II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.

dokumen-dokumen yang mirip
I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

sejumlah variabel keputusan; fungsi yang akan dimaksimumkan atau diminimumkan disebut sebagai fungsi objektif, Ax = b, dengan = dapat

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

II LANDASAN TEORI (ITDP 2007)

I PENDAHULUAN II LANDASAN TEORI

II TINJAUAN PUSTAKA 2.1 Graf Definisi 1 (Graf, Graf Berarah dan Graf Takberarah) 2.2 Linear Programming

I PENDAHULUAN II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI

BAB 3 METODE PENELITIAN

BAB 2 LANDASAN TEORI

PENJADWALAN KERETA API MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER DWI SETIANTO

PENYELESAIAN MASALAH PENJADWALAN PERTANDINGAN SEPAK BOLA DENGAN SISTEM ROUND-ROBIN ABDILLAH

BAB II TINJAUAN PUSTAKA

PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING

PENENTUAN LOKASI DALAM MANAJEMEN HUTAN

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

BAB 2 LANDASAN TEORI

PENJADWALAN OPERASI BEDAH MENGGUNAKAN INTEGER PROGRAMMING : STUDI KASUS OPTIMASI WAKTU TARGET AHLI BEDAH DI RUMAH SAKIT JAKARTA EYE CENTER

BAB 2 LANDASAN TEORI

III RELAKSASI LAGRANGE

PROGRAMA INTEGER 10/31/2012 1

Modul 8. PENELITIAN OPERASIONAL INTEGER PROGRAMMING. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Bab 2 LANDASAN TEORI

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

PENYELESAIAN PUZZLE SUDOKU MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER MUHAMAD FARDAN WARDHANA

I PENDAHULUAN II LANDASAN TEORI

PENJADWALAN DOKTER KAMAR DARURAT DI RSCM MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER RATNA RATU ALIT

Bab 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

PENYELESAIAN MASALAH PENJADWALAN MATA PELAJARAN SEKOLAH MENENGAH PERTAMA MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER MAHNURI

PEMROGRAMAN INTEGER DENGAN FUNGSI OBJEKTIF LINEAR SEPOTONG - SEPOTONG

BAB 2 LANDASAN TEORI 2.1 Perencanaan Produksi

PENJADWALAN MESIN KEMAS IDENTIK PARALEL PADA INDUSTRI YOGHURT MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER SLAMET RIYADI

BAB II METODE SIMPLEKS

12/15/2014. Apa yang dimaksud dengan Pemrograman Bulat? Solusi yang didapat optimal, tetapi mungkin tidak integer.

I PENDAHULUAN II LANDASAN TEORI

BAB 2 LANDASAN TEORI

III MODEL PENJADWALAN

MODEL OPTIMISASI PENGGUNAAN BINATANG BURUAN SECARA KONSUMTIF AHDIANI FEBRIYANTI G

BAB IV. METODE SIMPLEKS

BAB 3 LINEAR PROGRAMMING

Integer Programming (Pemrograman Bulat)

BAB 2 TINJAUAN PUSTAKA

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

PENERAPAN METODE BRANCH AND BOUND (B&B)DALAM MENENTUKAN KEUNTUNGAN MAKSIMUM PENJUALAN TEMPE

BAB III. METODE SIMPLEKS

MASALAH PEMANFAATAN AIR BAWAH TANAH BAGI PERUSAHAAN AIR MINUM DALAM KEMASAN Studi Kasus di PT Tang Mas Cidahu Sukabumi MIRANI OKTAVIA

BAB II LANDASAN TEORI

BAB II KAJIAN PUSTAKA

PENJADWALAN PERAWAT KAMAR OPERASI MENGGUNAKAN PEMROGRAMAN INTEGER: STUDI KASUS DI RUMAH SAKIT OMNI INTERNASIONAL TANGERANG VIANEY CHRISTINE AMBARITA

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

PENENTUAN RUTE BUS KARYAWAN MENGGUNAKAN PEMROGRAMAN LINEAR INTEGER ZIL ARIFAH

PENERAPAN METODE BRANCH AND BOUND DALAM MENENTUKAN JUMLAH PRODUKSI OPTIMUM PADA CV. XYZ. Angeline, Iryanto, Gim Tarigan

PENGOPTIMUMAN MASALAH PENJADWALAN EMPAT HARI KERJA DALAM SEMINGGU SECARA SIKLIS BERBASIS DUAL ARIYANTO PAMUNGKAS

Aplikasi Integer Linear Programming (Ilp) untuk Meminimumkan Biaya Produksi pada Siaputo Aluminium

Metode Simpleks (Simplex Method) Materi Bahasan

METODE SIMPLEKS DALAM PROGRAM LINIER

BAB 2 LANDASAN TEORI

BAB 2 PROGRAM INTEGER. Program linear merupakan metode matematika untuk mengalokasikan sumber

MASALAH PENGOPTIMUMAN MULTIKRITERIA DALAM PENJADWALAN TENAGA SUKARELAWAN DI DAERAH BENCANA ALBRIAN WEDHASWARA MURTANTO

Matematika Bisnis (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM.

PENJADWALAN BABAK KUALIFIKASI PIALA DUNIA FIFA 2014 ZONA AMERIKA SELATAN FAIZUL MUBAROK

UJM 3 (2) (2014) UNNES Journal of Mathematics.

Metode Simpleks M U H L I S T A H I R

Pemrograman Linier (2)

BAB 1 PENDAHULUAN Latar Belakang

PENJADWALAN DISTRIBUSI BARANG MENGGUNAKAN MIXED INTEGER PROGRAMMING LAISANOPACI

MODEL OPTIMASI PENDISTRIBUSIAN LOGISTIK BENCANA ALAM ELLY ZUNARA

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

OPTIMASI BIAYA ANTISIPASI BENCANA ALAM MEIDINA FITRIANTI

BAB II KAJIAN TEORI. masalah fuzzy linear programming untuk optimasi hasil produksi pada bab

BAB III PEMBAHASAN. linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

Berikut merupakan alur penyelesaian masalah nyata secara matematik. pemodelan. penyelesaian

MASALAH PENJADWALAN SIARAN IKLAN MOBILE PERUSAHAAN ZAGME AAM KURNIAWAN

MASALAH PENENTUAN KOMBINASI TERMINAL DAN RUTE KAPAL SAEPUDIN HIDAYATULLOH

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI

OPTIMASI PEMOTONGAN BALOK KAYU DENGAN POLA PEMOTONGAN SATU DIMENSI MENGGUNAKAN TEKNIK PEMBANGKIT KOLOM (COLUMN GENERATION TECHNIQUE) SKRIPSI

v 2 v 5 v 3 Gambar 3 Graf G 1 dengan 7 simpul dan 10 sisi.

TENTUKAN MODEL MATEMATISNYA!

BAB 2 PROGRAM LINEAR

PENGOPTIMAN PENDAPATAN LAHAN PARKIR KENDARAAN BANDAR UDARA INTERNASIONAL LOMBOK MENGGUNAKAN METODE BRANCH AND BOUND

PENGOPTIMAN PENDAPATAN LAHAN PARKIR KENDARAAN BANDAR UDARA INTERNASIONAL LOMBOK MENGGUNAKAN METODE BRANCH AND BOUND

PENGOPTIMUMAN BERBASIS DUAL MASALAH PENJADWALAN TIGA HARI KERJA DALAM SEMINGGU SECARA SIKLIS NUR HADI

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 2 KAJIAN PUSTAKA

PENYELESAIAN MASALAH PENUGASAN YANG DIPERUMUM DENGAN MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND YANG DIREVISI

BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

Model umum metode simpleks

UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Transkripsi:

II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya, di antaranya teori Pemrograman Linear (PL), Integer Linear Programming (ILP), dan metode Branch and Bound untuk menyelesaikan masalah Integer Programming Berikut ini akan dibahas satu per satu 21 Pemrograman Linear Definisi 1 (Fungsi Linear) Misalkan menyatakan suatu fungsi dalam variabel-variabel adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta, Sebagai contoh, merupakan fungsi linear, sementara bukan fungsi linear Suatu persamaan merupakan persamaan linear, apabila f fungsi linear Definisi 2 (Pertidaksamaan Linear) Untuk sembarang fungsi linear dan sembarang bilangan b, pertidaksamaan dan dikatakan pertidaksamaan linear Misalkan b sembarang bilangan, suatu persamaan merupakan persamaan linear Pemrograman Linear (PL) adalah suatu masalah optimasi yang memenuhi ketentuanketentuan sebagai berikut a) Tujuan masalah tersebut adalah memaksimumkan atau meminimumkan suatu fungsi linear dari sejumlah variabel keputusan Fungsi linear yang akan dimaksimumkan atau diminimumkan ini disebut fungsi objektif b) Nilai variabel-variabel keputusannya harus memenuhi suatu himpunan kendala Setiap kendala harus berupa persamaan linear atau pertidaksamaan linear c) Variabel keputusan harus taknegatif atau tidak dibatasi tandanya (Winston 1995) Suatu PL dikatakan memiliki bentuk standar seperti yang didefinisikan sebagai berikut Definisi 3 (Bentuk Standar PL) Suatu pemrograman linear dikatakan mempunyai bentuk standar jika berbentuk: minimumkan terhadap, (1) dengan x dan c merupakan vektor berukuran n, vektor b berukuran m, sedangkan A merupakan matriks berukuran m n Matriks A disebut matriks kendala Sebagai catatan, yang dimaksud dengan vektor berukuran n adalah vektor yang memiliki dimensi (ukuran) n 1 Definisi 4 (Solusi Optimal) Solusi optimal terbaik adalah suatu titik dalam daerah fisibel yang menyebabkan nilai fungsi objektif terkecil (dalam masalah minimisasi) Untuk masalah maksimisasi, solusi optimal suatu PL adalah suatu titik dalam daerah fisibel yang menyebabkan nilai fungsi objektif terbesar Solusi Pemrograman Linear Untuk menyelesaikan suatu masalah PL metode simpleks merupakan salah satu metode yang dapat menghasilkan solusi optimal Metode ini mulai dikembangkan oleh Dantzig pada tahun 1947 Dalam perkembangannya, metode ini adalah metode yang umum digunakan untuk menyelesaikan masalah PL, yaitu berupa metode iteratif (proses mencari solusi yang dilakukan secara berulang-ulang hingga didapatkan solusi yang diinginkan) untuk menyelesaikan masalah PL berbentuk standar

3 Pada masalah PL (1), vektor x yang memenuhi kendala disebut sebagai solusi dari PL (1) Misalkan matriks A dinyatakan sebagai, dengan B merupakan matriks taksingular berukuran m m yang elemennya berupa koefisien variabel basis dan N merupakan matriks yang elemennya berupa koefisien variabel nonbasis pada matriks kendala Matriks B disebut matriks basis untuk PL (1) Misalkan x dapat dinyatakan sebagai vektor dengan adalah vektor variabel basis dan nonbasis, maka adalah vektor variabel dinyatakan sebagai (4) Dari PL tersebut diperoleh:, Misalkan dipilih dan, maka matriks basisnya adalah (2) Karena B adalah matriks taksingular, maka B memiliki invers, sehingga dari (2) dapat dinyatakan sebagai : Definisi 5 (Solusi Basis) (3) Solusi dari suatu PL disebut solusi basis jika: i solusi tersebut memenuhi kendala pada PL, ii kolom-kolom dari matriks koefisien yang berpadanan dengan komponen taknol adalah bebas linear Definisi 6 (Solusi Basis Fisibel) Vektor x disebut solusi fisibel basis jika x merupakan solusi basis dan Salah satu cara menentukan solusi basis fisibel awal adalah dengan membuat Ilustrasi solusi basis dan solusi basis fisibel diberikan dalam Contoh 1 Contoh 1 Misalkan diberikan pemrograman linear berikut: minimumkan terhadap Dengan menggunakan matriks basis di atas, didapatkan (5) Solusi (5) merupakan solusi basis, karena memenuhi kendala pada PL (4) dan kolomkolom pada matriks kendala yang berpadanan dengan komponen taknol dari (5) yaitu B adalah bebas linear (kolom yang satu bukan merupakan kelipatan dari kolom yang lain) Solusi (5) juga merupakan solusi basis fisibel, karena nilai-nilai variabelnya lebih dari atau sama dengan nol Definisi 7 (Daerah Fisibel) Daerah fisibel untuk suatu PL adalah himpunan semua titik yang memenuhi semua kendala dan pembatasan tanda pada PL tersebut 22 Integer Linear Programming Model Integer Linear Programming (ILP) atau disebut juga Integer Programming (IP), adalah suatu model pemrograman linear dengan variabel yang digunakan berupa

4 bilangan bulat (integer) Jika semua variabel harus bilangan bulat, maka masalah tersebut disebut pure integer programming Jika hanya sebagian yang harus berupa bilangan bulat, maka disebut mixed integer programming Jika model tersebut hanya mengharuskan nilai nol atau satu untuk variabelnya, dinamakan zero-one integer programming (Garfinkel & Nemhauser 1972) Definisi 9 (Pemrograman Linear Relaksasi) PL-relaksasi merupakan pemrograman linear yang diperoleh dari suatu IP dengan menghilangkan kendala bilangan bulat atau kendala 0-1 pada setiap variabelnya Untuk masalah meminimumkan, nilai fungsi objektif yang optimal di PL-relaksasi lebih kecil atau sama dengan nilai fungsi objektif yang optimal di IP, sedangkan untuk masalah memaksimumkan nilai fungsi objektif yang optimal di PL-relaksasi lebih besar atau sama dengan nilai fungsi objektif yang optimal di IP 23 Metode Branch and Bound Dalam penulisan karya ilmiah ini, untuk memperoleh solusi optimal dari masalah IP digunakan software LINGO 80 yaitu sebuah program yang didesain untuk aplikasi riset operasi dalam membangun dan menentukan solusi model linear, nonlinear dan optimisasi integer dengan prinsip pemecahannya berdasarkan metode branch and bound Keunggulan metode ini terletak pada tingkat efektivitasnya dalam memecahkan masalah dengan hasil yang akurat Prinsip dengan metode branch and bound adalah memecah daerah fisibel dari masalah PL-relaksasi dengan membuat subproblem-subproblem Daerah fisibel pemrograman linear adalah daerah yang memenuhi semua kendala pemrograman linear Branching Membuat partisi daerah solusi dari masalah PL-relaksasi ke dalam subproblem Tujuannya untuk menghapus daerah solusi yang takfisibel Hal ini dapat dicapai dengan menentukan kendala yang penting untuk menghasilkan solusi IP, secara tidak langsung titik integer yang takfisibel terhapus Dengan kata lain, hasil pengumpulan lengkap dari subproblem-subproblem ini menunjukkan setiap titik integer yang fisibel dalam masalah asli Proses ini dinamakan branching Bounding Misalkan masalah tersebut diasumsikan merupakan tipe maksimisasi, nilai objektif yang optimal untuk setiap subproblem dibuat dengan membatasi pencabangan dengan batas atas dari nilai objektif yang dihubungkan dengan sembarang nilai integer yang fisibel Hal ini sangat penting untuk mengatur dan menempatkan solusi optimal Operasi ini yang menjadi alasan dinamakan bounding (Taha 1975) Metode branch and bound diawali dengan menyelesaikan LP-relaksasi dari suatu masalah IP Jika semua nilai variabel keputusan solusi optimal sudah berupa integer, maka solusi tersebut merupakan solusi optimal ILP Jika tidak, dilakukan pencabangan dan penambahan batasan pada LP-relaksasinya kemudian diselesaikan Winston (2004) menyebutkan bahwa nilai fungsi objektif optimal untuk ILP nilai fungsi objektif optimal untuk LP-relaksasi (masalah maksimisasi), sehingga nilai fungsi objektif optimal LP-relaksasi merupakan batas atas bagi nilai fungsi objektif optimal untuk masalah ILP Diungkapkan pula oleh Winston (2004) bahwa nilai fungsi objektif optimal untuk suatu kandidat solusi merupakan batas bawah nilai fungsi objektif optimal untuk masalah ILP asalnya Suatu kandidat solusi didapat jika solusi dari suatu subproblem sudah menemui kendala integer pada masalah ILP, artinya semua variabelnya sudah bernilai integer Berikut ini adalah langkah-langkah penyelesaian suatu masalah maksimisasi dengan metode branch and bound 1 Langkah 0 Didefinisikan z sebagai batas bawah dari nilai fungsi objektif (solusi) ILP yang optimal Pada awalnya ditetapkan z = - dan i = 0 2 Langkah 1 Subproblem PL (i) dipilih sebagai bagian masalah berikutnya untuk dipecahkan, Subproblem PL (i) diselesaikan dan diukur dengan kondisi yang sesuai

5 a Jika PL (i) terukur dan solusi PL yang ditemukan lebih baik maka batas bawah z diperbarui Jika tidak, bagian masalah (subproblem) baru i yang dipilih dan langkah 1 diulangi Jika semua subproblem telah diteliti maka proses dihentikan b Jika PL(i) tidak terukur, proses dilanjutkan ke langkah 2 untuk melakukan pencabangan PL(i) Menurut Winston (2004), suatu subproblem dikatakan terukur (fathomed) jika terdapat kondisi sebagai berikut Subproblem tersebut takfisibel, sehingga tidak dapat menghasilkan solusi optimal untuk IP Subproblem tersebut menghasilkan suatu solusi optimal dengan semua variabelnya bernilai integer Jika solusi optimal ini mempunyai nilai fungsi objektif yang lebih baik daripada solusi fisibel yang diperoleh sebelumnya, maka solusi ini menjadi kandidat solusi optimal dan nilai fungsi objektifnya menjadi batas bawah nilai fungsi objektif optimal bagi masalah IP pada saat itu Bisa jadi subproblem ini menghasilkan solusi optimal untuk masalah IP Nilai fungsi objektif optimal untuk subproblem tersebut tidak melebihi batas bawah saat itu, maka subproblem ini dapat dieliminasi 3 Langkah 2 Dipilih satu variabel x j yang nilai optimalnya adalah x * j yang tidak memenuhi batasan integer dalam solusi LP i Bidang disingkirkan dengan membuat dua subproblem PL, yaitu dan, sehingga diperoleh kendala subproblem baru sebagai berikut: Subproblem baru 1: kendala subproblem lama + kendala Subproblem baru 2 : kendala subproblem lama + kendala dengan didefinisikan sebagai integer terbesar yang kurang dari satu atau sama 666 dengan Selanjutnya kembali ke Langkah 1 (Taha 1996) Untuk memudahkan pemahaman mengenai metode branch and bound diberikan contoh sebagai berikut 5 Contoh 2 Misalkan diberikan pemrograman integer (IP) sebagai berikut: maksimumkan z = 4x 1 + 5x 2, terhadap: 3x 1 + 6x 2 40, x 1 10, 3x 2 15, x 1, x 2 0 dan integer (6) Setelah diselesaikan menggunakan software LINGO 80 didapatkan solusi optimal PL-relaksasi dari masalah IP (6) adalah x 1 = 10, x 2 = 166, z = 4833 (lihat Lampiran 1) Batas atas nilai optimal fungsi objektif masalah IP (6) adalah 4833 Daerah fisibel PL-relaksasi masalah (6) ditunjukkan pada Gambar 1 (daerah yang diarsir) Solusi optimal berada pada titik perpotongan garis yang berasal dari kendala pertidaksamaan masalah (6) 0 x 2 = 166 1333 x 1 = 10 Gambar 1 Daerah fisibel untuk PL-relaksasi dari IP (6) Langkah berikutnya adalah memartisi daerah fisibel PL-relaksasi menjadi dua bagian berdasarkan variabel yang berbentuk pecahan (non-integer) Dipilih x 2 sebagai dasar pencabangan Jika masalah PL-relaksasinya 10

6 666 5 2 1 diberi nama Subproblem 1, maka pencabangan tersebut menghasilkan 2 Subproblem, yaitu: Subproblem 2: Subproblem 1 ditambah kendala x 2 1; Subproblem 3: Subproblem 1 ditambah kendala x 2 2; Hal ini diilustrasikan secara grafis pada Gambar 2 0 Gambar 2 Daerah fisibel Subproblem 2 (x 2 1) dan Subproblem 3 (x 2 2) Setiap titik (solusi) fisibel dari IP (6) termuat dalam daerah fisibel Subproblem 2 atau Subproblem 3 Setiap subproblem ini saling lepas Subproblem 2 dan Subproblem 3 dikatakan dicabangkan atas x 2 Sekarang dipilih subproblem yang belum diselesaikan Misalkan dipilih Subproblem 2, kemudian diselesaikan Solusi optimal yang didapatkan untuk Subproblem 2 adalah x 1 = 10, x 2 = 1, z = 45 (lihat Lampiran 1) Solusi dari Subproblem 2 semuanya bernilai integer sehingga tidak perlu lagi dilakukan pencabangan pada Subproblem 2 Nilai optimum Subproblem 2 menjadi batas bawah pertama yaitu 45 Saat ini subproblem yang belum diselesaikan adalah Subproblem 3 Solusi optimal untuk Subproblem 3 adalah x 1 = 933, x 2 = 2, z = 4733 (lihat Lampiran 1) Karena 10 1333 solusi optimum yang dihasilkan Subproblem 3 bukan solusi integer, maka dipilih pencabangan pada Subproblem 3 atas x 1, sehingga diperoleh dua subproblem lagi, yakni: Subproblem 4: Subproblem 3 ditambah kendala x 1 9; Subproblem 5: Subproblem 3 ditambah kendala x 1 10; Subproblem 4 dan Subproblem 5 diselesaikan satu per satu Subproblem 5 takfisibel (lihat Lampiran1), maka subproblem ini tidak menghasilkan solusi optimum Solusi optimal untuk Subproblem 4 adalah x 1 = 9, x 2 = 216, z = 4683 (lihat Lampiran 1) Karena solusi optimum Subproblem 4 bukan solusi integer, maka dipilih pencabangan Subproblem 4 pada x 2, sehingga diperoleh dua subproblem lagi, yaitu: Subproblem 6: Subproblem 4 ditambah kendala x 2 2; Subproblem 7: Subproblem 4 ditambah kendala x 2 3; Penyelesaian Subproblem 6 menghasilkan solusi optimum yang berupa integer, dengan x 1 = 9, x 2 = 2, z = 46 (lihat Lampiran 1) Diperoleh kandidat solusi optimum yang baru dari Subproblem 6 Karena nilai z baru pada Subproblem 6 lebih baik daripada nilai z pada Subproblem 2, maka solusi pada Subproblem 6 menjadi batas bawah yang baru Subproblem 7 menghasilkan solusi optimum x 1 = 733, x 2 = 3, z = 4433 (lihat Lampiran 1) Karena solusi optimum dari Subproblem 7 tidak lebih baik dari batas bawah yang baru, maka tidak perlu dilakukan pencabangan pada Subproblem 7 Dengan demikian, solusi optimum pada IP (6) adalah solusi optimum dari Subproblem 6, yaitu x 1 = 9, x 2 = 2, z = 46 (lihat Lampiran 1) Pohon pencabangan yang menunjukkan penyelesaian masalah IP (6) secara keseluruhan ditunjukkan pada Gambar 3