l.makalah DISTRIBUSI PROBABILITAS DISKRIT

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "l.makalah DISTRIBUSI PROBABILITAS DISKRIT"

Transkripsi

1 l.makalah DISTRIBUSI PROBABILITAS DISKRIT Kata Pengantar Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT semoga selalu tercurahkan kepada junjungan kita Nabi Nabi Muhammad SAW beserta keluarga, para sahabat dan para penerusnya diiringi harapan kita senantiasa mendapatkan syafaat dari beliau mulai saat ini sampai hari kiamat nanti. Dan semoga kita semua tetap berada dalam lindungan Allah SWT. Amin. Pada kesempatan ini penulis akan menguraikan sedikit tentang Distribusi Probabilitas Diskrit dan Distribusi Normal. Sebelum kita membahas hal tersebut, perlu kiranya kita mengetahui apa itu Distribusi Probabilitas Diskrit dan Distribusi Normal. Distribusi Probabilitas Diskrit adalah sebuah daftar yang berisi seluruh hasil dari eksperimen dan probabilitas yang berkaitan dengan setiap hasi tersebut. Sedangkan Distribusi Normal digunakan untuk mempelajari Distrbusi probabilitas kontinu, (variabel acak kontinu diperoleh dengan cara mengukur sesuatu, seperti : tinggi badan, berat badan, dll. ).Kemudian penulis tak lupa mengucapkan terima kasih kepada dosen Statistika Dasar,yang telah banyak membimbing dan memberikan pelajaran kepada penulis.ucapan terima kasih juga penulis sampaikan kepada teman-teman di Sekolah Tinggi Teknologi yang tidak henti-hentinya memberikan bimbingan kepada penulis dalam pembuatan makalah ini.penulis menyadari bahwa dalam pembuatan makalah ini tidaklah sempurna. Namun besar harapan penulis agar makalah ini dapat dijadikan sumber referensi bagi pembaca serta dimanfaatkan untuk memperluas ilmu pengetahuan khususnya tentang Statistika Dasar. Depok, 28 Desember 2015

2 Penulis Daftar Isi Kata Pengantar Daftar Isi BAB I PENDAHULUAN 1. Latar Belakang 2. Pengertian Diskrit 3. Penggunaan Doistribusi Poisson 4. Rumus Distribusi Poisson BAB II PEMBAHASAN 1. Distribusi Diskrit 2. Distribusi Poisson 3. Distribusi Binomial 4. Distribusi Geometri 5. Distribusi Kontinu 6. Distribusi Eksponensial 7. Distribusi Normal 8. Distribusi Gamma BAB III PENUTUP Kesimpulan BAB I

3 PENDAHULUAN 1. Latar Belakang Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Kejadian yang sering atau jarang terjadi dikatakan mempunyai peluang terjadi yang besar atau kecil. Keseluruhan nilai-nilai peluang biasa digunakan dalam kehidupan sehari-hari. Dalam mengaplikasikan statistika terhadap permasalahan sains, industri, atau sosial, pertama-tama dimulai dari mempelajari populasi. Tiga buah sebaran teoritis yang paling terkenal, diantaranya dua buah sebaran peluang yang diskrit dan sebaran yang kontinyu. Kedua sebaran yang teoritis yang deskrit itu ialah sebaran binomial dan sebaran Poisson. Sebaran kontinyu nya adalah sebaran normal. 2. Pengertian Distribusi Poisson Distribusi Poisson disebut juga distribusi peristiwa yang jarang terjadi,distribusi Poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson ( ), seorang ahli matematika bangsa Perancis. Distribusi Poisson termasuk distribusi teoritis yang memakai variable random (variable acak) diskrit. Distibusi Poisson merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai nilai 0,1, 2, 3 dst. Distribusi Poisson adalah distribusi nilai-nilai bagi suatu variabel random X (X diskrit), yaitu banyaknya hasil percobaan yang terjadi dalam suatu interval waktu tertentu atau disuatu daerah tertentu. fungsi distribusi probabilitas diskrit yang sangat penting dalam beberapa aplikasi praktis. Poisson memperhatikan bahwa distribusi binomial sangat bermanfaat dan dapat menjelaskan dengan sangat memuaskan terhadap probabilitas Binomial b(x n.p) untuk X= 1,2,3 n. namun demikian, untuk suatu kejadian dimana n sangat besar (lebih besar dari 50) sedangkan probabilitas sukses (p) sangat kecil seperti 0,1 atau kurang, maka nilai binomialnya sangat sulit dicari. Suatu bentuk dari distribusi ini adalah rumus

4 pendekatan peluang Poisson untuk peluang Binomial yang dapat digunakan untuk pendekatan probabilitas Binomial dalam situasi tertentu. Distribusi Poisson sering digunakan untuk menentukan peluang sebuah peristiwa yang dalam area kesempatan tertentu diharapkan terjadinya sangat jarang. Distribusi ini juga bisa dianggap sebagai pendekatan kepada distribusi binom, N cukup besar sedangkan = peluang terjadinya peristiwa A, sangat dekat dengan nol sedemikian sehingga λ = Np tetap, maka distribusi binom didekati oleh distribusi Poisson. Satu-satunya parameter distribusi Poisson adalah λ, yaitu mean dan variansi, menyatakan derajat hitungan dalam satuan waktu atau tempat. Apabila satuan tempat atau waktu berubah dengan derajat relatif tetap, maka harga λ berubah secara proporsional. Asumsi sebaran Poisson : 1. Terdapat n tindakan bebas dimana n sangat besar, 2. Hanya satu keluaran yang dipelajari, 3. Terdapat peluang yang konstan dari munculnya kejadian setiap tindakan, 4. Peluang lebih dari satu keluaran pada setiap tindakan sangat kecil atau dapat diabaikan. Sebaran Poisson merupakan sebaran peluang dari peubah acak Poisson X, yang menyatakan jumlah keberhasilan dalam suatu selang waktu atau daerah tertentu, adalah : P ( X : ) =, x = 0,1,2,... Dimana µ adalah rata-rata keberhasilan selama selang waktu atau daerah tertentu dan e = 2, (bilangan alami). Percobaan Poisson memiliki ciri-ciri berikut : 1. Hasil percobaan pada suatu selang waktu dan tempat tidak tergantung dari hasil percobaan di selang waktu dan tempat yang lain yang terpisah 2. Peluang terjadinya suatu hasil percobaan sebanding dengan panjang selang waktu dan luas tempat percobaan terjadi. Hal ini berlaku hanya untuk selang waktu yang singkat dan luas daerah yang sempit 3. Peluang bahwa lebih dari satu hasil percobaan akan terjadi pada satu selang waktu dan luasan tempat yang sama diabaikan

5 Definisi Distribusi Peluang Poisson : e : bilangan natural = x : banyaknya unsur BERHASIL dalam sampel m : rata-rata keberhasilan Perhatikan rumus yang digunakan! Peluang suatu kejadian Poisson hitung dari rata-rata populasi (m) Tabel Peluang Poisson Seperti halnya peluang binomial, soal-soal peluang Poisson dapat diselesaikan dengan Tabel Poisson (Statistika 2, hal ). Cara membaca dan menggunakan Tabel ini tidak jauh berbeda dengan Tabel Binomial x M = 4.5 m = poisson(2; 4.5) = poisson(x < 3; 4.5) = poisson(0;4.5) + poisson(1; 4.5)+ poisson(2; 4.5) = = poisson(x > 2;4.5) = poisson(3; 4.5) + poisson(4; 4.5) poisson(15;4.5) atau = 1 - poisson(x 2) = 1 - [poisson(0;4.5) + poisson(1; 4.5)+ poisson(2; 4.5)] = 1 [ ] = = PENGGUNAAN DISTRIBUSI POISSON Distribusi poisson banyak digunakan dalam hal: a). menghitung Probabilitas terjadinya peristiwa menurut satuan waktu, ruang atau isi, luas, panjang tertentu, saeperti menghitung probabilitas dari: Kemungkinan kesalahan pemasukan data atau kemungkinan cek ditolak oleh bank Jumlah pelanggan yang harus antri pada pelayanan rumah sakit, restaurant cepat saji atau antrian yang panjang bila ke ancol.

6 banyaknya bintang dalam suatu area acak di ruangangkasa atau banyaknya bakteri dalam 1 tetes atau 1 liter air. jumlah salah cetak dalam suatu halaman ketik Banyaknya penggunaan telepon per menit atau banyaknya mobil yang lewat selama 5 menit di suatu ruas jalan. distribusi bakteri di permukaan beberapa rumput liar di ladang. Semua contoh ini merupakan beberapa hal yang menggambarkan tentang suatu distribusi Poisson. b). Menghitung distribusi binomial apabila nilai n besar (n 30) dan p kecil (p<0,1). Jika kita menghitung sejumlah benda acak dalam suatu daerah tertentu T, maka proses penghitungan ini dilakukan sebagai berikut : a. jumlah rata-rata benda di daerah S T adalah sebanding terhadap ukuran S, yaitu ECount(S)= λ S. Di sini melambangkan ukuran S, yaitu panjang, luas, volume, dan lain lain. Parameter λ > 0 menggambarkankan intensitas proses. b. menghitung di daerah terpisah adalah bebas. c. kesempatan untuk mengamati lebih dari satu benda di dalam suatu daerah kecil adalah sangat kecil, yaitu P(Count(S)2) menjadi kecil ketika ukuran menjadi kecil. RUMUS DISTRIBUSI POISSON Rumus Poisson dapat digunakan untuk menghitung probabilitas dari jumlah kedatangan, misalnya : probabilitas jumlah kedatangan nasabah pada suatu bank pada jam kantor. Distribusi Poisson ini digunakan untuk menghitung probabilitas menurut satuan waktu. Rumus Probabilitas Poisson Suatu Peristiwa Probabilitas suatu peristiwa yang berdistribusi Poisson dirumuskan: P(X) = µ_x. e_µ / x! Keterangan: P(x) = Nilai probabilitas distribusi poisson µ = Rata-rata hitung dan jumlah nilai sukses, dimana µ = n. p e = Bilangan konstan = 2,71828 X = Jumlah nilai sukses

7 P = Probabilitas sukses suatu kejadian! = lambang faktorial 1. Distribusi Diskrit Distribusi probabilitas uniform diskrit Algoritma Bangkitkan U(0,1) Dapatkan X = a+(b-a+1)*u Contoh: BAB II PEMBAHASAN - Sebuah perusahaan bakery membuat suatu kelompok jenis donat yang dijual ke tokotoko dengan distribusi diskrit uniform dengan kebutuhan harian maksimum 100 unit dan minimum 40 unit. Tentukan bilangan acak dari distribusi diskrit uniform dengan a = 77 z0 = dan m = 128

8 2. Distribusi Poisson Algoritma Hitung a, b =1 dan i =0 Bangkitkan Ui+1= U(0,1) Ganti b = bui+1 Jika b<a maka dapatkan X = i dan jika tidak lanjutkan ke langkah 5 Ganti i = i+1 kembali ke langkah 2 Contoh: Suatu kejadian berdistribusi poisson dengan rata-rata 3 kejadian perjam dan terjadi selama periode waktu 1,4 jam. Tentukan bilangan acak dari distribusi poisson dengan a = 17 z0 = dan m = Distribusi Binomial Metode transformasi dari distribusi binomial Dengan mempergunakan fungsi densitas binomial yang dinyatakan dengan : = 0,1, 2.. n, k Contoh Dari suatu distribusi binomial, diketahui p =0,5 dan n =2. Tentukan bilangan acak dari distribusi binomial dengan a = 77 z0 = dan m = Distribusi Geometri Algoritma Bangkitkan U(0,1) Dapatkan X = ln(u)/ln(1-p) Contoh Pada seleksi karyawan baru sebuah perusahaan terdapat 30 % pelamar yang sudah mempunyai keahlian komputer tingkat advance dalam pembuatan program. Para pelamar diinterview secara insentif dan diseleksi secara acak.

9 Tentukan bilangan acak dengan a = 43, m = 1237 dan z0 = Distribusi Kontinu Distr probabilitas uniform kontinu Algoritma Bangkitkan U(0,1) Dapatkan X = a+(b-a)*u Contoh Pada suatu sentra telpon ternyata distribusi pelayanan telponnya berdistribusi uniform kontinu dengan minimal waktu 3 menit dan maksimal 5 menit. Tentukan bilangan dengan a = 173 z0 = dan m = Distribusi Eksponensial Algoritma Bangkitkan U(0,1) Dapatkan X Dengan rata-rata dengan nilai > 0 Contoh Pada suatu sentra telpon ternyata distribusi penerimaan telponnya berdistribusi eksponensial dengan mean = 0,1 menit. Tentukan bilangan 10 acak dengan a = 173 z0 = dan m = Distribusi Normal Algoritma Bangkitkan U1,U2= U(0,1) Hitung V1= 2U1-1 dan V2= 2U2-1 Hitung W = V12 + V22 Jika W > 1 maka kembali ke langkah 1 dan jika tidak lanjutkan ke langkah 5

10 Contoh Sebuah rumah sakit berniat mempelajari penggunaan suatu alat pada ruang emergency. Jika diketahui bahwa lamanya seorang pasien yang di treat menggunakan alat tsb berdistribusi normal dgn mean 0.8 jam dan standard deviasi 0.2 jam, tentukan bilangan acak yang mewakili lamanya penggunaan alat tersebut oleh 6 orang pasien. 8. Distribusi Gamma Algoritma Bangkitkan U1 dan U2 X = - ln (U1 * U2) di mana adalah parameter. Contoh: Mesin pada suatu pabrik perlu diperbaiki setiap saat breakdown dengan biaya $100/hari. Jika lama perbaikan mesin berdistribusi gamma dengan parameter = 2 dan = 1/3, tentukan rata-rata biaya untuk 30 kali breakdown, jika diketahui mesin breakdown ke 29 kali mengalami lama perbaikan selama 0.38 hari dengan rata-rata lama perbaikan 0.68 hari dgn variansi S2 = Jawab: U1 = U2 = X30 = - ln (U1 * U2) = - 1/3 ln (0.818 * 0.322) = hari Biaya untuk memperbaiki mesin yg breakdown ke 30 kali adalah $100 x hari = $ 44.5 X30 - X29

11 Rata-rata ke 30 kali = X30 = X = = = BAB III PENUTUP Kesimpulan Distribusi Probabilitas Diskrit adalah sebuah daftar yang berisi seluruh hasil dari eksperimen dan probabilitas yang berkaitan dengan setiap hasi tersebut. Sedangkan Distribusi Normal digunakan untuk mempelajari Distrbusi probabilitas kontinu, (variabel acak kontinu diperoleh dengan cara mengukur sesuatu, seperti : tinggi badan, berat badan, dll. ). Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Kejadian yang sering atau jarang terjadi dikatakan mempunyai peluang terjadi yang besar atau kecil. Keseluruhan nilai-nilai peluang biasa digunakan dalam kehidupan sehari-hari. Dalam mengaplikasikan statistika terhadap permasalahan sains, industri, atau sosial, pertama-tama dimulai dari mempelajari populasi.

12 DISTRIBUSI PROBABILITAS DISKRIT DAN DISTRIBUSI NORMAL Oleh Choiril Muthohar Tuesday, July 3, 2012 Bagikan : Tweet MAKALAH DISTRIBUSI PROBABILITAS DISKRIT DAN DISTRIBUSI NORMAL Disusun oleh : Choiril Muthohar NIM : Jurusan :Teknik Informatika SEKOLAH TINGGI TEKNOLOGI Pendahuluan Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT semoga selalu tercurahkan kepada junjungan kita Nabi Nabi Muhammad SAW beserta keluarga, para sahabat dan para penerusnya diiringi harapan kita senantiasa mendapatkan syafaat dari beliau mulai saat ini sampai hari kiamat nanti. Dan semoga kita semua tetap berada dalam lindungan Allah SWT. Amin. Pada kesempatan ini penulis akan menguraikan sedikit tentang Distribusi Probabilitas Diskrit dan Distribusi Normal. Sebelum kita membahas hal tersebut, perlu kiranya kita mengetahui apa itu Distribusi Probabilitas Diskrit dan Distribusi Normal. Distribusi Probabilitas Diskrit adalah sebuah daftar yang berisi seluruh hasil dari eksperimen dan probabilitas yang berkaitan dengan setiap hasi tersebut. Sedangkan Distribusi Normal digunakan untuk mempelajari Distrbusi probabilitas kontinu, (variabel acak kontinu diperoleh dengan cara mengukur sesuatu, seperti : tinggi badan, berat badan, dll. ).Kemudian penulis tak lupa mengucapkan terima kasih kepada dosen Statistika Dasar,yang telah banyak membimbing dan memberikan pelajaran kepada penulis.ucapan terima kasih juga penulis sampaikan kepada teman-teman di Sekolah Tinggi Teknologi yang tidak henti-hentinya memberikan bimbingan

13 kepada penulis dalam pembuatan makalah ini.penulis menyadari bahwa dalam pembuatan makalah ini tidaklah sempurna. Namun besar harapan penulis agar makalah ini dapat dijadikan sumber referensi bagi pembaca serta dimanfaatkan untuk memperluas ilmu pengetahuan khususnya tentang Statistika Dasar. Nganjuk,28 Mei 2011 Penulis Daftar isi Pendahuluan 2 Daftar isi 3 Distribusi Probabilitas Diskrit 4 Definisi Umum 4 Variabel acak 6 Rata-Rata Distribusi Probabilitas 7 Distribusi Probabilitas Binomial 9 Distribusi Probabilitas Hipergeometris 9 Distribusi Probabilitas Poisson 9 DISTRIBUSI NORMAL 10 Definisi Umum 10 Karakteristik kurva distribusi normal 10 Distribusi probabilitas normal standar 11 Daerah dibawah kurva normal standar 11 PENUTUP 14 A. DISTRIBUSI PROBABILITAS DISKRIT 1. Definisi Umum Distribusi probabilitas : Sebuah daftar berisi seluruh hasil dari suatu ekperimen dan probabilitas yang berkaitan dengan setiap hasil tersebut. Contoh : Misal kita tertarik terhadap munculnya kepala pada pelemparan koin sebanyak 3 kali. Hasil yang mungkin adalah : nol kepala, satu kepala, dua dan tiga kepala. Bagaimana distribusi probabilitas untuk munculnya kepala? Jawab :

14 Terdapat 8 hasil yang mungkin : Dua karakter penting distribusi probabilitas. 1. Probabilitas dari suatu hasil harus berada antara 0 dan 1 2. Jumlah dari seluruh probabilitas hasil harus sama dengan 1 Soal Pemahaman : Hasil yang mungkin dari eksperimen pelemparan dadu, adalah : 1 titik, 2 titik, 3 titik, 4 titik, 5 titik dan 6 titik. a. Buat distribusi probabilitas untuk hasil tersebut. b. Gambarkan distribusi probabilitas dalam grafik. c. Berapa jumlah probabilitasnya? a)variabel Acak Definisi : Variabel yang digunakan untuk memberikan nilai nilai yang berbeda untuk setiap hasil dari suatu eksperimen. Contoh : - Bila kita menghitung jumlah orang yang absen pada hari senin, jumlahnya bisa 1,2,3,4, jumlah absen ini variabel acak. - Bila kita melemparkan 2 koin dan menghitung jumlah kepala dapat muncul nol, satu, dua kepala. Jumlah kepala yang muncul adalah variabel acak. - Variabel acak yang lain : jumlah lampu yang cacat yang diproduksi dalam seminggu, tinggi pemain basket. 1. Variabel acak diskrit : variabel acak yang nilai-nilainya dihasilkan dari proses berhitung. Contoh : skor yang diberikan pada pertandingan senam lantai, seperti : 9,2 ; 7,5 ; 8,0 ; dst. 2. Variabel acak kontinu : Variabel acak yang nilai-nilainya dihasilkan dari proses pengukuran. Contoh : Berat balok besi produksi pabrik dalam sehari, seperti : 2,5 kg ; 2,52 kg ; 2,499 kg, dst. Variabel acak : 1. Diskrit : Jumlah absen dalam sehari, jumlah muncul kepala, dan seterusnya. 2. Kontinu : Tinggi pemain basket, berat badan pegulat,dan seterusnya. b) Rata-Rata Distribusi Probabilitas Rata-rata disebut juga nilai Ekspektasi ( ) (x). Rata-rata merupakan nilai khas yang digunakan untuk menggambarkan distribusi probabilitas

15 Rata-rata distribusi probabilitas : μ=e(x)= [x.p(x)] P (x) = Probabilitas variabel acak X = variabel acak VARIASI STANDAR DAN DEVIASI Variansi menggambarkan penyebaran dalam suatu distribusi. Variansi distribusi probabilitas : σ^(2 )= [(x-μ) ^(2 ) P (x)] Standar Deviasi:SD= (σ^2 ) 2. Distribusi Probabilitas Binomial Karakteristik distribusi binomial : a. Hasil dari eksperimen hanya diklasifikasikan menjadi dua, yaitu : Sukses atau Gagal. b. Variabel acaknya diperoleh dengan cara menghitung jumlah sukses dari suatu percobaan. c. Probabilitas sukses akan selalu tetap selama percobaan. d. Setiap percobaan independen, artinya hasil percobaan satu tidak mempengaruhi hasil per cobaan berikutnya Untuk membentuk distribusi binomial, kita harus mengetahui : a. Jumlah percobaan ( trial ). b. Probabilitas sukses untuk setiap percobaan. Distribusi Probabilitas Binomial : P(x)= n!/x!(n-x)! π^x. (1-π) ^(n-x) n = jumlah trial / percobaan x = Jumlah sukses π = probabilitas sukses untuk setiap percobaan Beberapa catatan penting mengenai distribusibinomial : 1. Bila n tetap, tetapi π meningkat dari 0,05 ke 0,95, bentuk distribusi akan berubah. Pada π 5,0 <, grafik miring ke kiri (positive skew), pada π 5,0 = grafik simetris, pada 5,0 > π grafik miring ke kanan (negative skew). 2. Bila π tetap, namun n meningkat, maka bentuk distribusi binomial semakin simetris. 3. Mean (μ) untuk distribusi binomial: μ = n. π Variansi (σ ^2) untuk distribusi binomial :σ^(2 )=n.π (1-π) 3. Distribusi Probabilitas Hipergeometris Syarat digunakannya distribusi hipergeometris : a. Sampel diambil dari suatu populasi terbatas tanpa pengembalian b. Jumlah sampel n lebih besar dari 5% dari jumlah seluruh populasi N Populasi terbatas (finite population) : suatu populasi yang terdiri dari sejumlah kecil individu, objek, atau pengukuran. Distribusi Hipergeometri :P(x)= ((scx)(n-scn-x))/νcn

16 N = jumlah seluruh populasi S = jumlah sukses dalam populasi x = jumlah sukses yang diinginkan ( 0,1,2,3, ) n = jumlah sampel atau jumlah percobaan / trial C = Simbol untuk kombinasi 4. Distribusi Probabilitas Poisson Distribusi ini sering disebut Hukum kejadian yang tidak mungkin, maksudnya distribusi ini dipakai pada kejadian dengan probabilitas π yang sangat kecil ( 0,05 ). Distribusi ini memiliki banyak aplikasi diantaranya : menentukan distribusi kesalahan pada input data, cacat yang terjadi pada proses pengecatan sparepart mobil, jumlah kecelakaan yang terjadi pada Boeing 737 selama 3 bulan terakhir. DistrbusiPoisson: P(x)=(u^x.e^(-n))/x! μ = rata-rata aritmatik dari sukses pada suatu interval waktu e = konstanta (2,71828) x = jumlah sukses P(x) = probabilitas dari suatu x B. DISTRIBUSI NORMAL Definisi Umum Untuk mempelajari distribusi probabilitas kontinu, kita menggunakan "distribusi probabilitas Normal". Variabel acak kontinu diperoleh dengan cara mengukur sesuatu, seperti : berat badan, tinggi badan, usia pakai baterai dll. a)karakteristik Kurva Dstribusi Normal 1. Kurva normal berbentuk lonceng, memiliki puncak pada tengah distribusi. Rata-rata aritmatik, median, dan mode dari distribusi bernilai sama dan terletak pada puncak. 2. Distribusi probabilitas normal simetris terhadap rata-ratanya. 3. Kurva normal menurun secara perlahan kedua sisinya, namun kurva tidak akan pernah menyentuh sumbu x. Standar deviasi (σ )menentukan kelandaian kurva : Semakin besar σ, maka kurva akan landai & melebar. Semakin kecil σ, maka kurva akan lancip & menyempit. b) Distribusi Probabilitas Normal Standar Untuk menyeragamkan sekian banyak distribusi normal dengan μ dan σ yang berbeda, kita dapat menggunakan Kurva Normal Standar. Kurva standar ini memiliki μ = 0 dan σ = 1. Kurva normal seluruhnya dapat dikonversi ke kurva standar, dengan cara x menghitung z value (nilai z ). z value ialah jarak antara suatu nilai terhadap rata-rata μ, dibagi dengan standar deviasi σ. Rumus :(x- μ)/σ

17 x = nilai observasi tertentu μ = rata-rata distribusi σ = standar deviasi c) Daerah di Bawah Kurva Normal Standar Terdapat 3 daerah di bawah kurva normal : 1. 68% bagian bawah kurva normal terletak antara σ σ + dan atau daerah 1 μ σ ± 2. 95% bagian bawah kurva normal terletak antara 2σ 2σ + dan atau daerah 2 μ σ± 3. 99% bagian bawah kurva normal terletak antara 3σ 3σ + dan, atau daerah 3 μ σ ± Contoh : 1. Suatu tes daya tahan terhadap sejumlah besar baterai alkaline menunjukan bahwa rata-rata daya tahan baterai adalah 19,0 jam. Distribusi menggunakan distribusi normal, standar deviasi dari distribusi tersebut adalah 1,2 jam. a. Diantara nilai manakah bila 68% baterai habis? b. Diantara nilai manakah bila 95% balerai habis? c. Diantara nilai manakah bila 100% baterai habis? Jawaban : a. 68% baterai habis bila baterai dipakai pada 1 μ σ ±, yaitu : 19,0 ± 1,2 = 17,8 jam 20,2 jam. b. 95% baterai akan habis bila baterai dipakai pada 2 μ σ ± yaitu ; 19,0 ± 2(1,2) = 16,6 21,4 jam. c. 100% baterai akan habis bila baterai dipakai pada yaitu : 19,0 ± 3(1,2) = 15,4 22,6 jam. 3 μ σ ± PENUTUP Demikianlah sedikit uraian tentang Distribusi Probabilitas Diskrit dan Distribusi Normal.Semoga makalah ini dapat bermanfaat khususnya bagi saya sendiri dan umumnya bagi

18 pembaca semuanya.amin ya robbal alamin. Sekian,terima kasih.

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Variabel random adalah fungsi yang mengasosiasikan suatu bilangan real dengan setiap elemen dalam ruang sampel dan mendapatkan probabilitas dari suatu variabel random pada nilai

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi

Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi DISTRIBUSI PROBABILITAS Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi sejumlah kemungkinan terhingga atau

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Makalah Statistika Distribusi Normal

Makalah Statistika Distribusi Normal Makalah Statistika Distribusi Normal Disusun Oleh: Dwi Kartika Sari 23214297 2EB16 Fakultas Ekonomi Jurusan Akuntansi Universitas Gunadarma 2015 Kata Pengantar Puji syukur kehadirat Tuhan Yang Maha Esa

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS 1 Variabel Random(Acak) : adalah suatu fungsi yang menghubungkan sebuah bilangan riil dengan setiap unsur didalam ruang sampel S ( himpunan semua hasil percobaan). Untuk menyatakan

Lebih terperinci

DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PROBABILITAS KONTINYU Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PELUANG KONTINYU Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat

Lebih terperinci

A. Distribusi Bernoulli

A. Distribusi Bernoulli HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Beberapa Distribusi Khusus Diskrit URAIAN POKOK PERKULIAHAN A. Distribusi Bernoulli Peubah acak X dikatakan berdistribusi Bernoulli,

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

STATISTIKA DAN PROBABILITAS (CIV -110) DISTRIBUSI PELUANG KONTINU

STATISTIKA DAN PROBABILITAS (CIV -110) DISTRIBUSI PELUANG KONTINU STATISTIKA DAN PROBABILITAS (CIV -110) DISTRIBUSI PELUANG KONTINU DISKRIT VERSUS KONTINU VARIABEL DISKRIT Pada variable diskrit setiap harga variabel terdapat nilai peluangnya, serta peluang diskrit terbentuk

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

DISTRIBUSI PROBABILITAS FERDIANA YUNITA

DISTRIBUSI PROBABILITAS FERDIANA YUNITA DISTRIBUSI PROBABILITAS FERDIANA YUNITA DEFINISI DISTRIBUSI PROBABILITAS Model untuk variable acak, yg menggambarkan cara probabilitas tersebar pada semua nilai yang mungkin terjadi dari variable acak

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : debrina@ub.ac.id Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

Distribusi Probabilitas Diskret Teoritis

Distribusi Probabilitas Diskret Teoritis Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Actuary Club A20 Probabilitas dan Statistika Maret 2018

Actuary Club A20 Probabilitas dan Statistika Maret 2018 Actuary Club A20 Probabilitas dan Statistika Maret 2018 Soal terdiri dari 30 nomor yang berbentuk pilihan ganda. Setiap soal terdapat 5 pilihan jawaban dan hanya 1 jawaban yang benar. Waktu pengerjaan

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

DISTRIBUSI VARIABEL RANDOM

DISTRIBUSI VARIABEL RANDOM DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika. Distribusi normal baku adalah distribusi

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS

PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS Dalam kehidupan sehari-hari kita sering mendengar dan menggunakan kata probabilitas (peluang). Kata ini mengisyaratkan bahwa kita berhadapan dengan sesuatu

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

PEMBAHASAN UTS 2015/2016 STATISTIKA 1

PEMBAHASAN UTS 2015/2016 STATISTIKA 1 PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

Distribusi Peluang. Pendahuluan

Distribusi Peluang. Pendahuluan 1 Sufyani Prabawanto Bahan Belajar Mandiri 6 Distribusi Peluang Pendahuluan Di bahan belajar mandiri sebelumnya telah disinggung sedikit tenatng peubah. Ditinjau dari diskret atau tidaknya, Peubah dapat

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 14 BAB 2 LANDASAN TEORI 2.1. Pendahuluan Antrian adalah kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan loket untuk mendapatakan tiket kereta api, menunggu pengisian bahan bakar,

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan praktikum II. TINJAUAN PUSTAKA 2.1 Definisi Distribusi Probabilitas

PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan praktikum II. TINJAUAN PUSTAKA 2.1 Definisi Distribusi Probabilitas I. PENDAHULUAN 1.1 Latar Belakang Distribusi probabilitas dapat diterapkan dalam banyak hal seperti pada kehidupan sehari-hari, kegiatan bisnis maupun dalam dunia industri. Salah satu manfaat dari distribusi

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci