Ukuran: px
Mulai penontonan dengan halaman:

Download ""

Transkripsi

1 .. Kekakuan Rangka batang Bdang (Plane Truss) BAB ANAISIS STRUKTUR RANGKA BATANG BIANG Struktur plane truss merupakan suatu sstem struktur ang merupakan gabungan dar seumlah elemen (batang) d mana pada setap ttk smpulna danggap berperlaku sebaga send dan setap elemenna hana dapat menerma gaa berupa gaa aksal (tark ataupun tekan). Y Gambar.. Struktur Plane Truss Sumbu X-Y adalah sstem koordnat global struktur, ang nantna dacu semua elemen. Sedangkan sumbu Z tegak lurus terhadap bdang gambar (mengarah pembaca) mengkut kadah tangan kanan, sehngga terbentuk sstem koordnat ang mengkut rght-handed rule. Sumbu - merupakan sstem koordnat lokal elemen, ang hana berlaku untuk satu elemen tertentu saa, ang orentasna dsesuakan dengan arah elemen ang bersangkutan. a Setap elemen plane truss selalu memlk dua nodal (ttk smpul) uung. Uung awal elemen dber notas nodal sedangkan uung lanna e-mal: [email protected] dber notas. Pusat sumbu lokal elemen adalah nodal, dan arah sumbu X

2 lokal post selalu dbuat dar nodal ke nodal dar elemen tersebut. Sumbu lokal dbuat tegak lurus sumbu, sedangkan sumbu lokal arah z dbuat searah dengan sumbu Z global dan tegak lurus terhadap bdang struktur (bdang X-Y). Orentas elemen secara global dapat dkenal berdasarkan sudut, ang dbuat oleh sumbu lokal dar elemen ang dtnau dengan sumbu X global dar struktur. Sudut dber tanda post berdasarkan kadah tangan kanan (rght-handed rule), atu dukur dar sumbu X global berputar menuu sumbu lokal dengan poros sumbu Z post, sehngga pada gambar. sudut akan bernla post ka perputaran berlawanan dengan arah putaran arum am. Hubungan antara aks dan deormas pada elemen plane truss secara umum dapat dormulaskan dengan orentas sumbu lokalna sebaga berkut : v, g Translas Arah Aksal (satu satuan) Konvens Arah Tanda Post u, θ, m Gambar.. Hubungan Aks-eormas pada Elemen Plane Truss 5 e-mal: [email protected] v, g u, AE θ, m AE

3 Persamaan hubungan antara aks dan deormas elemen dalam sstem koordnat lokal ang dperoleh berdasarkan prnsp superposs dapat durakan sebaga berkut : AE AE u +. v u +. v g. u +. v +. u +. v AE AE u +. v + u +. v d mana : g. u +. v +. u +. v (.) : sumbu batang, : sstem koordnat lokal (elemen) u v g : dsplacement aksal pada ttk nodal : dsplacement arah tegak lurus sumbu batang pada nodal : gaa aksal pada ttk nodal ang sesua dengan u : gaa tegak lurus sumbu batang pada ttk nodal ang sesua dengan v Persamaan hubungan aks-deormas ang dtunukkan Persamaan (.) dapat dnatakan dalam bentuk matr : g g dengan : A E AE u v. u v : uas tampang batang : Modulus elaststas batang : Panang batang Persamaan kesembangan elemen dalam sstem koordnat lokal adalah { } [ k ]{ d } e-mal: [email protected] (.) (.) 6

4 d mana : { } : vektor gaa dalam sstem koordnat lokal [ k ] { } : matr kekakuan elemen plane truss dalam sstem koordnat lokal d : vektor dsplacement dalam sstem koordnat lokal. Subscrpt menunukkan nomor elemen ang bersangkutan. Selanutna matr kekakuan elemen plane truss dalam sstem koordnat lokal dapat dtulskan sebaga berkut : AE k (.).. Transormas Sumbu alam analss struktur ang dlakukan pada kebanakan kasus, perlu dlakukan penesuaan antara matr kekakuan elemen struktur lokal (ang mengacu sumbu lokal secara ndvdual) ke dalam matr kekakuan elemen struktur global (mengacu pada sstem struktur global ang danut semua elemen struktur. Penesuaan tersebut dapat dlakukan dengan memandang ttk nodal awal dan nodal akhr dalam bdang X-Y (global) dar elemen mengalam perpndahan ke nodal dan dalam bdang - (lokal), sebagamana dlustraskan pada Gambar.. e-mal: [email protected] 7

5 Gambar.. Transormas Sumbu Kartesan Berdasarkan Gambar. dtunukkan perputaran sumbu Kartesan dar sumbu global X-Y menuu sumbu lokal - dengan kemrngan sudut, sehngga dapat dperoleh Persamaan Transormas Sumbu ang menunukkan perubahan poss suatu ttk nodal dalam bentuk berkut : X. + Y. sn (.5.a.) X. sn + Y. (.5.b.) Persamaan d atas ka dubah dalam bentuk matr, dapat dnatakan sebaga berkut : sn sn X Y (.6.) Analog dengan cara d atas, transormas koordnat untuk suatu elemen struktur ang dbatas oleh dua buah ttk nodal ( dan ) dapat dtunukkan dengan persamaan berkut : X. Cos + Y Sn. X. Sn + Y Cos. X. Cos + Y Sn. X. Sn + Y Cos (.7.). Y O X Y e-mal: [email protected] a X 8

6 e-mal: 9 Atau dalam bentuk matr dapat dtuls sebaga berkut : Y X Y X sn sn sn sn (.8) analog d atas untuk vektor dsplacement dperoleh Y X Y X d d d d sn sn sn sn (.9.a) atau { } { } T d (.9.b) sedangkan untuk transormas gaa dperoleh : G G g g sn sn sn sn (..a) atau { } { } T (..b) d mana; { } : vektor gaa pada koordnat lokal { } : vektor gaa pada koordnat global { } d : vektor dsplacement pada koordnat lokal { } : vektor dsplacement pada koordnat global T : matr transormas

7 .. Matr Kekakuan Elemen dalam Koordnat Global Sstem Persamaan Kekakuan Struktur Elemen dalam orentas sumbu lokal dapat dtunukkan pada persamaan d bawah n : { } { } k (.) d dengan mensubsttuskan Persamaan (.9) dan (.) ke dalam Persamaan (.) maka dperoleh : { } [ k ][ T ]{ } T (.) selanutna dengan mempra-kalkan (premultpled) ruas kr dan ruas kanan Persamaan (.) dengan matr [ T ] [ T ]{ } [ T ] [ k ][ T ]{ } dan mengngat [ T ], dan [ T ] T atau T T [ T ] [ k ][ T ]{ } T, dapat dperoleh : s : sn c : e-mal: [email protected] T, maka (.) { } { } K (.) ang merupakan Persamaan Kesembangan Elemen dalam Sstem Koordnat Global, dengan : atau T [ K ] [ k ][ T ] d mana; T (.5) K merupakan matr kekakuan elemen dalam sstem koordnat global. c s. c c s. c AE s. c s s. c s K (.6) c s. c c s. c s. c s s. c s d mana;

8 angkah berkutna adalah menusun matr kekakuan struktur global [ K ] s, berdasarkan prnsp kompatbltas d mana terdapat keselarasan perpndahan d antara elemen-elemen struktur ang ada. Matr kekakuan struktur global K dapat dsusun dengan metode kekakuan s langsung (drect stness method) berdasarkan matr kekakuan elemen dalam koordnat global K, ang telah dperoleh pada tahapan sebelumna. Pembentukan matr kekakuan struktur global dapat dnatakan dalam persamaan berkut : n [ K s ] [ K ] d mana; K : matr kekakuan struktur global s K : matr kekakuan elemen global (.7) Analog dengan cara d atas, setap vektor gaa pada ttk nodal masngmasng elemen dapat dumlahkan untuk membentuk vektor gaa total; n [ s ] [ ] d mana; : vektor gaa pada sstem struktur global s : vektor gaa elemen pada koordnat global.. Perhtungan Tegangan pada Elemen Struktur Plane Truss (.8) Untuk keperluan penghtungan tegangan pada elemen struktur plane truss, terlebh dahulu harus dsusun sstem persamaan kesembangan elemen pada sumbu lokal sebaga berkut : atau { } [ k ]{ d } ; AE d d (.9) e-mal: [email protected]

9 Tegangan aksal tark ang terad pada elemen batang dapat dhtung dengan : σ (.) A d mana merupakan gaa aksal ang bekera pada nodal akhr suatu elemen, ang dapat dhtung dengan cara : AE d (.) d [ ] dengan menggabungkan Persamaan (.) dan (.) dperoleh : atau E d σ (.) d { } [ ] E σ (.) { } [ ][ T ]{ } ang dapat dsederhanakan dalam bentuk : d mana; { } [ C' ]{ } σ (.) C S ' (.5) C S E [ C ] [ ].5. Contoh Penerapan Contoh. : Suatu struktur plane truss tersusun dar tga elemen batang, sepert dtunukkan pada Gambar., menerma beban searah gravtas sebesar. lb tepat pada nodal. Tentukan besarna dsplacement ke arah X dan Y dan tegangan pada masng-masng elemen, ka dketahu nla Elaststas (E) 6 ps dan luas tampang (A) n. e-mal: [email protected]

10 Penelesaan : Gambar.. angkah pertama ang dlakukan adalah membentuk matr kekakuan elemen dalam orentas sumbu global, sehngga perlu dketahu besaran sudut transormas () dar sumbu global ke sumbu lokal masng-masng elemen, sepert dtunukkan pada Tabel.. Tabel.. ata Elemen Struktur pada Gambar.. Elemen o C S C S CS... t. lb 9 o 5 o o 5 o / t 5 o / ½ e-mal: [email protected] ½ ½ Y X

11 Matr kekakuan untuk masng-masng elemen dalam orentas sumbu global dapat dhtung dengan cara berkut : Elemen ang berawal dar nodal menuu nodal, menghaslkan : 6 ()( ) K (.6) Elemen ang berawal dar nodal menuu nodal, menghaslkan : 6,5,5,5,5 ()( ) K,5,5,5,5 (.7),5,5,5,5,5,5,5,5 Elemen ang berawal dar nodal menuu nodal, menghaslkan : 6 ()( ) K (.8) Selanutna ketga matr kekakuan elemen dalam sumbu global tersebut dgunakan untuk menusun matr kekakuan struktur total, dalam kasus n karena struktur ang dhtung terdr dar empat ttk nodal dan masng-masng nodal mempuna dua deraat kebebasan pergerakan (d.o.), maka matr kekakuan struktur ang terbentuk nantna akan berukuran 8 8. Pembentukan matr kekakuan struktur total (Ks) dapat dlakukan dengan cara menambahkan bagan-bagan matr kekakuan elemen global (K) ke dalam matr kekakuan struktur total sesua dengan lokas bars dan kolomna, sehngga dperoleh : e-mal: [email protected]

12 e-mal: 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 ) ()( 6 s K (.9) atau,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 (5.) s K Matr kekakuan struktur global pada Persamaan (.9), selanutna dhubungkan dengan vektor gaa dan dsplacement dalam sumbu global, sehngga dperoleh sstem persamaan kekakuan struktur total :,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 (5.) (.)

13 Sstem Persamaan d atas selanutna dreduks sesua dengan konds batas (tumpuan) ang ada dalam sstem struktur. Karena pada nodal nomor, dan merupakan tumpuan send, maka hana dmungknkan teradna pergerakan pada nodal ke arah X dan Y ( dan ). Selanutna dapat dbentuk sstem persamaan kekakuan struktur ang telah dreduks :,5 (5.).,5,5,5 Persamaan (.) dapat dselesakan dengan metode nvers matr :,585, 6 7,, ,.,59 nch nch (.) Tanda mnus (-) pada arah menunukkan bahwa komponen dsplacement pada nodal dalam arah Y, haslna berkebalkan dengan arah Y posst, dengan kata lan perpndahan terad menuu ke bawah. Perhtungan tegangan pada elemen batang dapat dlakukan dengan menggunakan Persamaan (.) dan memanaatkan Tabel (.), sehngga untuk masng-masng elemen ddapatkan : Elemen :, 6,59 σ Elemen : [ ] 965 ps, 6,59 σ 7 ps 6 e-mal: [email protected]

14 Elemen :, 6,59 σ [ ] 5 ps Kebenaran hasl perhtungan d atas dapat dperksa dengan cara berkut : (7 (965 ps)( ps)( n ) (5 n ) + (7 ps)( ps)( n ). e-mal: [email protected] n ) Contoh. : Suatu struktur plane truss tersusun dar dua elemen batang, m sepert dtunukkan pada Gambar.5, menerma beban horsontal sebesar kn tepat pada nodal. Selan tu pada nodal uga terad penurunan (vertcal settlement) sebesar δ 5 mm. Tentukan besarna dsplacement nodal ke arah sumbu Y dan gaa aksal pada masng-masng elemen, ka dketahu nla Elaststas (E) GPa dan luas tampang (A) 6 cm. Y kn δ 5 mm m Gambar.5 7 X

15 Penelesaan : ata Geometr Struktur Tabel.. ata Elemen Struktur pada Gambar.5. Elemen o C S C S CS.. 9 o 5 o,6,8 Penusunan Matr Kekakuan Elemen Global ; Elemen : 6,6 (6 m )( kn / m ),8 5m,6,8 [ K ] atau;,8,6,8,6 e-mal: [email protected],6,6,8,6,8,6,8,6,8,6,8,6,8,6,8 K (5.),8,6,8,6 (.),6,8,6,8,8,6,8,6 Elemen : 6 (6 m )( kn / m ) m [ K ] atau; 8

16 K (5.),5,5 (.),5,5 Penusunan Matr Kekakuan Struktur Global :,6,8,6,8,8,89,8,6,5 K s (5.),6,8,6,8 (.),8,6,8,6,5,5 Penusunan Sstem Persamaan Kekakuan Struktur Total :,6,8,6,8,8,89,8,6,5 ( 5.),6,8,6,8 (.5),8,6,8,6,5,5 Penusunan Sstem Persamaan Kekakuan Struktur ang Telah reduks : Kasus d atas memlk konds batas (boundar condtons) sebaga berkut; δ; ; ; ; Sehngga dperoleh Persamaan :,6,8 δ, 5m (5.) P,8,89 P 5.(,8δ +,89 ) ( 6,8) (.6) 9 e-mal: [email protected]

17 e-mal: m 7, 768 6,8) ( + Penghtungan Gaa Aksal masng-masng elemen; Elemen : d d AE atau S C S C AE,7,5,8,6,8,6 (5.) (.7) maka dperoleh : -76,6 kn dan 76,6 kn atau pada elemen menerma gaa aksal tark sebesar 76,6 kn. Elemen :,7,5 (.5) (.8) maka dperoleh : 6 kn dan -6 kn atau pada elemen menerma gaa aksal tekan sebesar 6 kn.

Kekakuan Balok (Beam) BAB ANAISIS STRUKTUR BAOK Struktur beam merupakan suatu sstem struktur ang merupakan gabungan dar seumlah elemen (batang) ang lurus (a ) d mana pada setap ttk smpulna danggap berperlaku

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

Bab 3. Penyusunan Algoritma

Bab 3. Penyusunan Algoritma Bab 3. Penusunan Algortma on anuwjaa/ 500030 Algortma merupakan penulsan permasalahan ang sedang dsorot dalam bahasa matematk. Algortma dbutuhkan karena komputer hana dapat membaca suatu masalah secara

Lebih terperinci

BAB III LANDASAN TEORI. berasal dari peraturan SNI yang terdapat pada persamaan berikut.

BAB III LANDASAN TEORI. berasal dari peraturan SNI yang terdapat pada persamaan berikut. BAB III LANDASAN TEORI 3. Kuat Tekan Beton Kuat tekan beban beton adalah besarna beban per satuan luas, ang menebabkan benda uj beton hanur bla dbeban dengan gaa tekan tertentu, ang dhaslkan oleh mesn

Lebih terperinci

MODUL 3 : METODA Slope Deflection 3.1. Judul : Metoda Slope Deflection

MODUL 3 : METODA Slope Deflection 3.1. Judul : Metoda Slope Deflection MODU 3 1 MODU 3 : METOD Slope Deflecton 3.1. Judul : Tuuan Pembelaaran Umum Setelah membaca bagan n mahasswa akan dapat memaham apakah metoda Slope Deflecton dan bagamana metoda Slope Deflecton dpaka untuk

Lebih terperinci

BAB II TEORI ALIRAN DAYA

BAB II TEORI ALIRAN DAYA BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

Analisis Kecepatan Dan Percepatan Mekanisme Empat Batang (Four Bar Lingkage) Fungsi Sudut Crank

Analisis Kecepatan Dan Percepatan Mekanisme Empat Batang (Four Bar Lingkage) Fungsi Sudut Crank ISSN 907-0500 Analss Kecepatan Dan Percepatan Mekansme Empat Batang (Four Bar ngkage Fungs Sudut Crank Nazaruddn Fak. Teknk Unverstas Rau [email protected] Abstrak Pada umumnya analss knematka dan

Lebih terperinci

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Al-Azhar 3 Bandar Lampung yang terletak d Jl. Gn. Tanggamus Raya Way Halm, kota Bandar Lampung. Populas dalam peneltan n adalah

Lebih terperinci

APLIKASI METODE ELEMEN HINGGA UNTUK PERHITUNGAN PERAMBATAN PANAS PADA KONDISI TUNAK

APLIKASI METODE ELEMEN HINGGA UNTUK PERHITUNGAN PERAMBATAN PANAS PADA KONDISI TUNAK Semnar asonal Aplkas eknolog Informas 00 (SAI 00) ISB: 0 Yogakarta, Jun 00 APLIKASI MEODE ELEME HIGGA UUK PERHIUGA PERAMBAA PAAS PADA KODISI UAK Suprono Sekolah ngg eknolog uklr BAA Jl. Babarsar Kotak

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Aplkas Integral Tentu థ Luas dantara kurva థ Volume benda dalam bdang (dengan metode cakram dan cncn) థ Volume benda putar (dengan metode kult tabung) థ Luas permukaan benda putar

Lebih terperinci

MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH 2 KESTABILAN LERENG ROTASI UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bntaro Sektor 7, Bntaro Jaya Tangerang Selatan 15224 MODEL KERUNTUHAN ROTASI ANALISIS CARA KESEIMBANGAN BATAS Cara n

Lebih terperinci

Interpretasi data gravitasi

Interpretasi data gravitasi Modul 7 Interpretas data gravtas Interpretas data yang dgunakan dalam metode gravtas adalah secara kualtatf dan kuanttatf. Dalam hal n nterpretas secara kuanttatf adalah pemodelan, yatu dengan pembuatan

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

PERHITUNGAN KINEMATIKA BALIK DENGAN ANALISIS LINTASAN TERPENDEK PADA MESIN PERKAKAS 5 AXIS. Moh. Imam Afandi 1)

PERHITUNGAN KINEMATIKA BALIK DENGAN ANALISIS LINTASAN TERPENDEK PADA MESIN PERKAKAS 5 AXIS. Moh. Imam Afandi 1) ERHIUNGAN KINEMAIKA ALIK DENGAN ANALII LINAAN ERENDEK ADA MEIN ERKAKA 5 AXI Moh. Imam Afand ) ) uslt KIM-LII, Kawasan uspptek erpong, angerang 534 INIARI Mesn perkakas 5 as telah banak dgunakan secara

Lebih terperinci

IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB

IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB Semnar Nasonal Teknolog 007 (SNT 007) ISSN : 1978 9777 Yogakarta, 4 November 007 IMPEMENTASI INTERPOASI AGRANGE UNTUK PREDIKSI NIAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATAB Krsnawat STMIK AMIKOM Yogakarta

Lebih terperinci

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA

BAB 2 ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA BAB ANALISIS ARUS FASA PADA KONEKSI BEBAN BINTANG DAN POLIGON UNTUK SISTEM MULTIFASA.1 Pendahuluan Pada sstem tga fasa, rak arus keluaran nverter pada beban dengan koneks delta dan wye memlk hubungan yang

Lebih terperinci

Medan Elektromagnetik

Medan Elektromagnetik Medan Elektromagnetk Kulah 1 Medan Magnet 19 Me 009 Dr. r Poernomo ar, T, MT 1. Medan magnet d sektar arus lstrk Oersted menentukan adanya medan magnet d sektar kawat yang berarus lstrk. Percobaan Oersted

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

DEPARTMEN FISIKA ITB BENDA TEGAR. FI Dr. Linus Pasasa MS Bab 6-1

DEPARTMEN FISIKA ITB BENDA TEGAR. FI Dr. Linus Pasasa MS Bab 6-1 BENDA TEGAR FI-0 004 Dr. Lnus Pasasa MS Bab 6- Bahan Cakupan Gerak Rotas Vektor Momentum Sudut Sstem Partkel Momen Inersa Dall Sumbu Sejajar Dnamka Benda Tegar Menggelndng Hukum Kekekalan Momentum Sudut

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg

Lebih terperinci

Bab IX PERPINDAHAN PANAS RADIASI ANTAR PERMUKAAN

Bab IX PERPINDAHAN PANAS RADIASI ANTAR PERMUKAAN Perpndahan Panas I Hmsar AMBAITA Bab IX PEPINDAHAN PANAS ADIASI ANTA PEMUKAAN..Perpndahan panas radas antar permukaan dapat danalogkan sepert susunan tahan lstrk.. Pada bagan sebelumnya telah dbahas faktor

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER PENYELESIN SISTEM PESMN TK LINIE Mater Kulah: Pengantar; Iteras Satu Tt; Iteras Newton # PENGNT # erut n adalah contoh seumpulan buah persamaan ta lner smulta dengan buah varabel ang ta detahu:... ( 57...

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton

Lebih terperinci

ANALISIS TEGANGAN BIDANG (PLANE STRESS) DINDING GESER (SHEAR WALL) GEDUNG BERTINGKAT

ANALISIS TEGANGAN BIDANG (PLANE STRESS) DINDING GESER (SHEAR WALL) GEDUNG BERTINGKAT Raharja, S., Suryanta, R., Djauhar, Z./ Analss Tegangan Bdang/ pp. 58 76 ANALISIS TEGANGAN BIDANG (PLANE STRESS) DINDING GESER (SHEAR WALL) GEDUNG BERTINGKAT Sondra Raharja Mahasswa Magster Teknk Spl Unverstas

Lebih terperinci

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM IV. PERANCANGAN DAN IMPLEMENTASI SISTEM Perancangan Sstem Sstem yang akan dkembangkan adalah berupa sstem yang dapat membantu keputusan pemodal untuk menentukan portofolo saham yang dperdagangkan d Bursa

Lebih terperinci

Gambar 3.1 Diagram alir penelitian

Gambar 3.1 Diagram alir penelitian BAB 3 METODE PENELITIAN 3.1 Dagram Alr Peneltan Materal Amorph Magnetk (Fe 73 Al 5 Ga 2 P 8 C 5 B 4 S 3 ) Ekspermen DfraksNeutron (I vs 2theta) Smulas Insalsas atom secara random Fungs struktur, F(Q) Perhtungan

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil .1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap 5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap

Lebih terperinci

Pemilihan Lokasi Kontinyu (1)

Pemilihan Lokasi Kontinyu (1) Pemlhan Lokas Kontnu 1 - Model Dasar - 6 Oleh : Debrna Puspta Andran Teknk Industr, Unverstas Brawjaa e-mal : [email protected] www.debrna.lecture.ub.ac.d Medan method Gravt method Contour-Lne method Weszfeld

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

MODUL ANALISIS PENGUKURAN FISIKA. Disusun Oleh: Kuncoro Asih Nugroho, M.Pd., M.Sc.

MODUL ANALISIS PENGUKURAN FISIKA. Disusun Oleh: Kuncoro Asih Nugroho, M.Pd., M.Sc. MODUL ANALISIS PENGUKURAN FISIKA Dsusun Oleh: Kuncoro Ash Nugroho, M.Pd., M.Sc. JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKAN DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA YOGYAKARTA BAB I METODE

Lebih terperinci

EFISIENSI DAN AKURASI GABUNGAN METODE FUNGSI WALSH DAN MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL FREDHOLM LINEAR

EFISIENSI DAN AKURASI GABUNGAN METODE FUNGSI WALSH DAN MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL FREDHOLM LINEAR EFISIENSI DAN AKURASI GABUNGAN METODE FUNGSI WALSH DAN MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL FREDHOLM LINEAR Masduk Jurusan Penddkan Matematka FKIP UMS Abstrak. Penyelesaan persamaan ntegral

Lebih terperinci

BAB VII STABILITAS TEBING

BAB VII STABILITAS TEBING BAB VII STABILITAS TEBING VII - BAB VII STABILITAS TEBING 7. TINJAUAN UMUM Perhtungan stabltas lereng/tebng dgunakan untuk perhtungan keamanan tebng dss-ss sunga yang terganggu kestablannya akbat adanya

Lebih terperinci

ANALISIS LOMPAT VERTIKAL TIPE SQUAT DENGAN MODEL SISTEM BENDA JAMAK

ANALISIS LOMPAT VERTIKAL TIPE SQUAT DENGAN MODEL SISTEM BENDA JAMAK Jurnal eknk Mesn, Vol. 4, No.1, Aprl 9 67 ANALISIS LOMPA VERIKAL IPE SQUA DENGAN MODEL SISEM BENDA JAMAK D. D. Suslo 1, A. I. Mahyuddn, I. P. Nurpraseto 1 Jurusan eknk Mesn Unverstas Sebelas Maret, Surakarta

Lebih terperinci

9/17/2012 B E S A R A N. Besaran Fisika. massa, waktu, suhu, kecepatan, percepatan, panjang, luas, gaya, momentum, medan

9/17/2012 B E S A R A N. Besaran Fisika. massa, waktu, suhu, kecepatan, percepatan, panjang, luas, gaya, momentum, medan Konseptual esaran Pokok : besaran yang dtetapkan dengan suatu standar ukuran esaran Fska esaran Turunan : esaran yang drumuskan dar besaran-besaran pokok esaran Skalar Matemats esaran Vektor E S R N Skalar

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PEELITIA 3.1. Kerangka Pemkran Peneltan BRI Unt Cbnong dan Unt Warung Jambu Uraan Pekerjaan Karyawan Subyek Analss Konds SDM Aktual (KKP) Konds SDM Harapan (KKJ) Kuesoner KKP Kuesoner KKJ la

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian yang bertujuan untuk mendeskripsikan

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian yang bertujuan untuk mendeskripsikan BAB III METODE PENELITIAN A. Jens Peneltan Peneltan n merupakan peneltan yang bertujuan untuk mendeskrpskan langkah-langkah pengembangan perangkat pembelajaran matematka berbass teor varas berupa Rencana

Lebih terperinci

A. 1,0 m/s 2 B. 1,3 m/s 2 C. 1,5 m/s 2 D. 2,0 m/s 2 E. 3,0 m/s 2

A. 1,0 m/s 2 B. 1,3 m/s 2 C. 1,5 m/s 2 D. 2,0 m/s 2 E. 3,0 m/s 2 1. D bawah n adalah pernyataan mengena pengukuran : 1. mengukur adalah membandngkan besaran yang dukur dengan besaran sejens yang dtetapkan sebaga satuan 2. dalam setap pengukuran selalu ada kesalahan

Lebih terperinci

PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI

PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI Reky Stenly Wndah Dosen Jurusan Teknk Spl Fakultas Teknk Unverstas Sam Ratulang Manado ABSTRAK Pada bangunan tngg,

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

PEMODELAN REGRESI UNTUK RANCANGAN PERCOBAAN DUA FAKTOR. Dwi Ispriyanti 1. Abstrak

PEMODELAN REGRESI UNTUK RANCANGAN PERCOBAAN DUA FAKTOR. Dwi Ispriyanti 1. Abstrak UNIVERSITAS DIPONEGORO ISBN: 978-979-97-4-4 PEMODELAN REGRESI UNTUK RANCANGAN PERCOBAAN DUA FAKTOR Dw Isprant Staf Pengaar Prod Statstka urusan Matematka Fakultas MIPA UNDIP Abstrak Metode Statstk ang

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen 3 BAB III METODOLOGI PENELITIAN A. Metode dan Desan Peneltan Metode yang dgunakan dalam peneltan n adalah metode ekspermen karena sesua dengan tujuan peneltan yatu melhat hubungan antara varabelvarabel

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk

Lebih terperinci

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen.

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen. BAB II METODOLOGI PENELITIAN A. Bentuk Peneltan Jens peneltan yang dgunakan dalam peneltan n adalah peneltan deskrptf dengan analsa kuanttatf, dengan maksud untuk mencar pengaruh antara varable ndependen

Lebih terperinci

Teorema Gauss. Garis Gaya Listrik Konsep fluks. Penggunaan Teorema Gauss

Teorema Gauss. Garis Gaya Listrik Konsep fluks. Penggunaan Teorema Gauss Teorema Gauss Gars Gaya Lstrk Konsep fluks Teorema Gauss Penggunaan Teorema Gauss Medan oleh muatan ttk Medan oleh kawat panjang tak berhngga Medan lstrk oleh plat luas tak berhngga Medan lstrk oleh bola

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha dan Energ Energ Knetk Teorema Usaha Energ Knetk Energ Potensal Gravtas Usaha dan Energ Potensal Gravtas Gaya Konservatf dan Non-Konservatf

Lebih terperinci

BAB 8 PERSAMAAN DIFERENSIAL BIASA

BAB 8 PERSAMAAN DIFERENSIAL BIASA Maa kulah KOMPUTASI ELEKTRO BAB 8 PERSAMAAN DIFERENSIAL BIASA Persamaan dferensal dapa dbedakan menjad dua macam erganung pada jumlah varabel bebas. Apabla persamaan ersebu mengandung hana sau varabel

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

Dasar-dasar Aliran Fluida

Dasar-dasar Aliran Fluida Dasar-dasar Alran Fluda Konsep pentng dalam alran fluda Prnsp kekealan massa, sehngga tmbul persamaan kontnutas Prnsp energ knetk, persamaan persamaan alran tertentu Prnsp momentum, persamaan-persamaan

Lebih terperinci

BAB V ANALISIS FAKTOR-FAKTOR BEBAN DAN TAHANAN (LOAD AND RESISTANCE FACTOR)

BAB V ANALISIS FAKTOR-FAKTOR BEBAN DAN TAHANAN (LOAD AND RESISTANCE FACTOR) BAB V ANALISIS FAKTOR-FAKTOR BEBAN DAN TAHANAN (LOAD AND RESISTANCE FACTOR) 5.1 Umum Pada bab V n dbahas mengena hasl perhtungan faktor-faktor beban (load) atau serng dsebut dengan faktor pengal beban,

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK BAB IV PEMBAASAN ASIL PENELITIAN PENGARU PENGGUNAAN METODE GALLERY WALK TERADAP ASIL BELAJAR MATA PELAJARAN IPS MATERI POKOK KERAGAMAN SUKU BANGSA DAN BUDAYA DI INDONESIA A. Deskrps Data asl Peneltan.

Lebih terperinci

Fisika Dasar I (FI-321) Usaha dan Energi

Fisika Dasar I (FI-321) Usaha dan Energi Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha Menyatakan hubungan antara gaya dan energ Energ menyatakan kemampuan melakukan usaha Usaha,,, yang dlakukan oleh gaya konstan pada sebuah

Lebih terperinci

Energiada adadi disekitar sekitarkita

Energiada adadi disekitar sekitarkita Kerja dan Energ APA ITU ENERGI? Energada adad dsektar sektarkta Kerja dan Energ Energd dalam Dapat dperbaharu Tdak dapat dperbaharu Radas Panas Kerja dan Energ BentukEnerg Lstrk Kma Mekank Nuklr Suara

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : [email protected] BSTRCT.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Teor-teor Dasar Untuk dapat mengert tentang robot dan knematka dalam bdang robotka, beberapa pengetahuan umum dalam robotka dan matematka perlu dketahu. 2.. Defns Robot Istlah robot

Lebih terperinci

BAB IV METODE PENELITIAN. Penelitian mengenai Analisis Pengaruh Kupedes Terhadap Performance

BAB IV METODE PENELITIAN. Penelitian mengenai Analisis Pengaruh Kupedes Terhadap Performance BAB IV METODE PENELITIAN 4.1 Lokas dan Waktu Peneltan Peneltan mengena Analss Pengaruh Kupedes Terhadap Performance Busness Debtur dalam Sektor Perdagangan, Industr dan Pertanan dlaksanakan d Bank Rakyat

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu 4 III. METODE PENELITIAN A. Populas Peneltan Peneltan n merupakan stud ekspermen dengan populas peneltan yatu seluruh sswa kelas VIII C SMP Neger Bukt Kemunng pada semester genap tahun pelajaran 01/013

Lebih terperinci

PENGGUNAAN METODE GRAFIK UNTUK PENENTUAN ELEMEN MATRIKS SISTEM OPTIK SKRIPSI

PENGGUNAAN METODE GRAFIK UNTUK PENENTUAN ELEMEN MATRIKS SISTEM OPTIK SKRIPSI PEGGUAA METODE GRAFIK UTUK PEETUA ELEME MATRIKS SISTEM OPTIK SKRIPSI Dajukan untuk Memenuh Salah Satu Syarat Memperoleh Gelar Sarjana Sans (S.S) Program Stud Fska Oleh: MITO IM : 0340 FAKULTAS SAIS dan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2-1 Photogrammetry proses [10].

BAB II DASAR TEORI. Gambar 2-1 Photogrammetry proses [10]. BAB II DASAR TEORI 2. Photogrammetry Photogrammetry adalah suatu teknk yang dgunakan untuk menentukan koordnat suatu ttk pada ruang tga dmens yang berasal dar dua atau lebh gambar dua dmens ttk tersebut

Lebih terperinci

Pertemuan 14 ANALISIS STATIK EKIVALEN (SNI )

Pertemuan 14 ANALISIS STATIK EKIVALEN (SNI ) Halaman 1 dar Pertemuan 14 Pertemuan 14 ANALISIS STATIK EKIVALEN (SNI 1726 2002) Analss statk ekvalen merupakan salah satu metode menganalss struktur gedung terhadap pembebanan gempa dengan menggunakan

Lebih terperinci

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3)

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3) PERCG JRIG KSES KBEL (DTG3E3) Dsusun Oleh : Hafdudn,ST.,MT. (HFD) Rohmat Tulloh, ST.,MT (RMT) Prod D3 Teknk Telekomunkas Fakultas Ilmu Terapan Unverstas Telkom 015 Peramalan Trafk Peramalan Trafk Peramalan

Lebih terperinci

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1 ERMODINAMIKA Hukum ermodnamka ke-0 Hukum ermodnamka ke-1 Hukum ermodnamka k ke-2 Mesn Kalor Prnsp Carnot & Mesn Carnot FI-1101: ermodnamka, Hal 1 Kesetmbangan ermal & Hukum ermodnamka ke-0 Jka dua buah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 II TINJUN PUSTK 2.1 Manaemen Proyek 2.1.1 Pengertan Manaemen Proyek Sebelum mengemukakan apa art dar Manaemen Proyek, terlebh dahulu akan mengetahu art dar Manaemen dan Proyek tu. Menurut Hamng dan Nurnaamuddn

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan quas expermental dengan one group pretest posttest desgn. Peneltan n tdak menggunakan kelas pembandng namun sudah menggunakan

Lebih terperinci

HUBUNGAN KEMAMPUAN KEUANGAN DAERAH TERHADAP PERTUMBUHAN EKONOMI PROVINSI NUSA TENGGARA BARAT

HUBUNGAN KEMAMPUAN KEUANGAN DAERAH TERHADAP PERTUMBUHAN EKONOMI PROVINSI NUSA TENGGARA BARAT HUBUNGAN KEMAMPUAN KEUANGAN DAERAH TERHADAP PERTUMBUHAN EKONOMI PROVINSI NUSA TENGGARA BARAT ABSTRAK STEVANY HANALYNA DETHAN Fakultas Ekonom Unv. Mahasaraswat Mataram e-mal : [email protected]

Lebih terperinci

Penerapan Aljabar Matrik Dalam Analisa Masukan-Keluaran Elistya Rimawati 6)

Penerapan Aljabar Matrik Dalam Analisa Masukan-Keluaran Elistya Rimawati 6) ISSN : 693 73 Penerapan Aljabar Matrk Dala Analsa Masukan-Keluaran Elstya Rawat 6) Abstrak Analsa asukan-keluaran bertolak dar anggapan bahwa suatu sste perekonoan terdr atas sector-sektor yang salng berkatan.

Lebih terperinci

BAB II DASAR TEORI DAN METODE

BAB II DASAR TEORI DAN METODE BAB II DASAR TEORI DAN METODE 2.1 Teknk Pengukuran Teknolog yang dapat dgunakan untuk mengukur konsentras sedmen tersuspens yatu mekank (trap sampler, bottle sampler), optk (optcal beam transmssometer,

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang 11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SD Al-Azhar 1 Wayhalim Bandar Lampung. Populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SD Al-Azhar 1 Wayhalim Bandar Lampung. Populasi 3 III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SD Al-Azhar Wayhalm Bandar Lampung. Populas dalam peneltan n adalah seluruh sswa kelas V yang terdr dar 5 kelas yatu V A, V B, V

Lebih terperinci