PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA"

Transkripsi

1 PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

2 Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka kelas-kelas iterval da meurut kategori tertetu. Meurut atura Sturges, lagkah-lagkah yag perlu dilakuka dalam meetuka kategori kelas, diataraya:

3 Lagkah membuat Tabel Distribusi Frekuesi 1. Urutka data dari yag terkecil sampai terbesar 2. Hitug jarak atau retaga (R) R = data tertiggi data teredah 3. Hitug jumlah kelas (K) K = 1 + 3,3 log 4. Hitug pajag iterval (P) P = retaga : jumlah kelas = R : K 5. Tetuka ujug data teredah atau data pertama 6. Hitug kelas itervalya dega cara mejumlahka ujug/tepi bawah kelas sampai pada data akhir tepi bawah kelas pertama = data teredah tepi atas kelas = (tepi bawah kelas+pajag kelas) 1 7. Buat tabel semetara (tabulasi data) dega meghitug rekuesi data sesuai uruta iterval kelas

4 Cotoh Membuat Tabel DF Cotoh : Diketahui data sebagai berikut 78, 70, 59, 61, 50, 54, 71, 77, 68, 48 77, 78, 70, 67, 58, 56, 46, 61, 59, 76 57, 77, 74, 72, 64, 62, 60, 52, 51, 54

5 1. Urutka dataya dari yag terkecil 78, 78, 77, 77, 77, 76, 74, 72, 71, 70 70, 68, 67, 64, 62, 61, 61, 60, 59, 59 58, 57, 56, 54, 53, 52, 51, 50, 48, Meghitug Nilai Retag Nilai tertiggi ilai teredah R = = Meetuka ilai bayakya kelas K = 1 + (3,3) log = 1 + (3,3) log 30 = 1 + (3,3) 1,4 = 1 + 4,62 = 5,674 = 6 (dibulatka)

6 4. Meetuka ilai iterval P = R : K = 32 : 6 = 5,333 = 6 (dibulatka) 5. Tetuka ujug data teredah utuk iterval kelas pertama, lajutka sampai kelas iterval terakhir Tepi atas kelas = tepi bawah kelas + P

7 6. Buat tabel semetara meghitug rekuesi tiap iterval kelas. Nilai Iterval Frekuesi IIII IIIII IIIIIII III IIIIII IIIII 5 Ʃ 30

8 7. Distribusi Frekeusi Iterval Kelas Nilai Tegah Frekuesi ,5 = (47+51): ,5 = (52+57): , , , ,5 5 Ʃ 30

9 DATA MENURUT SUSUNANNYA 1. Data Acak atau Data Tuggal adalah data yag belum tersusu atau dikelompokka kedalam kelas-kelas iterval Cotoh : data pegukura hasil tiggi bada siswa kelas Bahasa Id Reguler (dalam cm) ialah sebagai berikut : Data Berkelompok adalah data yag sudah tersusu atau dikelompokka kedalam kelaskelas iterval. Data kelompok disusu dalam betuk distribusi rekuesi atau tabel rekuesi. Cotoh : Data ilai ujia statistika da jumlah mahasiswa yag memperolehya: Nilai Turus Frekuesi III IIII IIII IIII IIII IIII IIII IIII II 7

10 Arti Ukura Pemusata Data Ukura pemusata data adalah sembarag ukura yag meujukka pusat segugus data, yag telah diurutka dari yag terkecil sampai yag terbesar atau sebalikya dari yag terbesar sampai yag terkecil. Salah satu keguaa dari ukura pemusata data adalah utuk membadigka dua populasi atau cotoh, karea sagat sulit utuk membadigka masig-masig aggota dari masig-masig aggota populasi. Nilai ukura pemusata ii dibuat sedemikia sehigga cukup mewakili seluruh ilai pada data yag bersagkuta.

11 Jeis Ukura Pemusata Data 1. Rerata Hitug (Mea) Mea adalah ukura pusat data yag palig serig diguaka karea mudah dimegerti da perhitugaya juga mudah Pegguaa rerata hitug populasi bersimbol (µ), dibaca myu atau mu da rerata hitug utuk sampel bersimbol dibaca eks bar Meghitug Mea data tuggal dibedaka atara data tuggal yag berrekuesi satu dega data tuggal yag berrekuesi lebih dari satu (data tuggal berkelompok)

12 1.a. MEAN data tuggal berrekuesi satu Data dari suatu sampel: Rerata hitugya:..., 1, 2, Atau ditulis dega otasi sigma sebagai berikut: i i1 1 i1 i

13 Latiha Misalya diketahui data 10, 11,4,8,6,10,7 Rata-rata hitugya adalah. Jawab : Rata-rata hitugya adalah =? 7

14 1.b. MEAN Data Tuggal Berkelompok i i i i i Rata-rataya adalah = 294/50 = 5,88

15 Dega pembobota Masig-masig data diberi bobot. Misal A memperoleh ilai 65 utuk tugas, 76 utuk mid da 70 utuk ujia akhir. Bila ilai tugas diberi bobot 2, Mid 3 da Ujia Akhir 4, maka rata-rata hitugya adalah : X (2)65 (3) (4)70 70,89

16 1.c. MEAN Data Berkelompok Data yag sudah dikelompokka dalam distribusi rekuesi aka berbaur sehigga keaslia data itu aka hilag bercampur dega data lai meurut kelasya. Nilai setiap kelas iterval (i ) adalah ilai tegah kelas ke-i, diambil dari titik tegahya, yaitu setegah dari jumlah ujug bawah kelas da ujug atas kelas i i i i i

17 Latiha i i i1 i1 i...

18

19 2. Media (Me) Media (Me) adalah ilai tegah dari gugusa data yag telah diurutka (disusu) dari data terkecil sampai terbesar atau sebalikya, dari data terbesar sampai data terkecil. Disebut juga sebagai rata-rata letak (positioal average) Umumya diguaka bila skala pegukura dataya miimal ordial Cara medapatka media: Dicari dega rumus : (+1)/2 dimaa = jumlah data Bila dataya gajil maka ilai media terletak di tegah data Bila dataya geap maka ilai tegah media adalah ratarata dari 2 data yag berada di tegahya JANGAN LUPA (!) : Urutka data terlebih dahulu sebelum mecari media!

20 2.a. Media Data Tuggal Data : a.) 65, 70, 90, 40, 35, 45, 70, 80, da 50 b.) 50, 65, 70, 90, 40, 35, 45, 70, 80, da 50

21 2.b. Media Data Kelompok Dari suatu tabel distribusi rekuesi, yag disebut media ialah bilaga yag dapat diaggap sebagai statistik uruta ke /2, seadaiya dalam setiap kelas, skor (data) tersebar merata di dalam iterval kelasya. Utuk data dalam distribusi rekuesi B med : batas bawah kelas media p : pajag kelas media : jumlah semua rekuesi Media F : jumlah rekuesi sebelum kelas media med : rekuesi kelas media B med F p 2 med

22 2.b. Cotoh Meghitug Media Data Kelompok N 40 Letak Me = = = 20 B med : 51 0,5 = 50,5 (tepi batas bawah kelas media) p : = 5 (pajag kelas iterval) : 40 (jumlah seluruh rekuesi) F : 13 (jumlah rekuesi sebelum kelas media) med : 12 (rekuesi kelas media) Media B med p 2 med F Maka, 40/2 13 Me = 50, = 50,5 + 5 (7/12) = 50,5 + 2,90 = 53,40

23 Latiha Media B med F p 2 med Berapa ilai Media dari data tersebut? Med 60, ,42

24 3. Modus (Mo) Modus dari sekumpula datum adalah datum yag palig serig mucul atau datum yag rekuesiya tertiggi. Dalam suatu data bisa terdapat satu modus (uimodus), dua modus (bimodus), lebih dari dua modus (multimodus), atau sama sekali tidak memiliki modus. Modus dari data 3, 4, 4, 6, 6, 6, 8, 9 adalah

25 3.b. Modus Data Kelompok Modus B mod B mod : batas bawah kelas modus, yaitu kelas dega rekuesi terbayak p : pajag kelas modus p b b 1 : selisih rekuesi kelas modus dega rekuesi kelas sebelumya b 2 : selisih rekuesi kelas modus dega rekuesi kelas sesudahya 1 b1 b 2

26 b1 Modus B mod p b1 b Cotoh Modus Data Kelompok: Data yag palig serig mucul adalah pada iterval 74-86, sehigga : B mod = L 0 = 74 0,5 = 73,5 b 1 = = 11 b 2 = 23-6 =17 p = (21 9) + 1 = = 13 2 Mod 73, ,61

27 HUBUNGAN EMPIRIS ANTARA NILAI RATA-RATA HITUNG, MEDIAN, DAN MODUS Ada 3 kemugkia kesimetria kurva distribusi data : 1) Jika ilai ketigaya hampir sama maka kurva medekati simetri. 2) Jika Mod<Med<rata-rata hitug, maka kurva mirig ke kaa. 3) Jika rata-rata hitug<med<mod, maka kurva mirig ke kiri.

28 HUBUNGAN RATA-RATA - MEDIAN - MODUS 1. Ẋ= Md= Mo Rt=Md=Mo Mo < Md < Ẋ Mo Md Rt Ẋ < Md < Mo Rt Md Mo 807

29

30 4. Hituglah ilai mea, media, modus dari data berikut :

31 Ay questio?? THANK YOU

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

UKURAN LOKASI DAN DISPERSI

UKURAN LOKASI DAN DISPERSI Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga UKURAN LOKASI DAN DISPERSI Statistika da Probabilitas Statistical Measures Commo statistical measures Measure of cetral tedecy Mea

Lebih terperinci

Telp. / Fax (0362) PO.BOX : 236

Telp. / Fax (0362) PO.BOX : 236 Judul Modul : Statistika Bidag Studi Keahlia : Sei Kerajia da Pariwisata Kelas / Semester : XII / Gajil Tahu Pelajara : 017 / 01 Sekolah Meegah Kejurua Negeri 1 Sukasada ( SMK Negeri 1 Sukasada ) Alamat

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai Ukura tedesi setral merupaka setiap pegukura aritmatika yag ditujuka utuk meggambarka suatu ilai yag mewakili ilai pusat atau ilai setral dari suatu gugus data (himpua pegamata). UKURAN DATA 2 Macam-Macam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakag Risiko adalah suatu yag selalu dihubugka dega kemugkia terjadiya sesuatu yag merugika yag tidak terduga da tidak diharapka atau peyimpaga atara tigkat pegembalia yag

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fisheries Data Aalysis-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fisheries ad Marie Sciece Brawijaya Uiversity Tujua Istruksioal Khusus Mahasiswa dapat megguaka aalisis statistika sederhaa

Lebih terperinci

MODUL IRISAN KERUCUT

MODUL IRISAN KERUCUT MATERI MODUL 1 : IRISAN KERUCUT Stadar Kompetesi : Meerapka Kosep Irisa Kerucut dalam memecaha masalah Kompetesi Dasar : 1. Meyelesaika model matematika dari masalah yag berkaita dega ligkara. Meyelesaika

Lebih terperinci

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN A. Mome Misalka diberika variable x dega harga- harga : x, x,., x. Jika A = sebuah bilaga tetap da r =,,, maka mome ke-r sekitar A, disigkat m r, didefiisika oleh

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008:

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008: Ilustrasi Data ilai ujia Statistik Dasar dari 5 mahasiswa Program Studi tertetu semester gajil tahu 008: 87 37 59 49 69 95 83 87 39 95 83 76 83 6 46 Statdas, Februari 009. Populasi da Sampel. Statistik

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Kita meilai diri kita dega megukur dari apa yag kita rasa mampu utuk kerjaka, orag lai megukur kita dega megukur dari adap yag telah kita

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA,

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, ANALISIS STATISTIK tetag PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, UKURAN PEMUSATAN, UKURAN PENYEBARAN (FRAKTIL) DAN UKURAN DISPERSI DISUSUN OLEH

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA STANDAR KOMPETENSI LULUSAN Memahami kosep dalam statistika, serta meerapkaya dalam pemecaha masalah. INDIKATOR

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

Ukuran gejala pusat. Nugraeni

Ukuran gejala pusat. Nugraeni Ukuran gejala pusat Nugraeni UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran pemusatan : 1.

Lebih terperinci

BAB VI PELUANG DAN STATISTIKA DASAR

BAB VI PELUANG DAN STATISTIKA DASAR BB VI PELUNG DN STTISTIK DSR. Kosep Peluag da Pegelolaa Data Peluag serigkali diperluka oleh seseorag utuk melihat besarya kemugkia atau kesempata utuk terjadiya sesuatu. Sebagai cotoh, coba ada perhatika

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI STATISTIK, PENGERTIAN DAN EKSPLORASI DATA 1. Populasi da Sampel. Statistik da Statistika 3. Jeis-jeis Observasi 4. Statistika Deskriptif Sari Numerik Peyajia Data 008 by USP & UM ; last edited Aug 10 MA

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA BAB 3 UKURAN PEMUSATAN DATA Misalka kita mempuyai data metah dalam betuk array X 1, X 2,, X. Pada Bab ii kita aka mempelajari beberapa ukura yag dapat memberika iformasi tetag bagaimaa data-data ii megumpul

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data

Lebih terperinci

Ukuran Pemusatan, Penyebaran dan Pola Distribusi Normal

Ukuran Pemusatan, Penyebaran dan Pola Distribusi Normal Pegolaha Data Perikaa (PIF 407) SKS (-) Ukura Pemusata, Peyebara da Pola Distribusi Normal -Ledhyae Ika Harlya- Faculty of Fisheries ad Marie Sciece Brawijaya Uiversity 0 Tujua Istruksioal Khusus Mahasiswa

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! )

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! ) Hal dari 7 PENDAHULUAN. PENGERTIAN STATISTIKA Statistika metode yag berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah (igat : STATISTIKA

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR.1. Distribusi Frekuesi Distribusi frekuesi adalah pegelompoka data kedalam beberapa kategori yag meujukka bayak data dalam setiap kategori da setiap data tidak dapat dimasukka dua

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 1 Seputih Agung. Populasi dalam 19 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMP Negeri 1 Seputih Agug. Populasi dalam peelitia ii adalah seluruh siswa kelas VII SMP Negeri 1 Seputih Agug sebayak 248 siswa

Lebih terperinci