial Dengan Menggunakan Metode Maksimum Likelihood Dan Metode Bayesian Rado Yendra 1, Elsa Tria Noviadi 2 1,2 Jurusan Matematika, Fakultas Sains

Lebih terperinci

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *email:

Lebih terperinci

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti 4 II. LANDASAN TEORI 2.1 Distribusi F Distribusi F merupakan salah satu distribusi kontinu. Dengan variabel acak X memenuhi batas X > 0, sehingga luas daerah dibawah kurva sama dengan satu, sementara grafik

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S OLEH : Riana Ekawati (1205 100 014) Dosen Pembimbing : Dra. Farida Agustini W, M.S Salah satu bagian penting dari statistika inferensia adalah estimasi titik. Estimasi titik mendasari terbentuknya inferensi

Lebih terperinci

BAB I PENDAHULUAN. investasi yang telah dilakukan. Dalam berinvestasi jika investor mengharapkan

BAB I PENDAHULUAN. investasi yang telah dilakukan. Dalam berinvestasi jika investor mengharapkan BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia bisnis, hampir semua investasi mengandung ketidakpastian atau resiko. Investor tidak mengetahui dengan pasti hasil yang akan diperolehnya dari investasi

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

RENCANA MUTU PEMBELAJARAN

RENCANA MUTU PEMBELAJARAN RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 504203 Nama Mata Kuliah : Statistika Matematika Jumlah sks : 3 sks Semester : V Alokasi

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi II. TINJAUAN PUSTAKA 2.1 Distribusi Normal Umum Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi normal umum, jika dan hanya jika fungsi densitasnya berbentuk: ; Penulisan notasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga distribusi generalized gamma dengan metode generalized moment ini, penulis menggunakan definisi, teorema dan konsep dasar

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT Oleh : ADE CANDRA SISKA NIM: J2E 006 002 SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

Lebih terperinci

IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL. (Skripsi) Oleh MERDA GUSTINA

IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL. (Skripsi) Oleh MERDA GUSTINA IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL (Skripsi) Oleh MERDA GUSTINA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK IDENTIFIKASI

Lebih terperinci

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA digilib.uns.ac.id DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA oleh ANIS TELAS TANTI M0106003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI

ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 161-169 ISSN 1978 8568 ESTIMASI PARAMETER DISTRIBUSI BINOMIAL NEGATIF-GENERALIZED EKSPONENSIAL (BN-GE) PADA DATA OVERDISPERSI Annisa Ulfiyah 1), Rini Cahyandari

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

KAJIAN AVAILABILITAS PADA SISTEM PARALEL

KAJIAN AVAILABILITAS PADA SISTEM PARALEL KAJIAN AVAILABILITAS PADA SISTEM PARALEL Riana Ayu Andam P. 1, Sudarno 2, Suparti 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika FSM UNDIP Abstract Availabilitas merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 4: Metode Evaluasi Estimator Statistika FMIPA Universitas Islam Indonesia Penggunaan metode estimasi yang berbeda dapat menghasilkan estimator yang sama maupun berbeda Dari hasil estimator yang berbeda,

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di 5 BAB II LANDASAN TEORI Bab ini membahas pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di bahas adalah sebagai berikut: A.

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI INVERS MAXWELL UKURAN BIAS SAMPEL MENGGUNAKAN METODE BAYESIAN. Rince Adrianti 1, Haposan Sirait 2 ABSTRACT ABSTRAK

PENAKSIR PARAMETER DISTRIBUSI INVERS MAXWELL UKURAN BIAS SAMPEL MENGGUNAKAN METODE BAYESIAN. Rince Adrianti 1, Haposan Sirait 2 ABSTRACT ABSTRAK PENAKSIR PARAMETER DISTRIBUSI INVERS MAXWELL UKURAN BIAS SAMPEL MENGGUNAKAN METODE BAYESIAN Rince Adrianti, Haposan Sirait Mahasiswa Program Studi S Matematika Dosen Matematika, Jurusan Matematika Fakultas

Lebih terperinci

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU 3.1 Model Regresi Cox Proportional Hazard dengan Variabel Terikat oleh Waktu Model regresi Cox proportional hazard

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi

Lebih terperinci

Medan, Juli Penulis

Medan, Juli Penulis 9. Seluruh teman-teman seperjuangan di Ekstensi Matematika Statistika, dan semua pihak yang turut membantu menyelesaikan skripsi ini. Sepenuhnya penulis menyadari bahwa dalam penulisan skripsi ini masih

Lebih terperinci

Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar

Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar Vol.14, No. 2, 159-165, Januari 2018 Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar Sutrianah Burhan 1, Andi Kresna Jaya 1

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp MA3081 STATISTIKA MATEMATIK(A) Bab 2: We love Statistics Pengantar Parameter adalah... ...suatu karakteristik dari populasi. Statistik adalah... ...suatu karakteristik dari sampel. Statistik adalah fungsi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA SIDANG TERTUTUP TUGAS AKHIR HOME MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA I V Oleh : Muh. Nurcahyo Utomo 121 1 37 Dosen Pembimbing: Dra. Farida Agustini

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG Anita Andriani Universitas Hasyim Asy ari Tebuireng, Jombang anita.unhasy@gmail.com Abstrak Asuransi kendaraan bermotor

Lebih terperinci

ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL

ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL 1) Program Studi Matematika Universitas Ahmad Dahlan dian@math.uad.ac.id

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Distribusi Weibull Power Series

Distribusi Weibull Power Series Distribusi Weibull Power Series Maulida Yanti 1, Sarini S.Si.,M.Stats 2 1 Mahasiswa Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424 2 Staff Pengajar Departemen Matematika, FMIPA UI, Kampus UI Depok,

Lebih terperinci

PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM)

PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM) Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 144-151 ISSN 1978 8568 PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM) Siti Nurrohmah, Ida

Lebih terperinci

SIMULASI INTENSITAS SENSOR DALAM PENDUGAAN PARAMATER DISTRIBUSI WEIBULL TERSENSOR KIRI. Abstract

SIMULASI INTENSITAS SENSOR DALAM PENDUGAAN PARAMATER DISTRIBUSI WEIBULL TERSENSOR KIRI. Abstract ISBN: 978-602-71798-1-3 SIMULASI INTENSITAS SENSOR DALAM PENDUGAAN PARAMATER DISTRIBUSI WEIBULL TERSENSOR KIRI Widiarti 1), Ayu Maidiyanti 2), Warsono 3) 1 FMIPA Universitas Lampung widiarti08@gmail.com

Lebih terperinci

Estimasi Parameter Distribusi Marshall-Olkin Copula dengan Metode Maximum Likelihood

Estimasi Parameter Distribusi Marshall-Olkin Copula dengan Metode Maximum Likelihood SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 S - 26 Estimasi Parameter Distribusi Marshall-Olkin Copula dengan Metode Maximum Likelihood Riris Listya Dahyita Putri, Dewi Retno Sari Saputro,

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

ESTIMASI PARAMETER REGRESI RANK BERDISTRIBUSI EKSPONENSIAL DENGAN MENGGUNAKAN METODE KUADRAT TERKECIL TERBOBOTI

ESTIMASI PARAMETER REGRESI RANK BERDISTRIBUSI EKSPONENSIAL DENGAN MENGGUNAKAN METODE KUADRAT TERKECIL TERBOBOTI ESTIMASI PARAMETER REGRESI RANK BERDISTRIBUSI EKSPONENSIAL DENGAN MENGGUNAKAN METODE KUADRAT TERKECIL TERBOBOTI Megawati 1, Anisa 2, Raupong. 3 Abstrak Regresi kuadrat terkecil berdasarkan plot peluang,

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

10/7/2004 TI-2131 Teori Probabilitas - DI 1

10/7/2004 TI-2131 Teori Probabilitas - DI 1 3 Variabel Random Pengantar Variabel Random Variabel Random Diskrit Nilai Ekspektasi dan Variansi Variabel Random Diskrit Variabel Random Kontinyu Kovariansi dan Korelasi Distribusi Bivariat Moment Generating

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci