Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr"

Transkripsi

1 materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN DATA Peyajia data terdiri dari dua: 1) Peyajia data tuggal ) Peyajia data kelompok Data tuggal dapat disajika dalam betuk: Berjajar Tabel distribusi frekuesi Diagram batag Diagram garis Frekuesi MAT Diagram ligkara (sudut atau presetase) 9 1% % 1% % Diagram batag-dau % % 9 % % 1% Data tuggal dapat diubah peyajiaya mejadi data kelompok, dega cara berikut: 1) Peetua rage/jagkaua data. R = x maks x mi ) Peetua bayak kelas/kelompok data yag aka dibuat. k = 1 + 3,3.log 3) Peetua pajag atau lebar kelas/ kelompok, yaitu iterval data dari tiap kelompok. c = R k c = : c = 9,33 9 x maks = data terbesar x mi = data terkecil R = - = = bayak data k = 1 + 3,3.log k = 1 +, =, 9 9 1

2 materio.r Setelah dihitug, data majemuk dapat disajika dalam betuk: Tabel distribusi frekuesi kumulatif/kelompok Frekuesi Usur-usur dalam peyajia data majemuk berdasarka pedekata t.d. frekuesi kumulatif: 1) Batas bawah (BB), merupaka ilai terkecil dalam suatu iterval. ) Batas atas (BA), merupaka ilai terbesar dalam suatu iterval. Cotoh: Pada iterval -3, batas bawah adalah da batas atas adalah 3. 3) tegah iterval, dega rumus: M = B B + B A ) Tepi bawah, dega rumus: ) Tepi atas, dega rumus: ) Pajag kelas, merupaka pajag iterval kelas dega rumus: Betuk lai tabel distribusi frekuesi kelompok: T.d. frekuesi kumulatif kurag dari ( ) yag diguaka adalah tepi atas tiap kelas. F. Kumulatif, 3, 1 +, , , T.d. frekuesi kumulatif lebih dari ( ) yag diguaka adalah tepi bawah tiap kelas. F. Kumulatif, ( + 3) M = = 9 T B = B B 1 / ketelitia data T A = B A + 1 / ketelitia data c = T A - T B c = 3,, c = 9, 33-3, , TB = ½.1 TB =, TA = 3 + ½.1 TA = 3, 91, Ogif positif MAT Data yag diguaka utuk ogif positif berasal dari tabel distribusi kumulatif kurag dari dega tambaha tepi bawah dari kelas teredah. Ciri dari ogif positif adalah grafikya meaik Ogif egatif,, 3,, 91,, Data yag diguaka utuk ogif egatif berasal dari tabel distribusi kumulatif lebih dari dega tambaha tepi atas dari kelas tertiggi. Ciri dari ogif egatif adalah grafikya meuru ,, 3,, 91,, Histogram (diagram batag) Data yag diperluka histogram adalah tepi atas da tepi bawah tiap kelas ,, 3,, 91,,

3 materio.r Poligo frekuesi (diagram garis) Data yag diperluka poligo frekuesi adalah ilai tegah dari tiap kelas, da ilai tegah satu kelas sebelum da sesudah data kelas yag ada. 1 C. PENGOLAHAN DATA TUNGGAL Pegolaha data tuggal terdiri dari: a. Ukura pemusata data, terdiri dari mea, modus, da kuartil. b. Ukura peyebara data (dispersi), terdiri dari rage, hampara, simpaga kuartil, lagkah, pagar luar, pagar dalam, simpaga rata-rata, ragam, da simpaga baku. D. PEMUSATAN DATA TUNGGAL Mea adalah ilai rata-rata hitug seluruh data yag ada. x = Σ x i Mea juga dapat dicari dega ilai rata-rata semetara. Cotoh: Dari data berikut: 11, 11, 11, 11, 11, 11, 119,, 11, 1, tetuka mea! x = = 11,9 Misalya jika rata-rata semetara yag dipilih adalah 11, maka: x = x = = 11, = Σ x i.f i x = x s + Σ d i = x s + Σ d i.f i xi = data = bayak data fi = frekuesi data x s = rata-rata semetara, diambil dari salah satu data di = selisih data dega rata-rata semetara (x i x s) MAT Modus adalah data yag palig serig mucul dari seluruh data yag ada setelah diurutka. Cotoh: Pada data berikut, 1,, 3, 3, 3,, modusya 3. 1, 1,,, 3, 3, modusya 1, da 3. 1, 1,,, 3, 3 modusya tidak ada. Kuartil adalah batas-batas ilai yag terdapat pada data apabila sekelompok data telah diurutka da dibagi mejadi bagia (3 batas). Kuartil terbagi mejadi tiga: a. Kuartil bawah (Q 1), adalah ilai tegah data pada pertegaha data pertama. b. Kuartil tegah/media (Q ), adalah ilai tegah seluruh data. c. Kuartil atas (Q 3), adalah ilai tegah data pada pertegaha data terakhir. Kuartil tegah/media dapat ditetuka dega rumus: Data gajil (mediaya terletak pada satu data) Q = x ke + 1 Data geap (media terletak di atara dua data) Q = 1 [(x ke )+ (x ke +1)] Kuartil atas da kuartil bawah dapat ditetuka dega rumus: Data gajil Q 1 = x ke 1 (+1) Data geap Q3 = x ke 3 (+1) Q 1 = x ke 1 (+) Q3 = x ke 3 (+) - 1 Batas-batas ilai lai yag memiliki kosep sama dega kuartil: a. Desil, membagi data mejadi bagia (9 batas) dega desil ke sebagai media. i( + 1) D i = x ke b. Persetil, membagi data mejadi bagia (99 batas), dega persetil ke sebagai media. i( + 1) P i = x ke 3

4 materio.r Statistik lima seragkai adalah peyajia data berupa diagram garis-kotak atau tabel yag memuat data kuartil, batas bawah, da batas atas. Diagram garis-kotak Tabel Q Q 1 Q 3 x mi x maks E. PENYEBARAN DATA TUNGGAL Pd data tidak ormal Rage adalah jagkaua dari seluruh data. + x mi Q 1 Q Q 3 x maks x mi Qd R J = x maks x mi Hampara adalah jagkaua atarkuartil yag merupaka selisih kuartil atas dega kuartil bawah. H = Q 3 Q 1 Simpaga kuartil adalah setegah dari hampara. Q d = 1 / H Lagkah adalah satu setegah kali dari hampara. L = 3 / H Pagar dalam adalah satu lagkah dibawah kuartil bawah. P d = Q 1 - L Pagar luar adalah satu lagkah di atas kuartil atas. P l = Q 3 + L L H Q 1 Q Q 3 data ormal x maks Pl data tidak ormal Pagar dalam da pagar luar berfugsi sebagai patoka utuk meyataka suatu data ormal atau tidak ormal. MAT Jika suatu data berada di luar pagar, maka data tersebut tidak ormal atau meyimpag (sagat berbeda dari data yag lai). Simpaga rata-rata adalah peyebara dari ilai rata-rata. S R = Σ x i-x Ragam/varia adalah jumlah kuadrat dari deviasi ilai-ilai data terhadap rata-rata. R = S = Σ (x i-x ) Simpaga baku/stadar deviasi adalah akar kuadrat dari ragam yag meujukka homogeitas kelompok. Maki kecil ilai simpaga baku maka dataya maki homoge. Pada pegolaha data tuggal, jika setiap data dikali/dibagi a da/atau ditambah/dikurag b: 1) Ukura pemusata data berubah sesuai uruta perubaha data yag terjadi. Cotoh: Jika setiap data berikut:,,,,,,, ditambah satu, kemudia dikali dua, maka rata-rataya mejadi? Pembuktia: Rata-rata awal: x = =,3 Perubaha data mejadi:,,,,,,, 3, 3,,,,, 9, 11 ditambah 1,,,, 1, 1, 1, dikali Rata-rata setelah perubaha: x = = 1, rata-rata 1, didapat dari: x = (x + 1) x = (,3 + 1) x x = 1, ) Ukura peyebara data selai ragam haya berubah sesuai perubaha dikali/dibagi. Cotoh: Jika setiap data berikut:,,,,,,,, a. Jika dikali = Σ x i-x.f i S = R = Σ (x i-x ) = Σ (x i-x ).f i = Σ (x i-x ).f i b. Jika dikali kemudia ditambah c. Jika ditambah 1 kemudia dikali maka jagkaua masig-masigya adalah?

5 materio.r Pembuktia: Rage awal: J = = a. Perubaha:,,,, 1, 1, 1,, J = = 1 (didapat dari J = J) b. Perubaha:,,,, 1, 1, 1,, J = = 1 (didapat dari J = J) c. Perubaha: 1, 1,,,, 3, 3,, J = 1 = 3 (didapat dari J = J) 3) Utuk ragam, haya berubah sesuai perubaha dikali/dibagi, amu faktorya dikuadratka terlebih dahulu sebelum dikali/dibagi. Cotoh: Jika setiap data berikut:,,, 9, 1, 1,, dikali dua, maka ragamya mejadi? Pembuktia: Rata-rata awal: x = Ragam awal: = 11 R = (-11) +(-11) +(-11) + +(-11) R = = Perubaha data mejadi:,,, 9, 1, 1,,, 1,, 3, dikali Rata-rata setelah perubaha: x = x = Ragam setelah perubaha: R = (-) +(-) +(1-) + +(-) R = (didapat dari R = () R) F. PENGOLAHAN DATA MAJEMUK = Pegolaha data majemuk pada dasarya sama dega data tuggal amu memiliki cara yag berbeda utuk meghitugya. G. PEMUSATAN DATA MAJEMUK Mea dapat dihitug dega tiga cara: 1) Metode biasa x = Σ x i.f i xi = ilai tegah tiap kelas ) Metode simpaga x = x s + Σ d i.f i 3) Metode codig MAT x s = rata-rata semetara, diambil dari salah satu ilai tegah kelas di = selisih ilai tegah tiap kelas dega ratarata semetara (x i x s) μ i = d i c Modus terletak pada kelas/iterval dega frekuesi terbayak. Modus dapat dicari: Mo = T B + ( S 1 S 1 +S ) x = x s + Σ μ i.f i Media, kuartil, desil, persetil terletak pada kelas yag merupaka batas dari kuartil, desil atau persetil tersebut. Cara meetuka batas kuartil, desil da persetil sama dega caradata tuggal. Media dapat dihitug dega rumus: Kuartil dapat dihitug dega rumus: Desil dapat dihitug dega rumus: ui = kode kelas i c = pajag kelas TB = tepi bawah kelas modus S1 = selisih frekuesi dega kelas sebelum kelas modus S = selisih frekuesi dega kelas sesudah kelas modus c = pajag kelas Q = T B f kq f q TB = tepi bawah kelas media fkq = frekuesi kumulatif kelas sebelum kelas media fq = frekuesi kelas media Q i = T B + i - f kq i f qi TB = tepi bawah kelas Qi fkq = frekuesi kumulatif kelas sebelum kelas Qi fq = frekuesi kelas Qi D i = T B + i - f kd i f di TB = tepi bawah kelas Di fkd = frekuesi kumulatif kelas sebelum kelas Di fd = frekuesi kelas Di

6 materio.r Persetil dapat dihitug dega rumus: P i = T B + Daerah batasa selai kuartil, desil da persetil dapat ditetuka melalui persamaa: Cotoh: Diketahui ilai ulaga Matematika suatu kelas: Jumlah murid Teryata, guru Matematika kelas tersebut meyataka % murid di kelas tersebut lulus ulaga. Tetuka KKM utuk lulus! Jawab: i - f kp i f pi TB = tepi bawah kelas Pi fkp = frekuesi kumulatif kelas sebelum kelas Pi fp = frekuesi kelas Pi N = T B + x - f ks f k N = ilai tertiggi dari x data yag pertama TB = tepi bawah kelas batasa x = bayak data daerah sebelum N fks = frekuesi kumulatif kelas sebelum kelas batasa fk = frekuesi kelas batasa Semetara, kita aggap batas ilai teredah utuk lulus adalah ilai tertiggi dari murid yag tidak lulus. Jumlah murid tidak lulus = % x = murid Berarti, batasa terletak pada ilai -. N = 9, + -1 x N = 9, + 1, = 1, H. PENYEBARAN DATA MAJEMUK Rage dapat dirumuska: Simpaga rata-rata dapat dirumuska: S R = Σ x i-x.f i MAT Ragam da simpaga baku dapat dihitug dega cara: 1) Metode biasa Ragam R = S = Σ (x i-x ).f i Simpaga baku S = R = Σ (x i-x ).f i ) Metode simpaga Ragam R = S = Σ d i.f i Simpaga baku S = R = Σ d i.f i 3) Metode codig Ragam R = S = [ Σ μ i.f i Simpaga baku xi = ilai tegah tiap kelas - ( Σ d i.f i ) ( Σ d i.f i ) - ( Σ μ i.f i ) ] S = R = [ Σ μ i.f i - ( Σ μ i.f i ) ] J = x maks x mi Hampara dapat dirumuska: H = Q 3 Q 1 Simpaga kuartil dapat dirumuska: Q d = 1 / H

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Kita meilai diri kita dega megukur dari apa yag kita rasa mampu utuk kerjaka, orag lai megukur kita dega megukur dari adap yag telah kita

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

Statistik (statistics)

Statistik (statistics) Matematika-Fisika-Kimia Jadi Mudah & Meyeagka R Statistik (statistics) Modul Pelatiha Guru soal-soal yag dijelaska. Rataa ilai ulaga dari 4 orag murid sama dega 6. Jika ilai dari dua orag murid tidak disertaka

Lebih terperinci

Telp. / Fax (0362) PO.BOX : 236

Telp. / Fax (0362) PO.BOX : 236 Judul Modul : Statistika Bidag Studi Keahlia : Sei Kerajia da Pariwisata Kelas / Semester : XII / Gajil Tahu Pelajara : 017 / 01 Sekolah Meegah Kejurua Negeri 1 Sukasada ( SMK Negeri 1 Sukasada ) Alamat

Lebih terperinci

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü PRSIAPAN UTS MATH IPS BHS. Jagkaua dari 4, 42, 2, 0, 4, 62, 8,, 60, 2, 4, 48,, 44,, 7 adalah.... J = 62 2 = 7 ü 2. Jika rataa 4, 0, 22, m, 6 adalah 8 maka a =... 4 + 0 + 22 + m + 6 8 = 0 = m + 62 m = 28

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

UKURAN LOKASI DAN DISPERSI

UKURAN LOKASI DAN DISPERSI Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga UKURAN LOKASI DAN DISPERSI Statistika da Probabilitas Statistical Measures Commo statistical measures Measure of cetral tedecy Mea

Lebih terperinci

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008:

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008: Ilustrasi Data ilai ujia Statistik Dasar dari 5 mahasiswa Program Studi tertetu semester gajil tahu 008: 87 37 59 49 69 95 83 87 39 95 83 76 83 6 46 Statdas, Februari 009. Populasi da Sampel. Statistik

Lebih terperinci

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA,

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, ANALISIS STATISTIK tetag PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, UKURAN PEMUSATAN, UKURAN PENYEBARAN (FRAKTIL) DAN UKURAN DISPERSI DISUSUN OLEH

Lebih terperinci

MODUL IRISAN KERUCUT

MODUL IRISAN KERUCUT MATERI MODUL 1 : IRISAN KERUCUT Stadar Kompetesi : Meerapka Kosep Irisa Kerucut dalam memecaha masalah Kompetesi Dasar : 1. Meyelesaika model matematika dari masalah yag berkaita dega ligkara. Meyelesaika

Lebih terperinci

STATISTIKA EKONOMI 1. Makalah. Untuk Memenuhi Nilai Mata Kuliah Statistik 1

STATISTIKA EKONOMI 1. Makalah. Untuk Memenuhi Nilai Mata Kuliah Statistik 1 STATISTIKA EKONOMI 1 Makalah Utuk Memeuhi Nilai Mata Kuliah Statistik 1 Disusu oleh : Tria Nigrum Rohmawati PRODI AKUNTANSI FAKULTAS EKONOMI UNIVERSITAS PAMULANG Jala Surya Kecaa Nomor 1, Pamulag 1 KATA

Lebih terperinci

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI STATISTIK, PENGERTIAN DAN EKSPLORASI DATA 1. Populasi da Sampel. Statistik da Statistika 3. Jeis-jeis Observasi 4. Statistika Deskriptif Sari Numerik Peyajia Data 008 by USP & UM ; last edited Aug 10 MA

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS Peyusu Editor : Dra. Yuli Wiarsih ; Ismudari Puspitasari, S.Pd. : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si. STATISTIK DAN STATISTIKA Bayak persoala diyataka da diatat dalam

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA STANDAR KOMPETENSI LULUSAN Memahami kosep dalam statistika, serta meerapkaya dalam pemecaha masalah. INDIKATOR

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakag Risiko adalah suatu yag selalu dihubugka dega kemugkia terjadiya sesuatu yag merugika yag tidak terduga da tidak diharapka atau peyimpaga atara tigkat pegembalia yag

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina 1 III OBJEK DAN METODE PENELITIAN 3.1. Objek da Perlegkapa Peelitia 3.1.1. Objek Peelitia Objek terak yag diguaka adalah itik Damiakig jata da betia produktif dega umur lebih dari 7 bula di Kampug Teras

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

BAB 1 PENDAHULUAN. A. Hakikat Statistika. 1. Asal Kata. Kata statistika berasal dari kata status atau statista yang berarti negara

BAB 1 PENDAHULUAN. A. Hakikat Statistika. 1. Asal Kata. Kata statistika berasal dari kata status atau statista yang berarti negara BAB PEDAHULUA A Hakikat Statistika Asal Kata Kata statistika berasal dari kata status atau statista yag berarti egara Tulisa Aristoteles Politeia meguraika keadaa dari 58 egara yaki sumber dari kata statistika

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR.1. Distribusi Frekuesi Distribusi frekuesi adalah pegelompoka data kedalam beberapa kategori yag meujukka bayak data dalam setiap kategori da setiap data tidak dapat dimasukka dua

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN A. Mome Misalka diberika variable x dega harga- harga : x, x,., x. Jika A = sebuah bilaga tetap da r =,,, maka mome ke-r sekitar A, disigkat m r, didefiisika oleh

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN LOKASI DATA. Tujuan Pembelajaran KTSP & K-13 matematika K e l a s XI STATISTIKA: UKURAN LOKASI DATA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan sebagai berikut. 1. Dapat menentukan kuartil data

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fisheries Data Aalysis-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fisheries ad Marie Sciece Brawijaya Uiversity Tujua Istruksioal Khusus Mahasiswa dapat megguaka aalisis statistika sederhaa

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai Ukura tedesi setral merupaka setiap pegukura aritmatika yag ditujuka utuk meggambarka suatu ilai yag mewakili ilai pusat atau ilai setral dari suatu gugus data (himpua pegamata). UKURAN DATA 2 Macam-Macam

Lebih terperinci

BAB VI PELUANG DAN STATISTIKA DASAR

BAB VI PELUANG DAN STATISTIKA DASAR BB VI PELUNG DN STTISTIK DSR. Kosep Peluag da Pegelolaa Data Peluag serigkali diperluka oleh seseorag utuk melihat besarya kemugkia atau kesempata utuk terjadiya sesuatu. Sebagai cotoh, coba ada perhatika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA

LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA STATISTIKA 2 B. PENYAJIAN DATA Beberapa bentuk penyajian data, sebagai berikut: Kompetensi Dasar (KURIKULUM 2013): 3.15 Memahami dan menggunakan berbagai ukuran

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata

Probabilitas dan Statistika Analisis Data dan Ukuran Pemusatan. Adam Hendra Brata Probabilitas dan Analisis dan Adam Hendra Brata Deskriptif Induktif Pembagian Deskriptif Metode guna mengumpulkan, menghitung, dan menyajikan suatu data secara kwantitatif sehingga memberikan informasi

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA BAB 3 UKURAN PEMUSATAN DATA Misalka kita mempuyai data metah dalam betuk array X 1, X 2,, X. Pada Bab ii kita aka mempelajari beberapa ukura yag dapat memberika iformasi tetag bagaimaa data-data ii megumpul

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan.

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan. III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii telah dilaksaaka pada Bula Oktober sampai November 013 di peteraka yag ada di Kota Pekabaru. 3.. Materi Peelitia a. Peelitia ii megguaka

Lebih terperinci

Katalog Dalam Terbitan (KDT)

Katalog Dalam Terbitan (KDT) i Katalog Dalam Terbita (KDT) Hak Cipta pada Kemeteria Pedidika Nasioal. Dilidugi Udag-Udag 0.07 MAR a MARTHEN Kagia Aktif Belajar Matematika / Marthe Kagia, Alit Kartiwa; editor, Rifki Wijaya, Zulkifl

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN. deskriptif kuantitatif bertujuan untuk menjelaskan hasil penelitian yang disajikan

BAB III METODOLOGI PENELITIAN. deskriptif kuantitatif bertujuan untuk menjelaskan hasil penelitian yang disajikan 3 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Jeis peelitia ii tergolog peelitia deskriptif kuatitatif. Peelitia deskriptif kuatitatif bertujua utuk mejelaska hasil peelitia yag disajika dalam betuk

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci