PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar.

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar."

Transkripsi

1 PENGGUNAAN INTEGRA 1. Menghitung luas suatu daerah ang dibatasi oleh kurva dan sumbu-sumbu koordinat.. Menghitung volume benda putar. 9 uas daerah di bawah kurva Volume benda putar ang diputar mengelilingi sumbu Y

2 Integral Tentu uas Daerah Teorema Dasar Kalkulus Misalkan f adalah fungsi ang kontinu pada selang [a, b] dan misalkan F adalah anti turunan dari f pada selang tersebut, maka berlaku : b f( ) d F( b) F( a) a Untuk meringkas penulisan, F(b) F(a) dinotasikan sebagai F() b a Contoh 1 : Hitunglah nilai dari 6 Jawab 1 1 d 6 d = 1 = () () [(-1) (-1) ] = = 1 Net

3 Menghitung uas dengan Integral uas Daerah Secara geometri definisi integral Riemaan di atas dapat diartikan sebagai luas daerah di bawah kurva = f() pada interval [a, b]. Jumlah uas Partisi Berubah Menjadi Integral f() f() Tentukan limitna n a b n i1 f( i ) i b a f ( ) d a b b f( ) d lim a n n i1 f( i ) i Net

4 Menghitung uas dengan Integral uas Daerah Kegiatan pokok dalam menghitung luas daerah dengan integral tentu adalah: i f() 1. Gambar daerahna.. Partisi daerahna. Aproksimasi luas sebuah partisi i f( i ) i f( i ) i. Jumlahkan luas partisi i a f( i ) i 5. Ambil limitna = lim f( i ) i 6. Natakan dalam integral a f( ) d Net

5 Menghitung uas dengan Integral uas Daerah Contoh 1. Hitunglah luas daerah tertutup ang dibatasi kurva =, sumbu, dan garis = Jawab angkah penelesaian : 1. Gambarlah daerahna i f( ). Partisi daerahna. Aproksimasi luasna i i i. Jumlahkan luasna i i 5. Ambil limit jumlah luasna i = lim i i 6. Natakan dalam integral dan i hitung nilaina d 9 i Net

6 Menghitung uas dengan Integral uas Daerah Contoh. Hitunglah luas daerah tertutup ang dibatasi kurva =, sumbu Y, dan garis = Jawab angkah penelesaian : 1. Gambarlah daerahna. Partisi daerahna. Aproksimasi luasna i. i f ( ). Jumlahkan luasna. 5. Ambil limit jumlah luasna = lim. 6. Natakan dalam integral dan hitung nilaina. d.8 16 Net

7 Menghitung uas dengan Integral uas Daerah Contoh. Hitunglah luas daerah tertutup ang dibatasi kurva = -, sumbu, dan garis = 6 Jawab angkah penelesaian: i 1. Gambar dan Partisi daerahna. Aproksimasi : i ( i - i ) i dan i i i j A j -( j - j ) j. Jumlahkan : ( i - i ) i dan A i j 6 -( j - j ) j. Ambil limitna = lim ( i - i ) i ( ) A j dan A = lim -( j - j ) j 5. Natakan dalam integral ( ) d A 6 ( ) d f( ) Net

8 Menghitung uas dengan Integral uas Daerah uas Daerah ( ) d i A A 1 () 6 1 ( () ) d 1 6 A (6) A 7 A 15 1 (6) () 15 uas daerah 6 1 () 1 1 i i ( i i ) j j A j f( ) 6 Net

9 Menghitung uas dengan Integral Kesimpulan : f() i uas Daerah uas Daerah i f( i ) b. d a b. d a Net

10 Menghitung uas dengan Integral uas Daerah uas Daerah UAS DAERAH ANTARA DUA KURVA Perhatikan kurva = f() dan = g() dengan f() > g() pada selang [a, b] di bawah ini. Dengan menggunakan cara : partisi, aproksimasi, jumlahkan, ambil limitna, integralkan, maka dapat ditentukan luas daerah antara dua kurva tersebut. angkah penelesaian: 1. Partisi daerahna f(). Aproksimasi : i [ f() g() ]. Jumlahkan : [ f() g() ] 5. Ambil limitna : a i b f( ) g( ) = lim [ f() g() ] 6. Natakan dalam integral tertentu g() b a f( ) g( ) d Net

11 Menghitung uas dengan Integral uas Daerah Contoh. Hitunglah luas daerah tertutup ang dibatasi kurva = dan garis = - Jawab angkah penelesaian: 1. Gambar daerahna. Tentukan titik potong kedua kurva = + = ( + )( 1) = diperoleh = - dan = 1. Partisi daerahna. Aproksimasi luasna i ( - - ) 5. Natakan dalam integral tertentu ( ) i 5 1 ( d ) 1 Net

12 Menghitung uas dengan Integral uas Daerah uas Daerah 1 ( ) d 1 (1) 1 1 ( ) ( ) ( ) ( ) i Net

13 Menghitung uas dengan Integral uas Daerah Untuk kasus tertentu pemartisian secara vertikal menebabkan ada dua bentuk integral. Akibatna diperlukan waktu lebih lama untuk i g() f( ) g( ) f() menghitungna. A i a b f( ) a uas daerah = b f( ) d f ( ) g( ) d a Net

14 Menghitung uas dengan Integral uas Daerah uas Daerah Jika daerah tersebut dipartisi secara horisontal, maka akan diperoleh satu bentuk integral ang menatakan luas daerah tersebut. Sehingga penelesaianna menjadi lebih sederhana dari sebelumna. d g( ) g( ) f( ) f( ) g( ) f( ) i c d uas daerah = g ( ) f( ) c d Net

15 Menghitung uas dengan Integral uas Daerah Contoh 5. Hitunglah luas daerah di kuadran I ang dibatasi kurva =, garis + = 6, dan sumbu Jawab angkah penelesaian: 1. Gambar daerahna. Tentukan titik potong kedua kurva = = ( + )( ) = diperoleh = - dan =. Partisi daerahna. Aproksimasi luasna i (6 - - ) 5. Natakan dalam integral tertentu uas daerah = 6 d 6 ( 6 ) i 6 6 Net

16 Menghitung uas dengan Integral uas Daerah uas Daerah uas daerah = uas daerah = 6 d 6 uas daerah = 6() 6 ( 6 ) uas daerah = uas daerah = 1 8 i 6 6 Net

17 Pendahuluan Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasna diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga penggunaan integral untuk menghitung volume benda putar.

18 Pendahuluan Suatu daerah jika di putar mengelilingi garis tertentu sejauh 6º, maka akan terbentuk suatu benda putar. Kegiatan pokok dalam menghitung volume benda putar dengan integral adalah: partisi, aproksimasi, penjumlahan, pengambilan limit, dan menatakan dalam integral tentu. Gb. Net

19 Pendahuluan Dalam menentukan volume benda putar ang harus diperhatikan adalah bagaimana bentuk sebuah partisi jika diputar. Berdasarkan bentuk partisi tersebut, maka metode ang digunakan untuk menentukan volume benda putar dibagi menjadi : 1. Metode cakram. Metode cincin. Metode kulit tabung Net

20 Metode Cakram Metode cakram ang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongna sehingga tiap potongan berbentuk cakram. Net

21 Metode Cakram Bentuk cakram di samping dapat dianggap sebagai tabung dengan jari-jari r = f(), tinggi h =. Sehingga volumena dapat diaproksimasi sebagai V r h atau V f(). Dengan cara jumlahkan, ambil limitna, dan natakan dalam integral diperoleh: V f() V = lim f() v a [ f( )] d h= f() r f() a Net

22 Metode Cakram Contoh 7. Hitunglah volume benda putar ang terjadi jika daerah ang dibatasi kurva = + 1, sumbu, sumbu, garis = diputar mengelilingi sumbu sejauh 6º. Jawab angkah penelesaian: 1. Gambarlah daerahna. Buat sebuah partisi. Tentukan ukuran dan bentuk partisi. Aproksimasi volume partisi h= r 1 ang diputar, jumlahkan, ambil limitna, dan natakan dalam bentuk integral. Net

23 Metode Cakram V r h V ( + 1) V ( + 1) h= V = lim ( + 1) V ( 1) d r 1 V ( 1) d V V ( ) Net

24 Metode Cakram Contoh 8. Hitunglah volume benda putar ang terjadi jika daerah ang dibatasi kurva =, sumbu, garis = diputar mengelilingi sumbu sejauh 6º. Jawab angkah penelesaian: 1. Gambarlah daerahna. Buatlah sebuah partisi. Tentukan ukuran dan bentuk partisi. Aproksimasi volume partisi ang diputar, jumlahkan, ambil limitna, dan natakan dalam r h= bentuk integral. Net

25 Metode Cakram V r h V () V V = lim V d V d V V r h= V 1 1 ( ) Net

26 Metode Cincin Metode cincin ang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume bawang bomba dengan memotong-motongna ang potonganna berbentuk cincin. Net

27 Metode Cincin Menghitung volume benda putar dengan menggunakan metode cincin dilakukan dengan memanfaatkan rumus volume cincin seperti gambar di samping, aitu V= (R r )h Gb. 5 h r R Net

28 Metode Cincin Contoh 9. Hitunglah volume benda putar ang terjadi jika daerah ang dibatasi kurva = dan garis = diputar mengelilingi sumbu sejauh 6º. Jawab angkah penelesaian: 1. Gambarlah daerahna =. Buat sebuah partisi. Tentukan ukuran dan bentuk partisi. Aproksimasi volume partisi ang diputar, jumlahkan, ambil limitna, dan natakan dalam bentuk integral. Net

29 Metode Cincin V (R r ) h V [ () ( ) ] = V ( ) V ( ) V = lim ( ) r= R= V ( ) d V V V V ( ) 5 ( 16 ) Net

30 Metode Kulit Tabung Metode kulit tabung ang digunakan untuk menentukan volume benda putar dapat dianalogikan seperti menentukan volume roti pada gambar disamping. Net

31 Metode Kulit Tabung r r h V = rhδr h r Δr Net

32 Metode Kulit Tabung Contoh 1. Hitunglah volume benda putar ang terjadi jika daerah ang dibatasi kurva =, garis =, dan sumbu diputar mengelilingi sumbu sejauh 6º. Jawab angkah penelesaian: 1. Gambarlah daerahna. Buatlah sebuah partisi. Tentukan ukuran dan bentuk partisi.. Aproksimasi volume partisi ang diputar, jumlahkan, ambil limitna, dan natakan dalam bentuk integral. 1 1 Net

33 Metode Kulit Tabung r = 1 1 h = V rh V ()( ) V V = lim V V V d 1 8 Net

34 Metode Kulit Tabung Jika daerah pada contoh ke-1 tersebut dipartisi secara horisontal dan sebuah partisi diputar mengelilingi sumbu, maka partisi tersebut membentuk cincin. Volume benda putar tersebut dihitung dengan metode cincin adalah sebagai berikut. 1 r= R = V (R r ) V ( - ) V ( ) V = lim ( ) V d V V V 1 ( 16 8) 8 Net

35 atihan atihan (6 soal) Petunjuk : Kesempatan menjawab hana 1 kali Net

36 atihan uas daerah ang diarsir pada gambar di bawah ini dapat dinatakan dalam bentuk integral sebagai... A Soal 1. d D ( ) d Y B d E ( ) d C d X Net

37 atihan Soal 1. uas daerah ang diarsir pada gambar di bawah ini dapat dinatakan dalam bentuk integral sebagai... A d D ( ) d Y B d E ( ) d C d X Jawaban Anda Benar ( ) ( ) = lim ( ) ( )d ( Jawaban D ) Net

38 atihan Soal 1. uas daerah ang diarsir pada gambar di bawah ini dapat dinatakan dalam bentuk integral sebagai... A d D ( ) d Y B d E ( ) d - C d X Jawaban Anda Salah ( ) ( ) = lim ( ) ( )d ( Jawaban D ) Net

39 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A,5 satuan luas D 9 1/ satuan luas Y B 6 satuan luas E 1 / satuan luas C 7,5 satuan luas X Net

40 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A,5 satuan luas D 9 1/ satuan luas Y B 6 satuan luas E 1 / satuan luas C 7,5 satuan luas X Jawaban Anda Benar ( ) ( ) = lim ( ) ( )d 1 8 (8 8 ) ( 8 ) 1 ( Jawaban E ) Net

41 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A B,5 satuan luas 6 satuan luas D E 9 1/ satuan luas 1 / satuan luas Y C 7,5 satuan luas - X Jawaban Anda Salah ( ) ( ) = lim ( ) ( )d 1 8 (8 8 ) ( 8 ) 1 ( Jawaban E ) Net

42 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A 5 satuan luas D 9 1/ satuan luas Y B 7 / satuan luas E 1 1/ satuan luas C 8 satuan luas X 8 Net

43 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A 5 satuan luas D 9 1/ satuan luas Y B 7 / satuan luas E 1 1/ satuan luas C 8 satuan luas X 8 Jawaban Anda Benar (8 -) 16 8 (8 ) d ( Jawaban D ) 8 1 Net

44 atihan Soal. uas daerah ang diarsir pada gambar di bawah ini sama dengan. A 5 satuan luas D 9 1/ satuan luas Y B 7 / satuan luas E 1 1/ satuan luas C 8 satuan luas X 8 Jawaban Anda Salah (8 -) 16 8 (8 ) d ( Jawaban D ) 8 1 Net

45 atihan Soal. uas daerah ang dibatasi oleh kurva = dan garis + = adalah. A,5 satuan luas D 1 / satuan luas B,5 satuan luas E 5/6 satuan luas C 6 satuan luas Net

46 atihan Soal. uas daerah ang dibatasi oleh kurva = dan garis + = adalah. A,5 satuan luas D 1 / satuan luas Y B,5 satuan luas E 5/6 satuan luas 1 X C 6 satuan luas - Jawaban Anda Benar [( ) ] 8 ( 1 1 ) ( ) 1 ( ) d 9, 5 ( Jawaban B ) Net

47 atihan Soal. uas daerah ang dibatasi oleh kurva = dan garis + = adalah. A,5 satuan luas D 1 / satuan luas Y 1 B,5 satuan luas E 5/6 satuan luas X C 6 satuan luas - Jawaban Anda Salah [( ) ] 8 ( 1 1 ) ( ) 1 ( ) d 9, 5 ( Jawaban B ) Net

48 atihan Soal 5. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 6. Jika digunakan metode kulit tabung, maka bentuk integral ang menatakan volume benda putar tersebut adalah... A v d D v d Y X B v d E v (16 ) d X C v d Net

49 atihan Soal 5. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 6. Jika digunakan metode kulit tabung, maka bentuk integral ang menatakan volume benda putar tersebut adalah... A v d D v d Y X B v d E v (16 ) d X C v d Jawaban Anda Benar V V d ( Jawaban D ) Net

50 atihan Soal 5. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 6. Jika digunakan metode kulit tabung, maka bentuk integral ang menatakan volume benda putar tersebut adalah... A v B v C v d d d D E v d v (16 ) d Y X X Jawaban Anda Salah V V d ( Jawaban D ) Net

51 atihan Soal 6. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 6. Volume benda putar ang terjadi adalah. A satuan volum D 1 satuan volum Y B 6 satuan volum E 15 satuan volum X C 8 satuan volum X Net

52 atihan Soal 6. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 6. Volume benda putar ang terjadi adalah. A satuan volum D 1 satuan volum Y B 6 satuan volum E 15 satuan volum X C 8 satuan volum X Jawaban Anda Benar V () V V d 1 V 8 ( Jawaban C ) Net

53 atihan Soal 6. Daerah ang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 6. Volume benda putar ang terjadi adalah. A satuan volum D 1 satuan volum B 6 satuan volum E 15 satuan volum C 8 satuan volum Y X X Jawaban Anda Salah V () V V d 1 V 8 ( Jawaban C ) Net

Bab 3 Bagian 3 VOLUME BENDA PUTAR

Bab 3 Bagian 3 VOLUME BENDA PUTAR Bab 3 Bagian 3 VOLUME BENDA PUTAR INTRODUCTION Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasna diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga

Lebih terperinci

MEDIA PRESENTASI PEMBELAJARAN

MEDIA PRESENTASI PEMBELAJARAN MEDIA PRESENTASI PEMBELAJARAN Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan 9 = Referensi Readme Author Eit Matematika SMA/MA Kelas II IPA Semester 1 Berdasarkan Kurikulum Berbasis Kompetensi

Lebih terperinci

Aplikasi Matematika Dalam Dunia Teknik Sipil

Aplikasi Matematika Dalam Dunia Teknik Sipil Aplikasi Matematika Dalam Dunia Teknik Sipil Oleh : 1.Adieq Irma.T.Agnestya.L 3.Irfan Hermawan 4.M.Mughny Halim 311110010 1 sipil 1 sore Program studi Teknik Konstruksi Sipil Politeknik Negeri Jakarta

Lebih terperinci

7. APLIKASI INTEGRAL 1

7. APLIKASI INTEGRAL 1 7. APLIKASI INTEGRAL 1 7.1 Menghitung Luas aerah a.misalkan daerah (, ) a b, 0 f ( ) a f() b Luas =? Langkah : 1. Iris menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan

Lebih terperinci

PENERAPAN PEMBELAJARAN KONTEKSTUAL PADA KALKULUS 2 BAHASAN VOLUM BENDA PUTAR

PENERAPAN PEMBELAJARAN KONTEKSTUAL PADA KALKULUS 2 BAHASAN VOLUM BENDA PUTAR PENERAPAN PEMBELAJARAN KONTEKSTUAL PADA KALKULUS 2 BAHASAN VOLUM BENDA PUTAR Yulia Romadiastri Dosen Jurusan Tadris Matematika FITK IAIN Walisongo Abstrak Salah satu bahasan pada mata kuliah Kalkulus 2

Lebih terperinci

Integral Ganda. a f (x) dx = R f (x) dx: Misalkan D adalah

Integral Ganda. a f (x) dx = R f (x) dx: Misalkan D adalah oki neswan FMIPA-ITB Integral Ganda Pengertian Integral Ganda Integral ganda f (; ) da adalah perumuman dari integral R b a f () d R f () d: Misalkan adalah [a;b] daerah ang berada dalam persegi panjang

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

CONTOH SOAL UAN INTEGRAL

CONTOH SOAL UAN INTEGRAL 1. Diketahui. Nilai a = a. 4 b. 2 c. 1 d. 1 e. 2 2. Nilai a. d. b. e. c. 3. Hasil dari a. b. d. e. c. 4. Hasil dari a. cos 6 x. sin x + C b. cos 6 x. sin x + C c. sin x + sin 3 x + sin 5 x + C d. sin x

Lebih terperinci

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c Page of 9. Luas daerah yang dibatasi oleh kurva y =, sumbu Y, sumbu X, dan garis = / d. 8 / 6 / e. 9 / 7 /. Hasil dari sin.cos d ¼ d. ¾ / e. 7. Volum benda putar yang terjadi bila daerah yang dibatasi

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y.

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y. PENDAHULUAN Pada bagian ini akan dibahas perluasan integral tertentu ke bentuk integral lipat dua dari fungsi dua peubah Akan dibahas bentukbentuk integral lipat dalam koordinat kartesius koordinat kutub

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

Integral dan Aplikasinya

Integral dan Aplikasinya Nama : Mutiara Devita Sari NIM : 125100301111020 Kelas : L/TIP Integral dan Aplikasinya Pengertian Integral Integral merupakan invers atau kebalikan dari diferensial. Integral memiliki banyak kegunaan

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian Ujian Nasional 8 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian. Seorang pedagang membeli ½ lusin gelas seharga Rp 5., dan pedagang tesebut telah menjual 5 gelas seharga Rp.,. Jika semua gelas

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Pendidikan Matematika/Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/2 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Matakuliah

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA SATUAN ACARA PERKULIAHAN PROGRAM GANDA DEPAG S1 DUA PROGRAM STUDI PENDIDIKAN MATEMATIKA 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/SEMESTER : Kalkulus/2 3. PRASYARAT : -- 4. JENJANG / SKS

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Hendra Gunawan. 13 November 2013

Hendra Gunawan. 13 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 13 November 013 Latihan 1. Tentukan volume benda putar ang terbentuk bila daerah ang dibatasi oleh kurva = x dan = x diputar mengelilingi: a. sumbu

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

Senin, 18 JUNI 2001 Waktu : 2,5 jam

Senin, 18 JUNI 2001 Waktu : 2,5 jam UJIAN AKHIR SEMESTER KALKULUS I Senin, 8 JUNI Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT. Tentukan (a) x + sin x dx (b) x x p x dx. Tentukan dy dx jika (a) y +) (x + ln x (b) y sin p x. Tentukan ln x p

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

Open Source. Not For Commercial Use. Vektor

Open Source. Not For Commercial Use. Vektor Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Vektor Vektor adalah sebuah besaran ang mempunai nilai dan arah. Secara geometri vektor biasana digambarkan sebagai anak panah berarah (lihat gambar di samping)

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D . UN A dan E8 Nilai dari d.... UN A dan E8. UN A Hasil dari SOAL-SOAL LATIHAN C. C C. UN A dan D d... D. C. C D. C E. E. C Luas daerah yang dibatasi oleh kurva y dan y adalah 9 satuan luas C. satuan luas

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus II Kode Mata Kuliah : TIS2213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Mata kuliah Kalkulus II mempelajari

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR NASKAH SOAL ULANGAN UMUM SEMESTER I Tahun Pelajaran / Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut.

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut. INTERGRAL Operasi balikan dari diferensial adalah anti diferensial atau integral. Suatu fungsi F dikatakan sebagai anti diferensial dari fungsi f apabila F (x) = f(x) untuk setiap x dalam domain F. Jika

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1

SIAP UN 2013 SMK NEGERI 2 WONOGIRI 1 SMK NEGERI 2 WONOGIRI 1 Pilihlah salah satu jawaban ang paling tepat! 1. Pembangunan suatu gedung akan diselesaikan dalam waktu 40 hari oleh 48 pekerja. Agar pembangunan tersebut dapat diselesaikan dalam

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017 TRY OUT UNBK KODE SOAL : TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN / KERJASAMA BINTANG PELAJAR Bidang Studi Hari, Tanggal Waktu LEMBAR SOAL : MATEMATIKA IPA : Oktober M / Muharram H : Menit PETUNJUK UMUM.

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN

TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN NAMA : SISKA NUKE ENI PRADITA NIM : 125100301111044 KELAS : P TUGAS MATEMATIKA INDUSTRI APLIKASI INTEGRAL DI BIDANG EKONOMI DAN KETEKNIKAN A. APLIKASI INTEGRAL DI BIDANG EKONOMI Diartikan geometris dari

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar INTEGRAL 1. Pengertian Integral Integral adalah kebalikan dari turunan (diferensial),secara matematis dapat dirumuskan : dengan : f (x) = turunan f(x) C = konstanta 1.1 Integral Tak Tentu Integral tak

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

Ujian Nasional Tahun 2003 Matematika

Ujian Nasional Tahun 2003 Matematika Ujian Nasional Tahun 00 Matematika MK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta,5 cm, maka jarak kota A dan kota B sebenarnya 0,5 km,5 km,5 km 5 km.50 km MK-TEK-0-0 Pada

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Kelompok Teknologi Industri Paket Utama (P) MATEMATIKA (E-) TEKNIK SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

Fungsi Dua Peubah atau Lebih. Pertemuan 9. Contoh. Gambar. 14-Feb-17. Pada gambar di atas P(x 1. ,y 1. ) adalah sebarang titik pada oktan I, dengan

Fungsi Dua Peubah atau Lebih. Pertemuan 9. Contoh. Gambar. 14-Feb-17. Pada gambar di atas P(x 1. ,y 1. ) adalah sebarang titik pada oktan I, dengan 1-eb-17 ungsi Dua Peubah atau Lebih Pertemuan 9 Turunan Parsial ungsi dua peubah atau lebih dapat ditulis dalam bentuk eksplisit atau implisit. Jika fungsi dua peubah dinatakan dalam bentuk eksplisit maka

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09

B. x = C. x = 2 3, x = 2 7, y = 21 dan P (1, 25) D. x = 2 3, x = 2 7, y = 21 dan P (1, 25) E. x = 2 3, x = 2 7, y = 21 dan P ( 1, 25) UN-SMK-TEK-03-09 UN-SMK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta, cm, maka jarak kota A dan kota B sebenarnya 0, km, km, km km.0 km UN-SMK-TEK-0-0 Pada sensus pertanian di suatu desa, dari

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 . Jika SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / f k 6 9 selalu bernilai negatif untuk setiap, maka k harus memenuhi... k 9 k k 6 k k Solusi: [Jawaban

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

TURUNAN DALAM RUANG DIMENSI-n

TURUNAN DALAM RUANG DIMENSI-n TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar

Lebih terperinci

2. Himpunan penyelesaian dari 8 x 1 = x adalah A. { 4 }` D. {4} 2 B. { 3 } E. 4

2. Himpunan penyelesaian dari 8 x 1 = x adalah A. { 4 }` D. {4} 2 B. { 3 } E. 4 . Harga dua lusin buku tulis Rp..000,00, kemudian dijual per-buah dengan harga Rp..800 maka prosentase keuntungan dari penjualan buku tersebut adalah... 5% 5% 0% 0% %. Himpunan penelesaian dari 8 = 5 +

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi 1. Himpunan penelesaian pertidaksamaan adalah. A. * * * D. * E. * x = 0 ( x ( x 2. Persamaan grafik fungsi kuadrat ang memotong sumbu X di titik (-2,0 dan (2,0 serta melalui titik (0,-4 A. D. E. ( x =

Lebih terperinci

SOAL PREDIKSI IV. 2. Jika a = 81 dan b = 32, maka nilai dari 3 ( a -1/4 ) x 2 b 1/5 adalah... A. 4 D. 4 B. 36 E. 36 C Bentuk sederhana dari

SOAL PREDIKSI IV. 2. Jika a = 81 dan b = 32, maka nilai dari 3 ( a -1/4 ) x 2 b 1/5 adalah... A. 4 D. 4 B. 36 E. 36 C Bentuk sederhana dari . Pada suatu sensus pertanian disuatu desa, dari 50 orang petani ternata 70% menanam padi dan 50% mananam jagung. Petani ang menanam padi dan jagung sebanak... A. 45 orang D. 50 orang B. 05 orang E. 75

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

Matematika Teknik 1, Bab 3 BAB III LIMIT. (Pertemuan ke 4)

Matematika Teknik 1, Bab 3 BAB III LIMIT. (Pertemuan ke 4) BAB III LIMIT (Pertemuan ke 4) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang limit, antara lain mengenai pengertian limit secara intuisi/tak formal, pengertian persis tentang limit, pengkajian

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1 LATIHAN 4.1 1. Tentukan sebuah kondisi pada 1 yang akan menjamin bahwa : a. 1 < Penyelesaian: Kita perhatikan 1 = 1 +1

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

2. Fungsi Linier x 5. Gb.2.1. Fungsi tetapan (konstan):

2. Fungsi Linier x 5. Gb.2.1. Fungsi tetapan (konstan): Darpublic Nopember 3 www.darpublic.com. Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai dari sampai +. Kita tuliskan = k [.] dengan k bilangan-nata. Kurva fungsi ini terlihat

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN LATIHAN PREDIKSI UJIAN NASIONAL 00 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN Pilihlah jawaban ang tepat di antara alternatip ang ada, dengan memberikan tanda bulatan pada a, b, c, d atau d!. Harga lusin

Lebih terperinci

Bagian 2 Turunan Parsial

Bagian 2 Turunan Parsial Bagian Turunan Parsial Bagian Turunan Parsial mempelajari bagaimana teknik dierensiasi diterapkan untuk ungsi dengan dua variabel atau lebih. Teknik dierensiasi ini tidak hana akan diterapkan untuk ungsi-ungsi

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB 1 Pengertian Tentang Fungsi dan Grafik 1.1. Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka

Lebih terperinci

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11.54101/ Kalkulus 1 Revisi 2 Satuan Kredit Semester : 4 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu : 4

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/4 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Mata Kuliah Keahlian (MKK) Program

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

BAB I PRA KALKULUS. Nol. Gambar 1.1

BAB I PRA KALKULUS. Nol. Gambar 1.1 BAB I PRA KALKULUS. Sistem bilangan ril.. Bilangan ril Sistem bilangan ril adalah himpunan bilangan ril dan operasi aljabar aitu operasi penjumlahan, pengurangan, perkalian dan pembagian. Biasana bilangan

Lebih terperinci

RUANG LINGKUP DAN RINGKASAN MATERI

RUANG LINGKUP DAN RINGKASAN MATERI RUANG LINGKUP DAN RINGKASAN MATERI STANDAR KOMPETENSI LULUSAN Siswa mampu melakukan operasi hitung bilangan, logaritma, dan aproksimasi kesalahan. Ruang Lingkup Bilangan real Bilangan berpangkat Logaritma

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaratno Sudirham i Hak cita ada enulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darublic,

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 3 SKS TEKNIK ELEKTRO UDINUS BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu bilangan

Lebih terperinci

1. Pengertian Tentang Fungsi dan Grafik

1. Pengertian Tentang Fungsi dan Grafik Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan

Lebih terperinci

BAB 1. FUNGSI DUA PEUBAH

BAB 1. FUNGSI DUA PEUBAH BAB. FUNGSI DUA PEUBAH. PENDAHUUAN Pada baian ini akan dibahas perluasan konsep pada unsi satu peubah ke unsi dua peubah atau lebih. Setelah mempelajari bab ini anda seharusna dapat: - Menentukan domain

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

Ilustrasi Permukaan ruang dalam bentuk fungsi eksplisit dan implisit.

Ilustrasi Permukaan ruang dalam bentuk fungsi eksplisit dan implisit. Koko Martono FMIPA - ITB 77 Fungsi dua peubah, permukaan ruang, dan kurva ketinggian Fungsi dua peubah mempunai aturan = f (,) dengan daerah asal dan daerah nilai D f = {(,) : f (,) } dan R f = { : = f

Lebih terperinci

BAB V. PENGGUNAAN TURUNAN

BAB V. PENGGUNAAN TURUNAN BAB V. PENGGUNAAN TURUNAN (Pertemuan ke 9 & 10) PENDAHULUAN Diskripsi singkat Pada bab ini ang dibahas adalah tentang nilai maksimum dan minimum, kemonotonan dan kean kurva, serta maksimum dan minimum

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah

2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah Soal Babak Semifinal OMITS 007. Hubungan antara a dan b agar fungsi f x = a sin x + b cos x mempunyai nilai stasioner di x = π adalah a. a = b b. a = b d. a = b e. a = b a = b. Untuk interval 0 < x < 60,

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci