Hendra Gunawan. 13 November 2013

Ukuran: px
Mulai penontonan dengan halaman:

Download "Hendra Gunawan. 13 November 2013"

Transkripsi

1 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/ November 013

2 Latihan 1. Tentukan volume benda putar ang terbentuk bila daerah ang dibatasi oleh kurva = x dan = x diputar mengelilingi: a. sumbu x b. sumbu c. garis = 1.. Alas sebuah benda berbentuk lingkaran berjari jari 1. Misalkan penampang benda tsb ang tegak lurus terhadap suatu diameter, berbentuk persegi. Tentukan volume benda tsb. 11/13/013 (c) Hendra Gunawan

3 Sasaran Kuliah Hari Ini 5.3 Volume Benda Putar: Metode Kulit Tabung Menghitung volume benda putar dengan metodekulit tabung. 5.4 Kerja dan Gaa Fluida Menghitung kerja ang dilakukan oleh suatu gaa (sebagai suatu integral tentu). 11/13/013 (c) Hendra Gunawan 3

4 MA1101 MATEMATIKA 1A 5.3 VOLUME BENDA PUTAR: METODE KULIT TABUNG Menghitung volume benda putar dengan metode kulit tabung. 11/13/013 (c) Hendra Gunawan 4

5 Misalkan daerah ang dibatasi oleh kurva = f(x) dan = g(x) diputarmengelilingi sumbu. Berapakahvolume benda putar ang terbentuk? =f(x) L i =g(x) Metode ini disebut metode kulit tabung. V i πx[f(x i ) g(x i )]. x i V b x [ f ( x ) a g ( x )] dx. 11/13/013 (c) Hendra Gunawan 5

6 Contoh 1. Tentukan volume benda putar ang terbentuk bila daerah tertutup ang dibatasi oleh kurva = x dan = x diputar mengelilingi sumbu. Jawab: Vl Volume ii irisan sama dengan V i πx i.[x i x i ]. x i ; jadi volume benda putar ang terbentuk sama dengan V 1 0 [ x x ] dx. 6 x 3 3 x /13/013 (c) Hendra Gunawan 6

7 Contoh. Tentukan volume benda putar ang terbentuk bila daerah tertutup ang dibatasi oleh kurva = x dan = x diputar mengelilingi sumbu x. Jawab: Vl Volume ii irisan sama dengan V i π i.[ i i ]. i ; jadi volume benda putar ang terbentuk sama dengan V 1 0 [ ] d... 11/13/013 (c) Hendra Gunawan 7

8 Latihan Tentukanvolume ou ebenda ang terbentuk tu bila ba daerah ang dibatasi oleh kurva kurva berikut diputar mengelilingi sumbu : 1. = x dan = x.. = x, = x, dan x = 0. Tentukan volume benda putar ang terbentuk bila daerah ang dibatasi oleh kurva kurva 3. x = dan x = 4 diputar mengelilingi sumbu x. 11/13/013 (c) Hendra Gunawan 8

9 MA1101 MATEMATIKA 1A 5.4 KERJA DAN GAYA FLUIDA Menghitung kerja ang dilakukan oleh suatu gaa g (sebagai suatu integral tentu). 11/13/013 (c) Hendra Gunawan 9

10 Kerja ang Dilakukan oleh Suatu Gaa Jika sebuah benda berpindah sejauh x akibat terkena gaa konstan sebesar F (ang searah dengan gerakan benda tsb), maka kerja ang dl dilakukanoleh k l gaa tsb adalah dlh W = F.x F x dengan W = kerja, F = gaa, dan x = perpindahan. 11/13/013 (c) Hendra Gunawan 10

11 Kerja ang Dilakukan oleh Suatu Gaa Dalam banak kasus, F = F(x) tidak konstan. Untuk menghitung kerja ang dilakukanna, kita gunakan proses pengintegralan: iris, taksir, jumlahkan dan ambil limitna. Pada selang bagian ke i: W i F(x i ). x i. Jadi, kerja ang dilakukan untuk memindahkan benda dari posisi iix = a ke x = b sama dengan b a W F ( x ) dx. 11/13/013 (c) Hendra Gunawan 11

12 Kerja pada Pegas Menurut Hukum Hooke, gaa F(x) ang diperlu kan untuk menahan pegas pada posisi x satuan panjang dari posisi alamina sebanding dengan x, akni F(x) = kx, dengan k = konstanta pegas tsb. 0 x 11/13/013 (c) Hendra Gunawan 1

13 Contoh Panjang alami suatu pegas adalah 0. m. Jika diperlukan gaa 1 N untuk menarik dan menahanna sejauh 0.04 m, hitunglah kerja ang dilakukan untuk menarik pegas tsb sejauh 01m 0.1 dari panjang alamina. Jawab: Dari persamaan 1 = k(0.04), 04) kita peroleh konstanta pegas k = 300. Kerja ang dilakukanuntuk menarik pegas tsb sejauh 0.1 m dari panjang alamina adalah W xdx 150x joule. 11/13/013 (c) Hendra Gunawan 13

14 Kerja untuk Memindahkan Fluida Kerja untuk Memindahkan Fluida Diketahui sebuah tangki berbentuk kerucut terbalik, g, dengan alas 10 dm dan tinggi 10 dm, penuh berisi air. Tentukan kerja ang dilakukan untuk memompa seluruh air keluar dari tangki, melalui tepi atas tangki. Jawab: V F V F 11/13/013 (c) Hendra Gunawan 14 W ) (10

15 Jadi, kerja ang dilakukan untuk memompa seluruh air keluar dari tangki, melalui tepiatas tangki adalah W 10 (10 ) d Joule. 11/13/013 (c) Hendra Gunawan 15

16 Latihan 1. Panjang alami suatu pegas adalah 0.08 m. Gaa sebesar 0.6 N diperlukan untuk menekan dan menahanna pada panjang 0.07 m. Tentukan kerjaang dilakukan k untuk menekan dan menahan pegas tsb pada panjang 0.06 m.. Tentukan kerja ang dilakukan untuk memompa seluruh air keluar dari tangki dengan penampang spt pada gambar di samping. Panjang tangki tsb = 10 dm ke belakang. 6 dm 3 dm 4 dm 11/13/013 (c) Hendra Gunawan 16

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN NAMA : SISKA NUKE ENI PRADITA NIM : 125100301111044 KELAS : P TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN A. APLIKASI INTEGRAL DI BIDANG EKONOMI Diartikan geometris dari

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

7. APLIKASI INTEGRAL 1

7. APLIKASI INTEGRAL 1 7. APLIKASI INTEGRAL 1 7.1 Menghitung Luas aerah a.misalkan daerah (, ) a b, 0 f ( ) a f() b Luas =? Langkah : 1. Iris menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan

Lebih terperinci

Gerak Melingkar Pendahuluan

Gerak Melingkar Pendahuluan Gerak Melingkar Pendahuluan Gerak roda kendaraan, gerak CD, VCD dan DVD, gerak kendaraan di tikungan yang berbentuk irisan lingkaran, gerak jarum jam, gerak satelit mengitari bumi, dan sebagainya adalah

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 10 Maret 01 Kuliah ang Lalu 10.1- Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

Hendra Gunawan. 4 Oktober 2013

Hendra Gunawan. 4 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 Oktober 2013 Latihan (Kuliah yg Lalu) 1. Tentukan pada selang mana grafik fungsi f(x) = x 3 2x 2 + x + 1 naik atau turun. Tentukan pula pada

Lebih terperinci

CONTOH SOAL UAN INTEGRAL

CONTOH SOAL UAN INTEGRAL 1. Diketahui. Nilai a = a. 4 b. 2 c. 1 d. 1 e. 2 2. Nilai a. d. b. e. c. 3. Hasil dari a. b. d. e. c. 4. Hasil dari a. cos 6 x. sin x + C b. cos 6 x. sin x + C c. sin x + sin 3 x + sin 5 x + C d. sin x

Lebih terperinci

Bab 3 Bagian 3 VOLUME BENDA PUTAR

Bab 3 Bagian 3 VOLUME BENDA PUTAR Bab 3 Bagian 3 VOLUME BENDA PUTAR INTRODUCTION Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasna diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

Hendra Gunawan. 2 Oktober 2013

Hendra Gunawan. 2 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan

Lebih terperinci

Hendra Gunawan. 11 April 2014

Hendra Gunawan. 11 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan emester II, 2013/2014 11 April 2014 Kuliah ang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limitdan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus

Lebih terperinci

Hendra Gunawan. 19 Maret 2014

Hendra Gunawan. 19 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 19 Maret 014 Kuliah ang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

Aplikasi Matematika Dalam Dunia Teknik Sipil

Aplikasi Matematika Dalam Dunia Teknik Sipil Aplikasi Matematika Dalam Dunia Teknik Sipil Oleh : 1.Adieq Irma.T.Agnestya.L 3.Irfan Hermawan 4.M.Mughny Halim 311110010 1 sipil 1 sore Program studi Teknik Konstruksi Sipil Politeknik Negeri Jakarta

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar INTEGRAL 1. Pengertian Integral Integral adalah kebalikan dari turunan (diferensial),secara matematis dapat dirumuskan : dengan : f (x) = turunan f(x) C = konstanta 1.1 Integral Tak Tentu Integral tak

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan

Lebih terperinci

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

14 Menghitung Volume Bangun Ruang

14 Menghitung Volume Bangun Ruang 14 Menghitung Volume Bangun Ruang Pengetahuan kita tentang lingkaran berguna bagi kita dalam memahami bola dan bangun ruang lainnya yang mempunyai penampang lingkaran, seperti elipsoida, silinder, dan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar.

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar. PENGGUNAAN INTEGRA 1. Menghitung luas suatu daerah ang dibatasi oleh kurva dan sumbu-sumbu koordinat.. Menghitung volume benda putar. 9 uas daerah di bawah kurva Volume benda putar ang diputar mengelilingi

Lebih terperinci

MEDIA PRESENTASI PEMBELAJARAN

MEDIA PRESENTASI PEMBELAJARAN MEDIA PRESENTASI PEMBELAJARAN Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan 9 = Referensi Readme Author Eit Matematika SMA/MA Kelas II IPA Semester 1 Berdasarkan Kurikulum Berbasis Kompetensi

Lebih terperinci

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI Nama : Syifa Robbani NIM : 125100301111002 Dosen Kelas : Nimas Mayang Sabrina S., STP, MP, MSc : L Nimas Nimas Mayang Sabrina S., STP, MP, MSc Mayang

Lebih terperinci

Hendra Gunawan. 11 Oktober 2013

Hendra Gunawan. 11 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x

Lebih terperinci

Hendra Gunawan. 30 Agustus 2013

Hendra Gunawan. 30 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 8 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

MATEMATIKA SMK KELOMPOK : TEKNOLOGI

MATEMATIKA SMK KELOMPOK : TEKNOLOGI MATEMATIKA SMK KELOMPOK : TEKNOLOGI. Scolastika menjual sepeda motornya seharga Rp..0.000,00, ternyata ia mengalami kerugian sebesar %. Harga pembelian sepeda motor tersebut adalah. Rp.0.000,- Rp.00.000,-

Lebih terperinci

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012 Page of PEMBAHASAN UN SMA IPA TAHUN AJARAN 0/0 OLEH: SIGIT TRI GUNTORO, M.Si MARFUAH, S.Si, M.T REVIEWER: UNTUNG TRISNA S., M.Si JAKIM WIYOTO, S.Si Page of Misalkan, p : hari ini hujan q: saya tidak pergi

Lebih terperinci

Hendra Gunawan. 21 Maret 2014

Hendra Gunawan. 21 Maret 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II 2013/2014 21 Maret 2014 Kuliah ang Lalu 12.1 Fungsi dua (atau lebih peubah 12.2 Turunan Parsial 12.3 Limit dan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

TRY OUT MATEMATIKA SMK TEKNOLOGI - 01

TRY OUT MATEMATIKA SMK TEKNOLOGI - 01 1. senilai dengan... a. - b. c. d. e. 2. Bentuk sederhana dari adalah a. 3 b. 3 + c. 21 7 d. 21 e. 21 + 3. Diketahui 3 log 5 = x dan 3 log 7 = y. Nilai dari 3 log = a. ½ x + y b. ½ x + 2y c. ½ x y d. ½

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E. PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 11 Aplikasi Integral - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Momen Inersia Energi yang dimiliki benda karena pergerakannya disebut Energi Kinetik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

Hendra Gunawan. 27 November 2013

Hendra Gunawan. 27 November 2013 MA0 MATEMATIKA A Hendra Gunawan Semester I, 03/04 7 November 03 Latihan (Kuliah yang Lalu) d. Tentukan (0 ). d. Hitunglah 3 5 d. 0 a 3. Buktikan bahwa y, a, monoton. a Tentukan inversnya. /7/03 (c) Hendra

Lebih terperinci

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Standar Kompetensi : 1. Memahami Teorema Green Kompetensi Dasar : 1. Menyebutkan kembali pengertian

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

Hendra Gunawan. 18 September 2013

Hendra Gunawan. 18 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 18 September 2013 Review: Teorema Nilai Antara Jika f kontinu pada [a,b],, f(a) < 0 dan f(b) > 0 (atau sebaliknya, f(a) > 0 dan f(b) < 0), maka

Lebih terperinci

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG A. TABUNG Tabung adalah bangun ruang yang dibatasi oleh dua lingkaran yang berhadapan, sejajar, dan kongruen serta titik-titik pada keliling lingkaran

Lebih terperinci

BAB 11 ELASTISITAS DAN HUKUM HOOKE

BAB 11 ELASTISITAS DAN HUKUM HOOKE BAB ELASTISITAS DAN HUKUM HOOKE TEGANGAN (STRESS) Adalah hasil bagi antara gaya tarik F yang dialami kawat dengan luas penampang A. Tegangan F A REGANGAN (STRAIN) Adalah hasil bagi antara pertambahan panjang

Lebih terperinci

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia. Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan

Lebih terperinci

BAB 1 ANALISA SKALAR DANVEKTOR

BAB 1 ANALISA SKALAR DANVEKTOR 1.1 Skalar dan Vektor BAB 1 ANAISA SKAA DANVEKT Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Simbul,, dan z ang digunakan merupakan scalar, dan besarna juga dinatakan dalam

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

2 - x. 5. Persamaan garis k yang sejajar dengan garis l : x 3y + 6 = 0 dan melalui titik (3, 2) adalah

2 - x. 5. Persamaan garis k yang sejajar dengan garis l : x 3y + 6 = 0 dan melalui titik (3, 2) adalah . Dari sebidang tanah diketahui 0 % dari luas tanah digunakan untuk mendirikan rumah, ½ % dari sisanya untuk taman dan sisanya tanah kosong. Jika luas tanah kosong 45 m, maka luas taman adalah.. 4 m m.

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Torsi Pertemuan - 7 TIU : Mahasiswa dapat menghitung besar tegangan dan regangan yang terjadi pada suatu penampang TIK : Mahasiswa dapat menghitung

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil Standar Kompetensi : 1. Menggunakan konsep integral dalam

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78. PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha.

Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha. Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Suatu benda dikatakan memiliki energi jika benda tersebut dapat melakukan usaha. Misalnya kendaraan dapat mengangkat barang karena memiliki

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih SUB- BAB Gerak Harmonis A. Gaya Pemulih Sederhana B. Persamaan Simpangan, Kecepatan dan Percepatan Getaran C. Periode Getaran D. Hukum Hooke E. Manfaat Pegas Sebagai Produk Perkembangan Konsep dan Keahlian

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci