Konsep Dasar Statistik dan Probabilitas

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Konsep Dasar Statistik dan Probabilitas"

Transkripsi

1 Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

2 Tujuan Mahasiswa dapat memahami pentingnya ilmu statistik dalam kualitas Mahasiswa mampu memahami berbagai distribusi probabilitas (normal, hipergeometrik, eksponensial, weibull, poisson, dan binomial) mahasiswa dapat memahami konsep dasar probabilitas mahasiswa dapat menerapkan ilmu statistik dan probabilitas dalam kualitas Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

3 Statistik sebagai alat dalam kualitas Sejak awal perkembangan kualitas, para praktisi telah memperdebatkan pentingnya metode-metode statistik dalam mencapai kualitas yang memuaskan. Tanpa statistik, maka penggambaran penyelesaian mengenai data akan menjadi sumber malapetaka dalam penerapannya pada berbagai kasus. konsep penting lainyya adalah variasi atau penyimpangan yang membahas mengenai tidak adanya dua hal yang sama secara sempurna Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

4 Distribusi Probabilitas Fungsi distribusi probabilitas merupakan rumusan matematika yang berhubungan dengan nilai-nilai karakteristik dengan probabilitas kejadian pada populasi Rata-rata dari distribusi probabilitas disebut nilai yang diharapkan Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

5 ada dua macam jenis distribusi 1 Continous (untuk data variabel) apabila karakteristik yang diukur dapat membicarakan berbagai nilai (ketepatan pengukuran proses), distribusi probabilitasnya disebut distribusi probabilitas kontinu. Ada berbagai bentuk distribusi probabilitas yang biasa digunakan, misalnya distribusi probbailitas normal, distribusi probabilitas exponensial, dan distribusi probabilitas Weibull. 2 Diskret (untuk data atribut) Apabila karakteristik yang diukur hanya membicarakan nilai - nilai tertentu (misalnya 0,1,2,3), distribusi probabilitasnya disebut dengan distribusi probabilitas diskret. Sebagai contoh, distribusi untuk banyaknya kesalahan pada sampel yang berisi 5 unit merupakan distribusi probabilitas diskret karena kesalahan hanya 0, 1, 2, 3, 4, atau 5. Distribusi probbailitas yang dipakai ada 2 yaitu Poisson dan Binomial. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

6 Distribusi Probabilitas Normal Rumus umum untuk Distribusi Probabilitas Normal: dimana: e = 2,718 π = 3,14 µ = rata-rata populasi σ = deviasi standar populasi y = 1 σ (X µ) 2 2π e 2σ 2 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

7 Contoh Sebagai contoh, dari pengalaman proses masa lalu disimpulkan bahwa waktu pemadaman bola lampu listrik mengikuti distribusi normal. Sampel yang diuji sebanyak 50 unit bola dengan rata-rata hidup 60 hari dan deviasi standarnya 20 hari. Berapakah kemungkinan bila lampu dapat hidup setelah 100 hari? Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

8 Distribusi Probabilitas Eksponensial Fungsi distribui probabilitas eksponensial adalah y = 1 µ e X µ Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

9 Contoh Sebagai contoh, waktu antara kegagalan yang berurutan dari suatu alat diukur dan menghasilkan histogram yang menyerupai distribusi eksponensial. rata-rata waktu antara kegagalan tersebut adalah 100 jam. berapakah probabilitas waktu antara dua kegagalan yang berurutan dari alat tersebut paling tidak 20 jam? Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

10 Distribusi Probabilitas Weibull Fungsi Distribusi Weibull adalah: dengan α = 1 θ β dimana: α = parameter skala β = parameter bentuk f (x; θ, β) = β θ β x β 1 e ( x θ )β Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

11 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

12 Kurva distribusi Weibull ini akan bervariasi tergantung pada nilai-nilai numerik parameternya. yang terpenting adalah parameter bentuk β yang menunjukkan model kurva. apabila β = 1, 0, maka fungsi Weibull turun sampai dengan eksponensial dan apabila β = 3, 5 (dan α = 1 dan γ = 0), Weibull mendekati distribusi normal. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

13 Distribusi Probabilitas Poisson Apabila probabilitas terjadinya p dari suatu peristiwa adalah konstan untuk setiap n percobaan yang tidak tergantung, probabilitas terjadinya c pada n percobaan adalah dimana: n = banyanya percobaan p = probabilitas terjadinya c = banyaknya kejadian f (c, np) = (np)c e np c! Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

14 Distribusi Probabilitas Poisson distribusi probabilitas poisson juga dapat membuat perkiraan atau prediksi distribui poisson digunakan dalam menghitung probabilitas yang berkaitan dengan prosedur pengambilan sampel. Contoh,Suatu produk sebanyak 300 unit dihasilkan dimana terdapat 2 % kesalahan atau kerusakan. Secara acak diambil 40 unit yang dipilih dari 300 unit tersebut sebagai sampel.berdasarkan tabel distribusi poisson dapat dilihat bahwa nilai np = 40(0,02)=0,8 dengan berbagai variasi nilai c seperti tabel di bawah ini Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

15 Latihan 1 The length of life X, in hours, of an item in a machine shop has a Weibull distribution with α = 0.01 and β = 2. What is the probability that it fails before eight hours of usage? 2 During a laboratory experiment, the average number of radioactive particles passing through a counter in 1 millisecond is 4. What is the probability that 6 particles enter the counter in a given millisecond? Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

16 Jawaban 1 The cumulative distribution function for the Weibull distribution is given by for α, β > 0, danx 0 sehingga F (x) = 1 e αxβ P(X < 8) = F (8) = 1 e (0,01)82 = 1 0, 527 = 0, Using the Poisson distribution with x = 6 and λt = 4 we have, p(6; 4) = e ! = 0, 104 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

17 Distribusi Probabilitas Binomial Apabila kondisi pada distribusi Poisson tidak dapat ditemukan, maka distribusi binomial mungkin dapat diterapkan. Apabila probabilitas terjadinya p dari suatu peristiwa konstan pada setiap n percobaan yang bersifat tidak tergantung, maka probabilitas dari c kejadian dalam n percobaan tersebut adalah dimana : q = 1 - p n! c!(n c)! pc q n c Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

18 Dalam praktek, asumsi bahwa probabilitas terjadinya bersifat konstan beralasan apabila ukuran banyaknya populasi sekurang-kurangnya 10 kali ukuran banyaknya sampel. Distribusi binomial juga dapat digunakan untuk membuat perkiraan atau prediksi. Sebagai contoh, suatu produk terdiri dari 100 unit diserahkan oleh pemasok yang telah menguji kualitasnya dan diketahui terdapat 5 % kesalahan. Secara acak diambil 6 unit sebagai sampel dari 100 unit produk tersebut. Probabilitas berbagai sampel tersebut tampak seperti Tabel di bawah ini Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

19 Distribusi Probabilitas Hipergeometrik Distribusi yang bersifat diskret lainnya adalah distribusi hipergeometrik yang digunakan apabila asumsi pada distribusi poisson dan binomial tidak dapat ditemukan, diskret uniform atau semua nilai memiliki probabilitas yang sama dan multinomial atau apabila dua atau lebih parameter diobservasi dalam sampel tersebut. Distribusi Probabilitas Hipergeometrik terjadi apabila populasi terbatas dan sampel yang diambil secara acak dilakukan tanpa pengembalianatau penggantian. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

20 Rumusan hipergeometrik disusun dengan tiga kombinasi, yaitu kombinasi total, kombinasi ketidaksesuaian, dan kombinasi kesesuaian, dan diformulasikan dengan P(d) = C D dc N D n d C N n dimana: P(d) = Probabilitas dari d unit yang tidak sesuai pada ukuran sampel n C N n = Kombinasi semua unit C D d = kombinasi unit-unit ketidaksesuaian C N D n d = Kombinasi unit-unit yang sesuai N = Banyaknya unit yang dihasilkan (populasi) n = banyaknya unit dalam sampel D = banyaknya unit ketidaksesuaian dalam populasi d = banyaknya unit ketidaksesuaian dalam sampel N - D = banyaknya unit sesuai dalam populasi n - d = banyaknya unit sesuai dalam sampel Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

21 Rumusan tersebut dicapai dari penerapan definisi probabilitas, perkalian sederhana, dan kombinasi - kombinasinya. Pembilang adalah cara atau hasil pencapaian unit-unit yangtidak sesuai atau hasil pencapaian unit-unit yang sesuai, dan penyebut adalah cara atau hasil yang mungkin secara kesuluruhan. Simbol - simbol yang digunakan dapat diubah agar lebih tepat digunakan dalam pengendalian kualitas Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

22 Contoh Contoh, 9 unit produk yang dihasilkan terdapat 3 unti yang mengalami ketidaksesuaian. Berapak probabilitas satu unit yang tidak sesuai pada 4 unit sampel yang diambil secara acak? Dari contoh tersebut tampat bahwa N = 9, D = 3, n = 4, dan d = 1. Sehingga, P(1) = C 3 1C C 9 4 = 0, 476 Dengan cara yang sama maka P(0) = 0,119, P(2)= 0,357, dan P(3)= 0,048. Sehingga jumlah probabilitasnya pasti sama dengan 1. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

23 Latihan 1 Lots of 40 components each are deemed unacceptable if they contain 3 or more defectives. The procedure for sampling a lot is to select 5 components at random and to reject the lot if a defective is found. What is the probability that exactly 1 defective is found in the sample if there are 3 defectives in the entire lot? 2 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

24 Jawaban 1 Using the hypergeometric distribution with n = 5, N = 40, k = 3, and x = 1, we find the probability of obtaining 1 defective to be P(1) = C 3 1C C 40 5 = 0, 3011 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

25 Konsep Dasar Probabilitas Probabilitas mempunyai sejumlah persamaan, seperti kemungkinan, kesempatan, kecenderungan, dan sebagainya. Probabilitas memang menunjukkan kemungkinan terjadinya sutau peristiwa. Apabila peristiwa A dapat terjadi pada Na hasil dari N kemungkinan dengan kesempatan yang sama, maka probabilitas peristiwa tersebut adalah: P(A) = Na N dimana: P(A) = probabilitas peristiwa A akan terjadi Na = banyaknya hasil dari peristiwa A N = banyaknya hasil yang mungkin terjadi. Definisi tersebut dapat digunakan apabila banyaknya hasil diketahui atau banyaknya hasil ditemukan melalui percobaan. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

26 7 teorema probabilitas Probabilitas ditunjukkan dengan angka antara 1,000 dan 0,000 di mana nilai 1, merupakan kepastian bahwa peristiwa akan terjadi dan nilai 0 adalah kepastian bahwa perstiwa tidak akan terjadi. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

27 Teorema 2 Teorema 2 Apabila P(A) adalah probabilitas bahwa peristiwa A akan terjadi, kemudian probabilitas bahwa A tidak akan terjadi adalah 1,000 - P(A). Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

28 Teorema 3 Apabila A dan B adalah dua peristiwa yang bersifat mutually exclusive, sehingga probabilitas bahwa peristiwa A atau peristiwa B akan terjadi merupakan jumlah probabilitas masing-masing. P(A atau B) = P(A)+P(B) Mutually exclusive berarti terjadinya satu peristiwa membuat peristiwa lain tidak akan terjadi. Sebagai contoh, apabila dari tigas pemasok, X, Y, dan Z terdapat produk yang mempunyai kesalahan dan tidak adalah sebagai berikut: Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

29 Dari 261 unit produk, probabilitas produk yang ditawarkan oleh pemasok X atau Z adalah: P(X atau Z)= P(X) + P(Z) = = 0, 498 Probbailitas produk yang salah dari pemasok X atau produk yang sesuai dari pemasok Z adalah P(ks. X atau k.z) = = 0, 299 Probabilitas produk yang ditawarkan pemasok Z atau produk yang tidak sesuai dari pemasok X atau produk yang sesuai dari pmasok Y adalah: P(ks. X atau k.y) = = 0, 785 = 0, 299 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

30 Teorema 4 Apabila peristiwa A dan B tidak bersifat mutually exclusive sehingga probabilitas peristiwa A atau B atau keduanya ditentukan dengan : P(A atau B keduanya)= P(A)+P(B)-P(keduanya) Dari 261 unit produk tersebut, probabilitas produk yang ditawarkan oleh pemasok X atau produk yang mengalami ketidaksesuaian adalah: P(X atau ks. atau keduanya) = P(X) + P(ks.) - P(X dan ks) = = 0, 785 = 0, 234 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

31 Teorema 5 Jumlah probabilitas peristiwa-peristiwa dari situasi yang ada sama dengan 1 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

32 Teorema 6 Apabila A dan B merupakan dua peristiwa yang bersifat independen, maka probabilitas keduanya A dan B terjadi merupakan hasil dari probabilitas keduanya. Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

33 Teorema 7 Apabila A dan B merupakan dua peristiwa yang saling tergantung (dependen), probabilitas keduanya A dan B terjadi adalah: P(A dan B) = P(A) x P(B A) Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7, / 33

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

The Central Limit Theorem

The Central Limit Theorem Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

PEMBAHASAN UTS 2015/2016 STATISTIKA 1

PEMBAHASAN UTS 2015/2016 STATISTIKA 1 PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : debrina@ub.ac.id Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Teorema Newman Pearson

Teorema Newman Pearson pengujian terbaik Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika October 6, 2014 Outline 1 Review 2 Uji dua sisi untuk mean 3 Teorema Neyman-Pearson Back Outline 1 Review 2 Uji dua sisi untuk

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

Ayundyah Kesumawati. April 20, 2015

Ayundyah Kesumawati. April 20, 2015 Pengujian Kesumawati Nol dan Prodi Statistika FMIPA-UII April 20, 2015 Pengujian Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi Pengujian hipotesis berhubungan dengan penerimaan atau

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pengendalian Kualitas Statistik untuk Data Atribut

Pengendalian Kualitas Statistik untuk Data Atribut Pengendalian Kualitas Statistik untuk Data Atribut Ayundyah Kesumawati Prodi Statistika FMIPA-UII December 14, 2015 Ayundyah (UII) Pengendalian Kualitas Statistik untuk Data Atribut December 14, 2015 1

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

Distribusi Probabilitas Diskret Teoritis

Distribusi Probabilitas Diskret Teoritis Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi

Lebih terperinci

MATERI STATISTIK II. Genrawan Hoendarto

MATERI STATISTIK II. Genrawan Hoendarto MATERI STATISTIK II Teori Probabilitas Variabel Acak dan Nilai Harapan Distribusi Teoritis Distribusi Sampling Pengujian Hipotesis Regresi dan Korelasi Linear Sederhana Statistik Nonparametrik Daftar Pustaka

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik

Lebih terperinci

Wilcoxon Signed-Rank Test Single-Sample (Ade Heryana, SST, MKM) April 16, 2017

Wilcoxon Signed-Rank Test Single-Sample (Ade Heryana, SST, MKM) April 16, 2017 BINOMIAL SIGN TEST FOR A SINGLE-SAMPLE (Uji Tanda Binomial untuk Satu Sampel) Oleh: Ade Heryana, SST, MKM Prodi Kesehatan Masyarakat, FIKES Univ. Esa Unggul PENDAHULUAN Uji Binomial Sign Single-sample

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

STATISTIK PERTEMUAN IV

STATISTIK PERTEMUAN IV STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

Statistik Bisnis 1. Week 9 Discrete Probability

Statistik Bisnis 1. Week 9 Discrete Probability Statistik Bisnis 1 Week 9 Discrete Probability Random Variables Random Variables Discrete Random Variable Continuous Random Variable Wk. 9 Wk. 10 Probability Distributions Probability Distributions Wk.

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET

DISTRIBUSI PROBABILITAS DISKRET DISTRIBUSI PROBABILITAS DISKRET 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian Distribusi Probabilitas Binomial

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp MA3081 STATISTIKA MATEMATIK(A) Bab 2: We love Statistics Pengantar Parameter adalah... ...suatu karakteristik dari populasi. Statistik adalah... ...suatu karakteristik dari sampel. Statistik adalah fungsi

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 3: Estimasi Titik dengan Metode Bayes Statistika FMIPA Universitas Islam Indonesia Dalam pendekatan klasik, parameter θ adalah besaran tetap yang tidak diketahui Sampel random X 1, X 2,..., X n diambil

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci