BAB 8 PERSAMAAN DIFERENSIAL BIASA
|
|
|
- Veronika Susanti Hermawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Maa kulah KOMPUTASI ELEKTRO BAB 8 PERSAMAAN DIFERENSIAL BIASA Persamaan dferensal dapa dbedakan menjad dua macam erganung pada jumlah varabel bebas. Apabla persamaan ersebu mengandung hana sau varabel bebas, persamaan dsebu dengan persamaan dferensal parsal. Deraja (order) dar persamaan denukan oleh deraja erngg dar urunanna. Sebaga conoh persamaan dferensal basa d bawah n adalah berorder sau, karena urunan ernggna adalah urunan perama. d Sedang persamaan dferensal basa berorder dua mengandung urunan kedua sebaga urunan ernggna, seper benuk d bawah n: d 0 d Conoh persamaan dferensal parsal dengan varabel bebas dan adalah: Penelesaan persamaan dferensal adalah suau fungs ang memenuh persamaan dferensal dan juga memenuh konds awal ang dberkan pada persamaan ersebu. D dalam penelesaan persamaan dferensal secara anals, basana dcar penelesaan umum ang mengandung konsana sembarang dan kemudan mengevaluas konsana ersebu sedemkan sehngga haslna sesua dengan konds awal. Meode penelesaan persamaan dferensal secara anals erbaas pada persamaan-persamaan dengan benuk erenu, dan basana hana unuk menelesakan persamaan lner dengan koefsen konsan. Msalkan suau persamaan dferensal basa berorder sau, sebaga berku: d (8.) Penelesaan dar persamaan ersebu adalah: C e (8.) ang memberkan banak fungs unuk berbaga nla koefsen C. Gambar 8., menunjukkan beberapa kemungknan dar penelesaan persamaan (8.), ang erganung pada nla C. Unuk mendapakan penelesaan unggal dperlukan nformas ambahan, msalna nla () dan aau urunanna pada nla erenu. Unuk persamaan order n basana dperlukan n konds unuk mendapakan penelesaan unggal (). Apabla semua n konds dberkan pada nla ang sama (msalna 0), maka permasalahan dsebu dengan problem nla awal. Apabla dlbakan lebh dar sau nla, permasalahan dsebu dengan problem nla baas. Msalna persamaan (8.), dsera konds awal au = 0, nla = aau: Jurusan Teknk Elekro ISTA Yogakara 95
2 Maa kulah KOMPUTASI ELEKTRO ( 0) (8.) Subsuskan persamaan (8.) ke dalam persamaan (8.) memberkan: aau C e C = 0 Dengan demkan penelesaan unggal ang memenuh persamaan: adalah: d ( 0) e Gambar 8.. Penelesaan persamaan d Meode penelesaan numerk dak ada baasan mengena benuk persamaan dferensal. Penelesaan berupa abel nla-nla numerk dar fungs unuk berbaga varabel bebas. Penelesaan suau persamaan dferensal dlakukan pada k-k ang denukan secara beruruan. Unuk mendapakan hasl ang lebh el maka jarak (nerval) anara k-k ang beruruan ersebu dbua semakn kecl. Penelesaan persamaan (8.) dan persamaan (8.) adalah mencar nla sebaga fungs dar. Persamaan dferensal memberkan kemrngan kurve pada seap k sebaga fungs dan. Hungan dmula dar nla awal ang dkeahu, msalna d k (0, 0). Kemudan dhung kemrngan kurve (gars snggung) d k ersebu. Berdasar nla 0 d k 0 dan kemrngan fungs d k-k ersebu dapa dhung nla d k ang berjarak dar 0. Selanjuna k (, ) ang elah dperoleh ersebu dgunakan unuk menghung nla d k ang berjarak dar. Prosedur hungan ersebu dulang lag unuk mendapakan nla selanjuna, seper pada Gambar 8.. Jurusan Teknk Elekro ISTA Yogakara 96
3 Maa kulah KOMPUTASI ELEKTRO Gambar 8.. Penelesaan numerk persamaan dferensal 8. Meode Sau Langkah Akan dselesakan persamaan dferensal basa dengan benuk sebaga berku: d f (, ) Persamaan ersebu dapa ddeka dengan benuk berku: d Δ f (, ) aau f (, )( ) aau Φ (8.) dengan adalah perkraan kemrngan ang dgunakan unuk eksrapolas dar nla ke + ang berjarak au selsh anara = +. Persamaan daas dapa dgunakan unuk menghung langkah nla secara berahap. Semua meode sau langkah dapa duls dalam benuk umum ersebu. Perbedaan dar beberapa meode ang ada adalah ddalam cara mengesmas kemrngan. 8. Meode Euler Meode Euler adalah salah sau dar meode sau langkah ang palng sederhana. D bandng dengan beberapa meode lanna, meode n palng kurang el. Namun demkan meode n perlu dpelajar mengnga kesederhanaanna dan mudah pemahamanna sehngga memudahkan dalam mempelajar meode lan ang lebh el. Meode Euler dapa durunkan dar Dere Talor: '! ''!... Jurusan Teknk Elekro ISTA Yogakara 97
4 Maa kulah KOMPUTASI ELEKTRO Apabla nla kecl, maka suku ang mengandung pangka lebh ngg dar adalah sanga kecl dan dapa dabakan, sehngga persamaan daas dapa duls menjad: ' (8.5) Dengan membandngkan persamaan (8.) dan persamaan (8.5) dapa dsmpulkan ' bahwa pada meode Euler, kemrngan = = f (, ), sehngga persamaan (8.5) dapa duls menjad: f (, ) (8.6) dengan =,,, Persamaan (8.6) adalah meode Euler, nla + dpredks dengan menggunakan kemrngan fungs (sama dengan urunan perama) d k unuk deksrapolaskan secara lner pada jarak sepanjang pas. Gambar 8., adalah penjelasan secara grafs dar meode Euler. Conoh soal: Selesakan persamaan d bawah n: d f (, ) (0). Gambar 8.. Meode Euler 0 8,5. dar = 0 sampa = dengan panjang langkah = 0,5 dan = 0,5. Penelesaan: Penelesaan eksak dar persamaan daas adalah: 0,5 0 8,5. Penelesaan numerk dlakukan secara berahap pada beberapa k ang beruruan. Dengan menggunakan persamaan (8.6), dhung nla + ang berjarak = 0,5 dar k awal au = 0. Unuk = 0 maka persamaan (8.6), menjad: f, ) 0 ( 0 0 Dar konds awal, pada = 0 nla fungs (0) =, sehngga: ( 0,5) (0) f (0 ;) 0,5. Jurusan Teknk Elekro ISTA Yogakara 98
5 Maa kulah KOMPUTASI ELEKTRO Kemrngan gars d k (0 ; 0) adalah: sehngga: d f (0 ; ) (0 ) (0 ) 0(0) 8,5 ( 0,5) 8,5(0,5) 5,5. 8,5. Nla eksak pada k = 0,5 adalah: (0,5) 0,5(0,5 ) (0,5 ) 0(0,5 ) 8,5(0,5),875. Jad kesalahan dengan meode Euler adalah:,875 5,5 00%,875 6,%. Pada langkah berkuna, au unuk =, persamaan (8.6) menjad: f (, ) (,0) (0,5) f (0,5 ; 5,5) 0,5 5,5 (0,5 ) (0,5 ) 0(0,5) 8,5 0,5 5,875. Hungan dlanjukan dengan prosedur daas dan haslna dberkan dalam Tabel 8., Unuk = 0,5, hungan dlakukan dengan prosedur daas dan haslna juga dberkan dalam Tabel 8.. Dalam conoh ersebu dengan nla berbeda, dapa dsmpulkan bahwa penggunaan ang lebh kecl akan memberkan hasl ang lebh el. Teap konsekuensna waku hungan menjad lebh lama. 8. Kesalahan Meode Euler Penelesaan numerk dar persamaan dferensal basa menebabkan erjadna dua pe kesalahan, au: ) Kesalahan pemoongan, ang dsebabkan oleh cara penelesaan ang dgunakan unuk perkraan nla, ) Kesalahan pembulaan, ang dsebabkan oleh keerbaasan jumlah angka (dg) ang dgunakan dalam hungan. Kesalahan pemoongan erdr dar dua bagan. Perama adalah kesalahan pemoongan lokal ang erjad dar pemakaan suau meode pada sau langkah. Kedua adalah kesalahan pemoongan menebar ang dmbulkan dar perkraan ang dhaslkan pada langkah-langkah berkuna. Gabungan dar kedua kesalahan ersebu dkenal dengan kesalahan pemoongan global. Besar dan sfa kesalahan pemoongan pada meode Euler dapa djelaskan dar dere Talor. Unuk u dpandang persamaan dferensal berbenuk: ' f (, ) (8.7) d dengan ', sedang dan adalah varabel bebas dan ak bebas. Penelesaan dar persamaan ersebu dapa dperkraan dengan dere Talor: Jurusan Teknk Elekro ISTA Yogakara 99
6 Maa kulah KOMPUTASI ELEKTRO n ' '' n... Rn (8.8)!! n! Apabla persamaan (8.7) dsubsuskan ke persamaan (8.8), akan menghaslkan:...!!! f (, ) f '(, ) f ''(, ) Rn (8.9) Tabel 8.. Hasl hungan dengan meode Euler 0,00 0,5 0,50 0,75,00,5,50,75,00,5,50,75,00,5,50,75,00 eksak,00000,56055,875,790,00000,5980,875,99805,00000,805,7875,80,00000,590,7875,055,00000 = 0,5 = 0,5 perk (%) perk (%), , ,500,0 5,5000 6,,7969 9,85,99 6,99 5, ,8,75,79, , 5,500 0,99, ,,9 6,7, ,00,500 56,5,5000,57, ,7,679,05,7969 5,07 5, ,88,875,09 5,6875 0,7 7,500 50,99 5,8679, 5,8069,66 7,00000, 5, ,67 Perbandngan anara persamaan (8.6) dan persamaan (8.9) menunjukkan bahwa meode Euler hana memperhungkan dua suku perama dar ruas kanan persamaan (8.9). Kesalahan ang erjad dar meode Euler adalah karena dak memperhungkan sukusuku erakhr dar persamaan (8.9) au sebesar: f '(, ) f '' (, )... Rn (8.0)!! dengan adalah kesalahan pemoongan lokal eksak. Unuk ang sanga kecl, kesalahan seper ang dberkan oleh persamaan (8.0), adalah berkurang dengan berambahna order (order ang lebh ngg). Dengan demkan suku ang mengandung pangka lebh besar dar dua dapa dabakan, sehngga persamaan (8.0) menjad: a f '(, ) (8.)! dengan a adalah perkraan kesalahan pemoongan lokal. Jurusan Teknk Elekro ISTA Yogakara 00
7 Maa kulah KOMPUTASI ELEKTRO Conoh soal: Hung kesalahan ang erjad dar penggunaan meode Euler dalam conoh sebelumna pada langkah perama. Penelesaan: Kesalahan eksak dhung dengan persamaan (8.0). Oleh karena persamaan ang dselesakan adalah polnomal order maka kesalahan ang dperhungkan hana sampa suku ke ga, karena urunan keempa dar persamaan pangka ga adalah nol, sehngga persamaan (8.0) menjad: f '(, )! f '' (, )! f ''' (, )! Pada langkah perama berar = 0, sehngga nla urunan perama, kedua dan kega adalah: f '(, ) f '' (, ) f '''(, ) 6. ( 0) 6(0 ) (0) 0 (0). 0. Dengan demkan kesalahan ang erjad unuk = 0,5 adalah: (0,5 0 ) (0,5 ) (0,5 ) 6 Sedang = 0,5 kesalahanna adalah:,05. (0,5 0 ) (0,5 ) (0,5 ) 6 0,5655. Dengan menggunakan = 0,5 kesalahan ang erjad lebh kecl dbandng dengan penggunaan = 0,5. Kesalahan ersebu erjad pada langkah perama, dan akan meramba pada langkah-langkah berkuna, karena nla perkraan pada langkah perama (ang mempuna kesalahan) dgunakan sebaga dasar hungan pada langkah selanjuna. Jurusan Teknk Elekro ISTA Yogakara 0
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas
BAB 4 PERHITUNGAN NUMERIK
Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat
KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan
KONSEP DASAR Laar belakang Meode Numerk Ilusras masalah numerk Angka sgnfkan Akuras dan Press Pendekaan dan Kesalahan Laar Belakang Meode Numerk Tdak semua permasalahan maemas dapa dselesakan dengan mudah,
BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST
BAB ESPONS FUNGSI STEP PADA ANGKAIAN DAN C Oleh : Ir. A.achman Hasbuan dan Naemah Mubarakah, ST . Persamaan Dferensal Orde Sau Adapun benuk yang sederhana dar suau persamaan dferensal orde sau adalah:
Created by Simpo PDF Creator Pro (unregistered version)
Creaed by Smpo PDF Creaor Pro (unregsered verson) hp://www.smpopdf.com Sask Bsns : BAB 8 VIII. ANALISIS DATA DERET BERKALA (TIME SERIES) 8.1 Pendahuluan Daa Berkala (Daa Dere waku) adalah daa yang dkumpulkan
BAB 5 ENTROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUNYI
BAB ETROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUYI Model Markov Tersembuny (Hdden Markov Model, MMT) elah banyak daplkaskan dalam berbaga bdang seper pelafalan bahasa (speeh reognon) dan klasfkas (luserng).
BAB I PENDAHULUAN FASILKOM-UDINUS T.SUTOJO RANGKAIAN LISTRIK HAL 1
BAB I PENDAHULUAN 1.1 Defns Rangkaan Lsrk Rangkaan Lsrk adalah sambungan dar beberapa elemen lsrk ( ressor, kapasor, ndukor, sumber arus, sumber egangan) yang membenuk mnmal sau lnasan eruup yang dapa
Bab 2 AKAR-AKAR PERSAMAAN
Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat
SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI
SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI oleh: RILA DWI RAHMAWATI NIM: 0350050 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS
Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan
Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk
9. TEKNIK PENGINTEGRALAN
9. TEKNIK PENGINTEGRALAN 9. Inegral Parsal Formula Inegral Parsal : Cara : plh u yang urunannya lebh sederhana Conoh : Hung u dv uv v du e d msal u =, maka du=d dv e d v e d e sehngga e d e e d e e C INF8
BAB III THREE STAGE LEAST SQUARE. Sebagaimana telah disinggung pada bab sebelumnya, salah satu metode
BAB III THREE STAGE LEAST SQUARE Sebagamana elah dsnggung pada bab sebelumnya, salah sau meode penaksran parameer pada persamaan smulan yau meode Three Sage Leas Square (3SLS. Sebelum djelaskan lebh lanju
APLIKASI STRUKTUR GRUP YANG TERKAIT DENGAN KOMPOSISI TRANSFORMASI PADA BANGUN GEOMETRI. Mujiasih a
APLIKASI STRUKTUR GRUP ANG TERKAIT DENGAN KOMPOSISI TRANSFORMASI PADA BANGUN GEOMETRI Mujash a a Program Sud Maemaka Jurusan Tadrs Fakulas Tarbah IAIN Walsongo Jl. Prof. Dr. Hamka Kampus II Ngalan Semarang
( ) STUDI KASUS. ò (, ) ( ) ( ) Rataan posteriornya adalah = Rataan posteriornya adalah (32)
8 Raaan poserornya adalah E m x ò (, ) f ( x) m f x m f f m ddm (32) Dalam obseras basanya dgunakan banyak daa klam. Msalkan saja erdr dar grup daa klam dengan masng-masng grup ke unuk seap, 2,..., yang
Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal
Hdden Markov Model Oleh : Frdanza, urul Gusran dan Akmal Dosen Jurusan Maemaka FMIPA Unversas Padjadjaran Jl. Raya Bandung Sumedang Km 2, Janangor, Jawa Bara elp. / Fax : 022 7794696 Absrak Hdden Markov
ANaLISIS - TRANSIEN. A B A B A B A B V s V s V s V s. (a) (b) (c) (d) Gambar 1. Proses pemuatan kapasitor
ANaISIS - TANSIEN. Kapasor dalam angkaan D Sebuah kapasor akan ermua bla erhubung ke sumber egangan dc seper yang dperlhakan pada Gambar. Pada Gambar (a), kapasor dak bermuaan yau pla A dan pla B mempunya
APLIKASI INVERSI NON LINIER DENGAN PENDEKATAN LINIER UNTUK MENENTUKAN HIPOSENTER (CONTOH KASUS DI G. KELUD)
Alkas Iners Non Lner Dengan Pendekaan Lner Unuk Menenukan Hosener Conoh Kasus d G. Kelud) Cece Sulaeman) APLIKASI INVERSI NON LINIER DENGAN PENDEKATAN LINIER UNTUK MENENTUKAN HIPOSENTER CONTOH KASUS DI
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.
Darpublic Nopember 2013
Darpublic Nopember 01 www.darpublic.com 4.1. Pengerian 4. Persamaan Diferensial (Orde Sau) Sudarano Sudirham Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih urunan fungsi. Persamaan
PERENCANAAN PERSEDIAAN DAN PENGENDALIAN BAHAN BAKU DI PABRIK PRODUK BETON PT WIJAYA KARYA BETON, BOGOR
B-5-1 PERENCANAAN PERSEDIAAN DAN PENGENDALIAN BAHAN BAKU DI PABRIK PRODUK BETON PT WIJAYA KARYA BETON, BOGOR Wsnu Bud Sunaryo, Haryono ITS Surabaya ABSTRAK Dalam duna konsruks saa n pemakaan produk beon
Sudaryatno Sudirham. Analisis Rangkaian Listrik Di Kawasan Waktu
Sudaryano Sudrham nalss Rangkaan Lsrk D Kawasan Waku BB 12 nalss Transen d Kawasan Waku Rangkaan Orde Perama Yang dmaksud dengan analss ransen adalah analss rangkaan yang sedang dalam keadaan peralhan
Pengenalan Aksara Pallawa dengan Model Hidden Markov
Pengenalan Aksara Pallawa dengan Model Hdden Markov Wwen Wdyasu Teknk Elekro, Fakulas Sans dan Teknolog, Unversas Sanaa Dharma Emal: [email protected] Absrak Aksara Pallawa aau kadangkala duls sebaga Pallava
BAB III SKEMA NUMERIK
BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,
PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1
PENDUGAAN SAISIK AREA KECIL DENGAN MEODE EMPIRICAL CONSRAINED AYES Ksmann Jurusan Penddkan Maemaka FMIPA Unversas Neger Yogyakara Absrak Meode emprcal ayes (E merupakan meode yang lebh aplkaf pada pendugaan
PERSAMAAN DIFERENSIAL BIASA
http://starto.sta.ugm.ac.d PERSAMAAN DIFERENSIAL BIASA Ordnar Derental Equatons ODE Persamaan Derensal Basa http://starto.sta.ugm.ac.d Acuan Chapra, S.C., Canale R.P., 990, Numercal Methods or Engneers,
IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB
Semnar Nasonal Teknolog 007 (SNT 007) ISSN : 1978 9777 Yogakarta, 4 November 007 IMPEMENTASI INTERPOASI AGRANGE UNTUK PREDIKSI NIAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATAB Krsnawat STMIK AMIKOM Yogakarta
PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant)
PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Stud Kasus : Metode Secant) Melda panjatan STMIK Bud Darma, Jln.SM.Raja No.338 Sp.Lmun, Medan Sumatera Utara Jurusan Teknk Informatka e-mal : [email protected]
\ DANA ALOKASI DESA DENGAN RAHMAT TUHAN YANG MAHA ESA
y BUPAT PACTAN PERATURAN BUPAT PACTAN : NOMOR 55" TAHUN 20 ; TENTANG \ DANA ALOKAS DESA DENGAN RAHMAT TUHAN YANG MAHA ESA BUPAT PACTAN, Menmbang : a. bahwa dalam rangka penngkaan penyelenggaraan pemernahan,
PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS
PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS Mra Puspasar, Snggh Sapad, Dana Puspasar Absraks PT Ulam Tba Halm merupakan salah sau ndusr mnuman serbuk d Indonesa, dmana
PERBAIKAN ASUMSI KLASIK
BAHAN AJAR EKONOMETRI AGUS TRI BASUKI UNIVERSITAS MUHAMMADIAH OGAAKARTA PERBAIKAN ASUMSI KLASIK 6.. Mulkolnearas Jka model ka mengandung mulkolneras yang serus yakn korelas yang ngg anar varabel ndependen,
U J I A N A K H I R S E M E S T E R M A T E M A T I K A T E K N I K
Isaro Elevas Jurusan Ten Spl dan Lngungan FT UGM U J I A N A K H I R S E M E S T E R M A T E M A T I K A T E K N I K SABTU JULI OPE N BOOK WAKTU ME NIT PETUNJUK ) Saudara bole menggunaan ompuer unu mengerjaan
Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan
Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K
Penggunaan Metode Modified Unit Decommitment (MUD) untuk Penjadwalan Unit-Unit Pembangkit Pada Sistem Kelistrikan Jawa - Bali
Penggunaan Meode Modfed Un Decommmen (MUD) unuk Penjadwalan Un-Un Pembangk Pada Ssem Kelsrkan Jawa - Bal Ars Her Andrawan,2, Onoseno Penangsang ) Jurusan Teknk Elekro TS, Surabaya 60, ndonesa 2) Jurusan
BAB II TINJAUAN PUSTAKA. membahas analisis deret waktu, diagram kontrol Shewhart, Average Run Length
BAB II TINJAUAN PUSTAKA Pendahuluan Dalam enulsan maer okok dar skrs n derlukan beberaa eor-eor yang mendukung, yang menjad uraan okok ada bab n Uraan dmula dengan membahas analss dere waku, dagram konrol
Deret Taylor & Diferensial Numerik. Matematika Industri II
Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret
PENGGUNAAN METODE MODIFIED UNIT DECOMMITMENT (MUD) UNTUK PENJADWALAN UNIT-UNIT PEMBANGKIT PADA SISTEM KELISTRIKAN JAWA - BALI
Prosdng Semnar Nasonal Manajemen Teknolog X Program Sud MMT-TS, Surabaya 6 Pebruar 2010 PENGGUNAAN METODE MODFED UNT DECOMMTMENT (MUD) UNTUK PENJADWALAN UNT-UNT PEMBANGKT PADA SSTEM KELSTRKAN JAWA - BAL
BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi
BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut
Analisis Jalur / Path Analysis
Analss Jalur / Pah Analyss Analss jalur adalah salah sau benuk model SEM yang dak mengandung varable laen. Tenu saja model n lebh sederhana dbandngkan dengan model SEM lengka. Analss jalur sebenarnya meruakan
Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat
Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka
BUPATI PACITAN. i PERATURAN BUPATI PACITAN ; NOMOR 5" TAHUN 2008 TENTANG
BUPAT PACTAN PERATURAN BUPAT PACTAN ; NOMOR 5" TAHUN 2008 TENTANG PETUNJUK PELAKSANAAN PERATURAN DAERA KABUPATEN PACTAN NOMOR 25 TAHUN 2007 TENTANG ORGAN DAN KEPEGAWAAN PERUSAHAAN DAERAH AR MNUM j KABUPATEN
CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP)
PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA KASUS: INITIAL VALUE PROBLEM (IVP) by: st dyar kholsoh Mater Kulah: Pengantar; Metode Euler; Perbakan Metode Euler; Metode Runge-Kutta; Penyelesaan Sstem Persamaan
Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC
Penerapan Metode Runge-Kutta Orde 4 dalam Analss Rangkaan RLC Rka Favora Gusa JurusanTeknk Elektro,Fakultas Teknk,Unverstas Bangka Beltung [email protected] ABSTRACT The exstence of nductor and capactor
III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan
Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF
Jumlah kasus penderita penyakit Demam Berdarah Dengue (DBD) di Kota Surabaya tahun
Baasan Masalah Jumlah kasus pendera penyak Demam Berdarah Dengue (DBD d Koa Surabaya ahun - Varabel Explanaory (Varabel penjelas yang dgunakan dalam penelan adalah varabel Iklm (Curah hujan, Suhu, Kelembaban
ANALISIS DATA KATEGORIK (STK351)
Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat
BAB 3 PENYELESAIAN NUMERIK MODEL ADVEKSI-DISPERSI DENGAN IMPLEMENTASI SPREADSHEET
BAB PENYELESAIAN NUMERIK MODEL ADVEKSI-DISPERSI DENGAN IMPLEMENTASI SPREADSHEET MENGENAI METODE NUMERIK Persoalan yang melbaan model maemaa banya munul dalam berbaga lmu pengeahuan seper halnya dalam asus
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN Ita Rahmadayan 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasswa Program Stud S1 Matematka
NILAI TOTAL TAK TERATUR TOTAL DARI GABUNGAN TERPISAH GRAF RODA DAN GRAF BUKU SEGITIGA
Jurnal Ilmu Maemaka dan Terapan Desember 015 Volume 9 Nomor Hal. 97 10 NILAI TOTAL TAK TERATUR TOTAL DARI GABUNGAN TERPISAH GRAF RODA DAN GRAF BUKU SEGITIGA R. D. S. Rahangmean 1, M. I. Tlukay, F. Y. Rumlawang,
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
PENENTUAN EOQ TERHADAP PRODUK AVTUR DI LANUD HUSEIN SASTRANEGARA BANDUNG
INDEPT, Vol., No. 3, Okober 01 ISSN 087 945 PENENTUAN EOQ TERHADAP PRODUK AVTUR DI LANUD HUSEIN SASTRANEGARA BANDUNG Samsul Budaro, ST., MT Dosen Teap Teknk Indusr, Wakl Dekan III akulas Teknk, Unversas
TEORI KESALAHAN (GALAT)
TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan
BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c
6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan
Integral dan Persamaan Diferensial
Sudaryano Sudirham Sudi Mandiri Inegral dan Persamaan Diferensial ii Darpublic 4.1. Pengerian BAB 4 Persamaan Diferensial (Orde Sau) Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih
BAB III MINIMUM COVARIANCE DETERMINANT. Sebagaimana telah disinggung pada bab sebelumnya, salah satu metode
BAB III MINIMUM COVARIANCE DETERMINANT Sebagamana elah dsnggung pada bab sebelumnya, salah sau meode robus unuk mendeeks penclan (ouler) dalam analss komponen uama robus yau meode Mnmum Covarance Deermnan
BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh
BAB III METODE PENELITIAN 3.1 Desan Peneltan Sebelum dlakukan peneltan, langkah pertama yang harus dlakukan oleh penelt adalah menentukan terlebh dahulu metode apa yang akan dgunakan dalam peneltan. Desan
1. Mistar A. BESARAN DAN SATUAN
A. BESARAN DAN SATUAN Teor Sngka : D dalam Fska gejala alam dama melalu pengukuran. Pengukuran adalah membandngkan suau besaran dengan besaran sejens yang dsepaka sebaga paokan (sandar). Besaran adalah
BAB 2 LANDASAN TEORI
BAB LANDAAN TEORI. Tnjauan Pusaka.. Uj Keseragaman Daa Tujuan uama pengukuran uj keseragaman daa adalah unuk mendapakan da yang seragam. Kedak seragaman daa dapa daang anpa dsadar, maka dperlukan suau
! BUPATI PACriAN j PERATURAN BUPATI PACITAN NOMOR 18 TAHUN 2013
! BUPAT PACrAN j PERATURAN BUPAT PACTAN NOMOR 18 TAHUN 2013 TENTANG PEDOMAN PENYUSUNAN LAPORAN DEWAN PENGAWAS BADAN LAYANAN UMUM DAERAH PADA RUMAH SAKT UMUM DAERAH KABUPATEN PACTAN DENGAN RAHMAT TUHAN
MODEL PERSAMAAN DIFERENSIAL ELEKTROKARDIOGRAM DENGAN INTERVAL DENYUT BERDISTRIBUSI GAMMA
Prosdng Semnar Nasonal Sans dan Penddkan Sans IX, Fakulas Sans dan Maemaka, UKSW Salaga, Jun 4, Vol 5, No., ISSN :87-9 MODEL PERSAMAAN DIFERENSIAL ELEKTROKARDIOGRAM DENGAN INTERVAL DENYUT BERDISTRIBUSI
BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada
Line Transmisi. Oleh: Aris Heri Andriawan ( )
ANALISIS APLIKASI PENJADWALAN UNIT-UNIT PEMBANGKIT PADA SISTEM KELISTRIKAN JAWA-BALI DENGAN MENGGUNAKAN UNIT COMMITMENT, UNIT DECOMMITMENT DAN MODIFIED UNIT DECOMMITMENT Oleh: Ars Her Andrawan (07000)
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel
PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan
BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
BAB III METODE PENELITIAN 3. Meode Penelan Meode penelan yang dgunakan dalam penelan n adalah meode deskrpf anals. Wnarno Surakhmad (990:40) mengemukakan bahwa meode deskrpf mempunya cr-cr sebaga berku:.
P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman
OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan
BAB III ANALISIS INTERVENSI. Analisis intervensi dimaksudkan untuk penentuan jenis respons variabel
BAB III ANALISIS INTERVENSI 3.1. Pendahuluan Analisis inervensi dimaksudkan unuk penenuan jenis respons variabel ak bebas yang akan muncul akiba perubahan pada variabel bebas. Box dan Tiao (1975) elah
Peramalan Jumlah Penumpang Kereta Api Kelas Ekonomi Kertajaya Menggunakan ARIMA dan ANFIS
JURNAL SAINS DAN SENI ITS Vol. 4 No. (05) 33-350 (30-9X Prn) D-3 Peramalan Jumlah Penumpang Kerea Ap Kelas Ekonom Keraaya Menggunakan ARIMA dan ANFIS Ilaf Andala dan Irhamah Jurusan Saska Fakulas Maemaka
ε adalah error random yang diasumsikan independen, m X ) adalah fungsi
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu
PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1
PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis
E-book Statistika Gratis... Statistical Data Analyst. Uji Asumsi Klasik Regresi Linear
E-boo Sasa Gras... Sascal Daa Anals Uj Asums Klas Regres Lnear Pada penulsan enang Regres Lnear n, penuls aan memberan bahasan mengena Uj Asums Klas epada para pembaca unu memberan pemahaman dan solus
PENGURUTAN DATA. A. Tujuan
PENGURUTAN DATA A. Tuuan Pembahasan dalam bab n adalah mengena pengurutan data pada sekumpulan data. Terdapat beberapa metode untuk melakukan pengurutan data yang secara detl akan dbahas ddalam bab n.
U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK
Jurusan Teknk Spl dan Lngkungan FT UGM U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK SABTU, JULI OPEN BOOK WAKTU MENIT PETUNJUK ) Saudara bole menggunakan komputer untuk mengerjakan soal- soal ujan n. Tabel
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakang Dalam kehdupan sehar-har, serngkal dumpa hubungan antara suatu varabel dengan satu atau lebh varabel lan. D dalam bdang pertanan sebaga contoh, doss dan ens pupuk yang dberkan
Konferensi Nasional Sistem dan Informatika 2008; Bali, November 15, 2008
Konferens asonal Ssem dan Informaka 008; Bal, ovember, 008 KSI08-0 APLIKASI MATEMATIKA UMERIK METODE EWTO RAPHSO DALAM BIDAG MAAJEME KEUAGA: SUATU TIJAUA KHUSUS MEETUKA ILAI ITERAL RATE OF RETUR DA YIELD
v dan persamaan di C menjadi : L x L x
PERSMN GELOMBNG SSIONER. Pada proses panulan gelombang, erjadi gelombang panul ang mempunai ampliudo dan frekwensi ang sama dengan gelombang daangna, hana saja arah rambaanna ang berlawanan. hasil inerferensi
ANALISIS REGRESI. Catatan Freddy
ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :
BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya
BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas
Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang
LARGE SCALE SYSEM Course by Dr. Ars rwyatno, S, M Dept. of Electrcal Engneerng Dponegoro Unversty BAB V OPIMASI SISEM Dalam sstem pengendalan berhrark level, maka optmas dapat dlakukan pada level pertama
Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang
Fska Modern Persaaan Schroodnger dan Fngs Gelobang Apa Persaaan unuk Gelobang Maer? De Brogle eberkan posula bahwa seap parkel elk hubungan: h/ p Golobang aer ala n dkonfras oleh percobaan dfraks elekron,
PROSES STOKASTIK KELAHIRAN-KEMATIAN DENGAN DUA JENIS KELAMIN SECARA KELOMPOK PADA PROSES YULE- FURRY. Samsuryadi
JURNAL MATEMATIKA DAN KOMUTER Vol. 4. No. - Agusus ISSN : 4-858 ROSES STOKASTIK KELAHIRAN-KEMATIAN DENAN DUA JENIS KELAMIN SECARA KELOMOK ADA ROSES YULE- FURRY Samsuryad Jurusan Maemaka FMIA Unversas Srwaya
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
REGRESI DAN KORELASI. Penduga Kuadrat Terkecil. Penduga b0 dan b1 yang memenuhi kriterium kuadrat terkecil dapat ditemukan dalam dua cara berikut :
BAHAN AJAR EKONOMETRIKA AGUS TRI BASUKI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA REGRESI DAN KORELASI Tujuan metode kuadrat terkecl adalah menemukan nla dugaan b0 dan b yang menghaslkan jumlah kesalahan kuadrat
Penerapan Statistika Nonparametrik dengan Metode Brown-Mood pada Regresi Linier Berganda
Jurnal EKSPONENSIAL Volume 7, Nomor, Me 6 ISSN 85-789 Penerapan Saska Nonparamerk dengan Meode Brown-Mood pada Regres Lner Berganda Applcaon of Nonparamerc Sascs, wh Brown-Mood Mehod on Mulple Lnear Regresson
BAB 2 LANDASAN TEORI
BAB LANDAAN EORI. njauan Pusaka.. Peramalan Peramalan (forecasng) merupakan ala banu yang penng dalam perencanaan yang efekf dan efsen khususnya dalam bdang ekonom. Dalam organsas modern mengeahu keadaan
BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah
BAB III METODE PENELITIAN 3.1 Metode Peneltan Metode yang dgunakan dalam peneltan n adalah metode deskrptf. Peneltan deskrptf merupakan peneltan yang dlakukan untuk menggambarkan sebuah fenomena atau suatu
PENERAPAN FUZZY MULTI CRITERIA DECISION MAKING UNTUK MENENTUKAN PEMBERIAN BEASISWA
Semnar Nasonal Teknolog Informas dan Mulmeda 2015 STMIK AMIKOM Yogyakara, 6-8 Februar 2015 PENERAPAN FUZZY MULTI CRITERIA DECISION MAKING UNTUK MENENTUKAN PEMBERIAN BEASISWA Yeffransjah Salm STMIK Indonesa
BAB IV PEMBAHASAN MODEL
BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup
BAB I PENDAHULUAN. Semakin tinggi penerimaan Pajak di Indonesia, semakin tinggi pula kualitas
BAB I PENDAHULUAN A. LATAR BELAKANG Pajak merupakan sumber penermaan terpentng d Indonesa. Oleh karena tu Pemerntah selalu mengupayakan bagamana cara menngkatkan penermaan Pajak. Semakn tngg penermaan
III. METODE PENELITIAN
III. METODE PENELITIAN 3.1 Jens dan Sumber Daa Daa ang dgunakan dalam penelan n merupakan daa sekunder ang berasal dar berbaga nsans pemernah eruama Badan Pusa Sask. Daa ang dgunakan anara lan angka kemsknan,
