BAB III SKEMA NUMERIK
|
|
|
- Yuliani Sugiarto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna, ang akan dgunakan untuk menkonstruks dan menganalsa skema numerk beda hngga. Pada makalah n, penuls akan membahas penusunan skema numerk FTCS hana pada persamaan fkdv. Sedangkan bentuk persamaan KdV, skema numerk uga dapat dgunakan dengan memberkan nla nol pada F. Penusunan n dlakukan secara bertahap. Tahap pertama, melakukan penskalaan fss pada persamaan fkdv. Kemudan, pada tahap kedua, mencar dan menggantkan sukusuku turunan fkdv dengan hampran deret talor. Hal n dlakukan untuk membentuk sstem persamaan lner ang mempuna matrks koefsen ang bernla domnan pada elemen dagonalna. Sebelum kta mancapa tahap n, kta telah mengetahu bahwa persamaan (.4) adalah persamaan ang bergantung pada dua varabel, atu x dan t. Oleh karena tu, untuk menghtung hampran nla solus persamaan (.4), kta perlu mendskrtkan bdang x t terlebh dahulu, dmana x menatakan doman space dan t menatakan doman tme.
2 ..Skala Persamaan fkdv merupakan model hampran gelombang ang merambat pada permukaan ar dangkal, dengan panang gelombang ang sangat panang dan ampltudo ang kecl dbandngkan kedalamnna. Akbatna, persamaan fkdv ang dberkan dlakukan penskalaan dengan tuuan agar dapat dselesakan secara numerk dengan cara mengalkan suatu besaran tak berdmens pada varabel x,t dan u. Sehngga kta peroleh bentuk skala umum ang akan dgunakan adalah u ξ α x,, τ γ t (.) β dmana α, γ bergantung pada β. Kta substtuskan (.) kedalam persamaan (.), dengan langkah-langkah penurunan sebaga berkut Penurunan penskalaan persamaan fkdv dberkan sebaga berkut. u u τ Suku pertama :.. βγ. t τ t τ atau u t β γ τ u u Suku kedua :.. αβ. atau ux αβ ξ Suku ketga : u u. αβ. atau uu. x αβ. ξ Suku keempat : u u x x x x ξ αβ dengan memsalkan A dan A B,maka ξ
3 u A A ξ A αβ αβ. α β u B B α β α β. α β Bla hasl penskalaan suku keempat datas dsubsttuskan kembal dar A ke B, maka kta dapatkan turunan ketgana adalah Suku kelma : u α β atau uxxx ( ) F( x F ξ ) ξ ( α ) F x. α. α β ξξξ Setelah mendapatkan suku-suku fkdv ang dskalakan, persamaan (.4) dapat dnatakan sebaga ξ ω α. 6 αβ. α +. α F ( ) τ ξ ξ ξξξ ξ γ γ γ βγ α (.) Dengan model ang terskalakan datas, kta dapat mengamat perlaku fss gelombang solter ang terskalakan dengan lebar gelombang ang dsusutkan dan perambatan gelombang dperlambat, agar lebh mudah damat pergerakan fss ang dperoleh nant secara numerk.
4 ..Skema Numerk fkdv Kta tnau selang terbatas [ ab, ] sebaga doman space bag gelombang permukaan. Perhatkan pada gambar., selang pada doman ruang ( ξ ) kta parts sama panang dengan lebar selang parts sebesar Δ ξ, dengan ttk-ttk ξ a ξ, 0,..., n + Δ. Sedangkan varabel kedua, atu doman waktu ( ) menatakan waktu perambatan gelombang. Varabel n bernla τ 0, sama halna dengan selang pada sumbu-ξ, selang pada sumbu-τ n uga dparts dengan lebar selang Δ τ dengan ttk-ttk parts τ Δ τ, 0,..., max. τ, τ Δ τ Δ τ Δ ξ Δ ξ Gambar. pendskrtan doman ξ τ ξ Setelah mendskrtkan bdang ξ τ, kta dapat menuls ( ξ, τ ) untuk menatakan nla d ttk ξ pada waktu teras ke-. Saat τ 0 dberkan sarat awal berupa suatu fungs ang hana bergantung pada fungs x. D uung kr ξ a
5 dan d uung kanan ξ b dtetapkan 0 dan 0 untuk setap N+ N+ teras waktu. Selanutna persamaan (.) ddskrtkan menggunakan metode beda hngga. Pada bagan n durakan prosedur untuk menelesakan persamaan (.) menggunakan metoda beda hngga Forward-Tme dan Central-Space. Akan tetap, pemlhan dskrtsas n belum cukup menelesakan persamaan (.). Kestablan merupakan salah satu masalah ang harus dhadap. Masalah n dapat dselesakan dengan membentuk persamaan beda mplst. Untuk mendapatkanna, nla turunan terhadap ξ dhampr menggunakan rata-rata dua tngkat. Adana turunan ketga pada persamaan (.) uga merupakan kesultan ang harus datas. Hasl perhtungan teramat bahwa matrks ang terbentuk dar persamaan mplst mempuna elemen dagonal ang sangat kecl dbandngkan elemen ang lanna, sehngga kekonvergenan teras tdak tercapa. Untuk mengatasna, fkdv dturunkan terhadap ξ, menad ω α 6. αβ.( ). α f ξ τξ + ξξ ξξ ξξξξ ξξ γ γ γ βγ α (.) Sampa dsn pendskrtan persamaan dapat dlakukan dengan menggunakan hampran ang dturunkan dengan menggunakan deret talor. Dalam proses pendskrtan n, kta hampr suku τξ dengan metode beda pusat untuk space dan mau untuk tme, atu
6 ξ Δ ξ + (.4) dan τ Δ τ + (.5) Bla pada persamaan datas dsubsttuskan dar (.4) ke (.5) dengan (.5), maka kta dapatkan ξ pada ( ξ) τ + ( ξ) ( ξ) (.6) Sedangkan untuk suku, secara mplst ξξ ξξξξ dhampr dengan metode beda pusat untuk space + + ξξ + Δ ξ Δ ξ (.7) ξξξξ + Δ ξ Δ ξ (.8) Dmana Δ ξ dan Δ τ merupakan lebar selang dskrtsas ruang dan waktu. Sedangkan varabel ang ada pada persamaan KdV dnatakan sebaga ξ Δ ξ, τ Δ τ dan ( ξ, τ ) untuk, berupa blangan bulat. Sedangkan untuk mengatas suku tak lnear pada persamaan (.) n, pendskrtan dlakukan dengan menulskan f ( ) menggunakan dan turunanna dhampr
7 f f + f f f + f f ξξ + Δ ξ Δ ξ (.9) dengan menggunakan uraan deret talor sebaga berkut + f f f f + Δ τ + Δ τ + L (.0) τ τ Turunan f terhadap τ dengan aturan ranta adalah f. τ τ (.) Dengan aturan ranta datas, persaman deret talor dapat dtuls + +. Δ τ + Δ τ f f O ( τ ) (.) ngat bahwa τ Δ τ +. Dengan demkan, ka kta mensubsttuskan persamaan n dengan persamaan (.), maka hubungan nla rata-rata f dua tngkat dengan dperoleh dalam bentuk Atau ( ) + + f f + f + + f, (.) + oleh karena tu, akbat (.), persamaan (.9) menad f ξξ + Δ ξ (.4)
8 Sedangkan untuk beda hngga pada gaa luar adalah F ξξ F F + F Δ ξ + (.5) Sebaga lnearsas dar suku ketga pada persamaan (.) dan nla hampran (.6), (.7), (.8), (.4) dan (.5) dgunakan untuk menggantkan suku-suku persamaan (.), untuk memperoleh persamaan beda ang bersfat alabar. Sebelum mendapatkan persamaan beda, pertama kta msalkan koefsen suku kedua, ketga dan keempat ang dberkan pada (.6) dan (.7), masng-masng dengan θ, θ dan θ agar tdak merumtkan. Sehngga kta dapatkan persamaan lner berupa a + a + a + a + a b (.5) dmana, 6 θ ωα, θ αβ, θ α γ γ γ Dan a a θ 0 4 a + ( θ + θ) 4θ a ( θ + θ) 6θ a + ( θ + + θ) 4θ
9 b F + θ ( ) θ ( ) F+ F + F Dmana F Nla pada tngkat + dhtung secara bersama untuk 0,,,..., N dengan menggunakan nla pada tngkat sebelumna, sepert ang dperlhatkan pada gambar berkut n, +, + +, +,, +, Gambar. Stensl Skema Numerk Setap dar (.9) menghaslkan satu persamaan lnear dengan 5 unknown, sehngga keseluruhanna terdapat N+ persamaan dengan N+5 unknowns. Untuk mendapat bentuk tertutup dperlukan 4 persamaan tambahan. Hal n datas dengan memberkan nla 0 dan 0, sepert ang delaskan N+ N+ sebelumna. Selan menatakan batas kanan dengan batas kanan drchlet, kta bsa menggunakan ekstrapolas pada N + dan N + dengan menggunakan dua nla sebelah krna, dberkan algortma untuk memperoleh ttk ekstrapolas sebaga berkut
10 Untuk k.., N p ξ ξ + + N+- + N+ N+ q pξ + N + N+ pξ + q + N+ N+ Apabla persamaan lnear datas kta perluas terhadap ndeks dar 0 hngga N, kta peroleh bentuk perkalan matrks sebaga berkut, + a,0 a,0 a4,0 0 b 0 + a, a, a, a4, b a0, a, a, a, a + 4, b + a0, a, a, a, a4,. b O O O O O M M + a0, N a, N a, N a, N a4, N N bn + a0, N a, N a, N a, N N b N a0, N a, N a +, N N b N atau bla kta rngkas dalam bentuk notas pada matrks perkalan datas menad A. b + (.6) Sedangkan langkah-langkah untuk mendapatkan persamaan lner KdV dar (.) dengan mengambl F bernla nol pada vektor ruas kanan (b). Sebaga keterangan untuk setap elemen ang memlk ndeks ( a k, ) pada matrks koefsen, menatakan bahwa ndeks k untuk urutan koefsen pada persamaan (.5), sedangkan ndeks untuk tersas terhadap space dar 0 hngga N. Sstem persamaan lnear ang kta ubah dalam bentuk perkalan matrks datas, harus
11 menghtung koefsen matrks dan menelesakan sstem persamaan penta-dagonal (.6) pada setap waktu. Secara numerk sstem persamaan tersebut dapat dselesakan dengan metode elmnsa Gauss untuk matrks penta-dagonal. Hasl perhtungan n selanutna dgunakan untuk menghtung nla pada tngkat waktu berkutna, dan begtu seterusna. Pada saat menghtung pada tngkat, persamaan (.5) memerlukan nla { 0,,,0,,,..., N, N +, N + }. Hal n dapat datas dengan memberkan gelombang awal pada daerah pengamatan. Setelah mendapatkan persamaan numerk pada persamaan (.), pada bab selanutna akan dsmulaskan penelesaan numerk ang dperoleh.
BAB 4 PERHITUNGAN NUMERIK
Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat
.. Kekakuan Rangka batang Bdang (Plane Truss) BAB ANAISIS STRUKTUR RANGKA BATANG BIANG Struktur plane truss merupakan suatu sstem struktur ang merupakan gabungan dar seumlah elemen (batang) d mana pada
II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai
II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan
Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara
Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan
Bab 2 AKAR-AKAR PERSAMAAN
Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat
Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat
Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka
Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan
Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K
Bab 3. Penyusunan Algoritma
Bab 3. Penusunan Algortma on anuwjaa/ 500030 Algortma merupakan penulsan permasalahan ang sedang dsorot dalam bahasa matematk. Algortma dbutuhkan karena komputer hana dapat membaca suatu masalah secara
BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c
6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam
BAB II TEORI ALIRAN DAYA
BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga
ALJABAR LINIER LANJUT
ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada
Kekakuan Balok (Beam) BAB ANAISIS STRUKTUR BAOK Struktur beam merupakan suatu sstem struktur ang merupakan gabungan dar seumlah elemen (batang) ang lurus (a ) d mana pada setap ttk smpulna danggap berperlaku
Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1
Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran
BAB III LANDASAN TEORI. berasal dari peraturan SNI yang terdapat pada persamaan berikut.
BAB III LANDASAN TEORI 3. Kuat Tekan Beton Kuat tekan beban beton adalah besarna beban per satuan luas, ang menebabkan benda uj beton hanur bla dbeban dengan gaa tekan tertentu, ang dhaslkan oleh mesn
ANALISIS DATA KATEGORIK (STK351)
Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat
Bab III Analisis Rantai Markov
Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada
Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang
Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.
PENGURUTAN DATA. A. Tujuan
PENGURUTAN DATA A. Tuuan Pembahasan dalam bab n adalah mengena pengurutan data pada sekumpulan data. Terdapat beberapa metode untuk melakukan pengurutan data yang secara detl akan dbahas ddalam bab n.
BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan
P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman
OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran
BAB X RUANG HASIL KALI DALAM
BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan
BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA
BAB ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA.1 Pendahuluan Pada sstem tga fasa, rak arus keluaran nverter pada beban dengan koneks delta dan wye memlk hubungan yang
TEORI KESALAHAN (GALAT)
TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat
Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan
Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk
BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan
BAB III METODE LEAST-SQUARE MONTE CARLO Pada bab sebelumnya telah delaskan antara lan mengena smulas Monte Carlo dan metode least-square, maka pada bab n dantaranya akan dbahas penggunaan kedua metode
BAB 8 PERSAMAAN DIFERENSIAL BIASA
Maa kulah KOMPUTASI ELEKTRO BAB 8 PERSAMAAN DIFERENSIAL BIASA Persamaan dferensal dapa dbedakan menjad dua macam erganung pada jumlah varabel bebas. Apabla persamaan ersebu mengandung hana sau varabel
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang
BAB IV PENGUJIAN DAN ANALISA
BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan
SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA
ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl
BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian
BAB III METODE PENELITIAN 3.1 Lokas Peneltan Peneltan dlaksanakan d Desa Sempalwadak, Kecamatan Bululawang, Kabupaten Malang pada bulan Februar hngga Me 2017. Pemlhan lokas peneltan dlakukan secara purposve
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan
Bab 1 PENDAHULUAN Latar Belakang
11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP
Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012
Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar
ANALISIS REGRESI. Catatan Freddy
ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :
BAB V ANALISA PEMECAHAN MASALAH
BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan
ANALISIS BENTUK HUBUNGAN
ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel
RANGKAIAN SERI. 1. Pendahuluan
. Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor
BAB IV PEMBAHASAN MODEL
BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan
BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )
28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
PROPOSAL SKRIPSI JUDUL:
PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan
IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB
Semnar Nasonal Teknolog 007 (SNT 007) ISSN : 1978 9777 Yogakarta, 4 November 007 IMPEMENTASI INTERPOASI AGRANGE UNTUK PREDIKSI NIAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATAB Krsnawat STMIK AMIKOM Yogakarta
BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST
BAB I angkaan Transent Oleh : Ir. A.achman Hasbuan dan Naemah Mubarakah, ST . Pendahuluan Pada pembahasan rangkaan lstrk, arus maupun tegangan yang dbahas adalah untuk konds steady state/mantap. Akan tetap
JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT
JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : [email protected] BSTRCT.
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang
Nama : Crishadi Juliantoro NPM :
ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK
REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres
PENDAHULUAN Latar Belakang
PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang
Preferensi untuk alternatif A i diberikan
Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
BAB 2 LANDASAN TEORI
7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Dalam pembuatan tugas akhr n, penulsan mendapat referens dar pustaka serta lteratur lan yang berhubungan dengan pokok masalah yang penuls ajukan. Langkah-langkah yang akan
BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh
BAB III METODE PENELITIAN 3.1 Desan Peneltan Sebelum dlakukan peneltan, langkah pertama yang harus dlakukan oleh penelt adalah menentukan terlebh dahulu metode apa yang akan dgunakan dalam peneltan. Desan
Oleh : Harifa Hanan Yoga Aji Nugraha Gempur Safar Rika Saputri Arya Andika Dumanauw
Oleh : Harfa Hanan Yoga A Nugraha Gemur Safar ka Sautr Arya Andka Dumanau Dosen : Dr.rer.nat. Ded osad, S.S., M.Sc. Program Stud Statstka Fakultas Matematka dan Ilmu Pengetahuan Alam Unverstas Gadah Mada
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas
IV. PERANCANGAN DAN IMPLEMENTASI SISTEM
IV. PERANCANGAN DAN IMPLEMENTASI SISTEM Perancangan Sstem Sstem yang akan dkembangkan adalah berupa sstem yang dapat membantu keputusan pemodal untuk menentukan portofolo saham yang dperdagangkan d Bursa
Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.
BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya
BAB V TEOREMA RANGKAIAN
9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN Ita Rahmadayan 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasswa Program Stud S1 Matematka
PERSAMAAN DIFERENSIAL BIASA
http://starto.sta.ugm.ac.d PERSAMAAN DIFERENSIAL BIASA Ordnar Derental Equatons ODE Persamaan Derensal Basa http://starto.sta.ugm.ac.d Acuan Chapra, S.C., Canale R.P., 990, Numercal Methods or Engneers,
Perhitungan Bunga Kredit dengan Angsuran
Perhtungan Kredt dengan / Mengapa Perhtungan Kredt Perlu Dketahu? Perhtungan bunga kredt yang dgunakan bank akan menentukan besar keclnya angsuran pokok dan bunga yang harus dbayar Debtur atas kredt yang
REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut :
BAHAN AJAR EKONOMETRIKA AGUS TRI BASUKI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA REGRESI DAN KORELASI Tujuan metode kuadrat terkecl adalah menemukan nla dugaan b0 dan b yang menghaslkan jumlah kesalahan kuadrat
III PEMODELAN MATEMATIS SISTEM FISIK
34 III PEMODELN MTEMTIS SISTEM FISIK Deskrps : Bab n memberkan gambaran tentang pemodelan matemats, fungs alh, dagram blok, grafk alran snyal yang berguna dalam pemodelan sstem kendal. Objektf : Memaham
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakang Dalam kehdupan sehar-har, serngkal dumpa hubungan antara suatu varabel dengan satu atau lebh varabel lan. D dalam bdang pertanan sebaga contoh, doss dan ens pupuk yang dberkan
DIKTAT KULIAH ANALISIS NUMERIK ( CIV
DIKTAT KULIAH ANALISIS NUMERIK ( CIV 8 Oleh : Agus Setawan S.T. M.T. PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNOLOGI & DESAIN UNIVERSITAS PEMBANGUNAN JAYA TANGERANG SELATAN 6 DAFTAR ISI KATA PENGANTAR DAFTAR
PENYELESAIAN MASALAH PANAS BALIK (BACKWARD HEAT PROBLEM)
PENYELESAIAN MASALAH PANAS BALIK (BACKWARD HEAT PROBLEM) Rcha Agustnngsh, Drs. Lukman Hanaf, M.Sc. Jurusan Matematka, Fakultas MIPA, Insttut Teknolog Sepuluh Nopember (ITS) Jl. Aref Rahman Hakm, Surabaya
BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi
Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5
berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat
10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass
APLIKASI METODE ELEMEN HINGGA UNTUK PERHITUNGAN PERAMBATAN PANAS PADA KONDISI TUNAK
Semnar asonal Aplkas eknolog Informas 00 (SAI 00) ISB: 0 Yogakarta, Jun 00 APLIKASI MEODE ELEME HIGGA UUK PERHIUGA PERAMBAA PAAS PADA KODISI UAK Suprono Sekolah ngg eknolog uklr BAA Jl. Babarsar Kotak
Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal
157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
SEARAH (DC) Rangkaian Arus Searah (DC) 7
ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan
Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik
Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,
BAB V INTEGRAL KOMPLEKS
6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan
2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil
.1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)
BAB II DASAR TEORI. 2.1 Definisi Game Theory
BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan
Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)
Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,
DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA
DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,
Seemingly Unrelated Regression (SUR) Penderita Penyakit DBD RS. Wahidin Sudirohusodo Dan RS. Stella Maris Makassar
Vol. 3, o., -5, Jul 6 Seemngl Unrelated Regresson Penderta Penakt DBD RS. Wahdn Sudrohusodo Dan RS. Stella ars akassar A n s a Abstrak Hubungan antar varabel adalah salah satu hal ang selalu menark dalam
PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia)
PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Stud Kasus pada Data Inflas Indonesa) Putr Noorwan Effendy, Amar Sumarsa, Embay Rohaet Program Stud Matematka Fakultas
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan
BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen
3 BAB III METODOLOGI PENELITIAN A. Metode dan Desan Peneltan Metode yang dgunakan dalam peneltan n adalah metode ekspermen karena sesua dengan tujuan peneltan yatu melhat hubungan antara varabelvarabel
BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap
5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap
