21. SOAL-SOAL TRANSFORMASI GOMETRI
|
|
|
- Hendra Lesmono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 21. SOAL-SOAL TRANSFORMASI GOMETRI Maka rotasi terhadap R[, 18 ] = cos18 sin18 sin18 cos18 UAN22 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: A. y = x + 1 C. y = 2 x - 1 E. y = 2 x Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri atau bisa dilihat di tabel (Rangkuman teori). B. y = x 1 D. y = 2 x + 1 rumus dasarnya : P(x,y) P (x, y ) (1) 2. pencerminan terhadap garis y = -x P(x,y) P (-y, -x), matriksnya pencerminan terhadap garis y = x : P(x,y) P (y, x).(2) Dari (1) dan (2) maka : x = y dan y = x (3) substitusikan (3) ke garis y = 2x + 2 x = 2 y y = x - 2 y = 2 x - 1 Hasil pencerminannya adalah : y = 2 x - 1 jawabannya adalah C UAN25 2. Persamaan bayangan kurva y = x 2-2x 3 oleh rotasi [, 18 ], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah. A. y = x 2-2x 3 D. x = y 2-2y 3 B. y = x 2-2x + 3 E. x = y 2 + 2y + 3 C. y = x 2 + 2x + 3 cosθ sinθ 1. Rotasi terhadap R [, θ ] = sinθ cosθ Bayangan oleh oleh rotasi [, 18 ], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah : x = y y = (y,x) ; y = x substitusikan pada kurva y = x 2-2x 3 x = y 2-2 y - 3 x = y 2-2 y 3 jawabannya adalah D EBTANAS Persamaan bayangan dari lingkaran x 2 +y 2 +4x-6y-3= oleh transformasi yang berkaitan dengan matriks adalah. A. x 2 + y 2-6x - 4y- 3 = B. x 2 + y 2-6x + 4y- 3 = C. x 2 + y 2 + 6x - 4y- 3 = D. x 2 + y 2-4x + 6y- 3 = E. x 2 + y 2 + 4x - 6y+ 3 = - 1
2 y y x x = y dan y = - x - y = x substitusikan pada persamaan lingkaran x 2 +y 2 +4x-6y-3= menjadi : EBTANAS Ditentukan matriks transformasi T 1 dan T 2. Hasil transformasi titik (2,-1) terhadap T 1 dilanjutkan T 2 adalah. A. (-4,3) B. (-3,4) C. (3,4) D. (4,3) E. (3,-4) Transformasi T 1 dilanjutkan oleh T 2 = T 2 o T 1 (- y ) 2 + (x ) 2-4 y - 6 x - 3 = y 2 + x 2-4 y - 6 x - 3 = T 2 o T 1 = M 2 x M 1 = x 2 + y 2 6x - 4y 3 = Jawabannya adalah A EBTANAS T 1 dan T 2 adalah transformasi yang masing-masing bersesuaian dengan dan. 3 Ditentukan T = T 1 o T 2, maka transformasi T bersesuaian dengan matriks 1 7 A B C. 1 D E M 1 = matriks transformasi T M 2 = matriks transformasi T 2 T = T 1 o T 2 = M 1 x M 2 Hasil transformasi titik (2,-1) terhadap T 1 dilanjutkan T adalah. ( -4, 3 ) 1 3 Jawabannya adalah A UN25 6. Persamaan bayangan garis y = -6x + 3 karena 2 1 transformasi oleh matriks kemudian dilanjutkan 2 dengan matriks adalah A. x + 2y + 3 = D. 13x + 11y + 9 = B. x + 2y 3 = E. 13x + 11y 9 = C. 8x 19y + 3 = 2 1 Matriks T 1 = M 1 2 MatriksT 2 = M ( ) ( ( 2). = 3 ( ) (.1+ 3.( 2) Jawabannya adalah E Transformasi T 1 dilanjutkan T 2 adalah = T 2 o T 1 =M 2 x M 1 M 2 x M 1 = 2 4 y
3 Ingat bab matriks : Jika A.B = C maka 1. A = C. B 2. B = A. C A.B = C C = A.B 2 4 C ; A y 4 5 B = A. C ; B UAN24 7. Bayangan titik A (4,1) oleh pencerminan terhadap garis x =2 dilanjutkan pencerminan terhadap garis x = 5 adalah titik. A. A (8,5) C. A (8,1) E. A (2,2) B. A (1,1) D. A (4,5) 1. Cara 1 (dengan rumus) Pencerminan terhadap garis x = h P(x,y) P (x, y ) = P (2h x, y) A = 1 ( 4.4) A(4,1) x =2 A (2(2)-4,1 ) = ( 4.4) = = y 6 6 A (,1 ) x = 5 A (2.5, 1 ) A (1,1 ) 2. Cara 2 ( dengan gambar) x = 6 5 x y y = x y substitusikan pada persamaan garis y = -6x x y = - 5 x - 4 y + 3 titik A (4,1) dicerminkan terhadap garis x=2 didapat A (,1) kemudian dicerminkan lagi terhadap garis x=5 didapat A (1,1 ) x + 5 x y + 4 y - 3 = Jawabannya adalah B 4x + 3x 2y + 24y = x 22 y = x x + 22 y - 18 = : 2 13 x + 11 y - 9 = 13 x + 11y 9 = Jawabannya adalah E UAN24 8. T 1 adalah transformasi yang bersesuaian dengan matriks 5 3 dan T 2 adalah transformasi yang bersesuaian dengan matriks. 2 4 Bayangan A(m,n) oleh transformasi T 1 o T 2 adalah (-9,7). Nilai m+n sama dengan A. 4 B.5 C.6 D.7 E
4 9 m = M 1 x M 2 7 n m n 9 3 m n - m - 3n = -9-5m + 11n = 7 - m - 3n = -9 x5-5m 15n = -45-5m + 11n = 7 x1-5m +11n = n = -52 n = 2 - m 3n = - 9 -m = 3n 9 m = 9 3n = = 9 6 = 3 Sehingga m+ n = = 5 Jawabannya adalah B UAN21 9. Bayangan ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (,9 ) adalah A. A (-1,-2), B (1,6) dan C (-3,-5) B. A (-1,-2), B (1,-6) dan C (-3,-5) C. A (1,-2), B (-1,6) dan C (-3,5) D. A (-1,-2), B (-1,-6) dan C (-3,-5) E. A (-1,2), B (-1,-6) dan C (-3,-5) 1 Pencerminan/refleksi terhadap sumbu Y P(x,y) P (-x, y) 2. Rotasi (, 9 ) : cosθ sinθ cos9 sin 9 sinθ cosθ sin 9 cos9 x = -y ; y = x y Rumus langsung: P(x,y) P (-y, x) sb: y rotasi (,9 ): P(x,y) P (-x, y) P (-y, -x) catatan: dari P (-x, y) dirotasi (,9 ) menjadi P (-y, -x) didapat dari rumus rotasi (,9 ) P(x,y) P (-y, x) sehingga : (-x, y) (-y, x) A(2,1) A (-2,1) A " (-1,-2) B(6,1) B (-6,1) B " (-1,-6) C(5,3) C (-5,3) C " (-3,-5) 2. Cara 2 (langsung ) refleksi terhadap sumbu Y dilanjutkan rotasi (,9 ): sb: y rotasi (,9 ): (-x,y) (-y,x) P(x,y) P (-x, y) P (-y, -x) catatan: dari P (-x, y) dirotasi (,9 ) menjadi P (-y, -x) didapat dari rumus rotasi (,9 ) P(x,y) P (-y, x) P(x,y) P (-y, -x) A(2,1) A " (-1,-2) B(6,1) B " (-1,-6) C(5,3) C " (-3,-5) Jawabannya adalah D UAN23 1. Persamaan peta kurva y = x 2-3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah A. 3y + x 2-9x + 18 = B. 3y - x 2 + 9x - 18 = C. 3y - x 2 + 9x + 18 = D. 3y + x 2 + 9x + 18 = E. y + x 2 + 9x - 18 = - 4
5 pencerminan terhadap sumbu x: P(x,y) P (x, -y) Dilatasi terhadap titik pusat O(,) dengan factor skala 3 : [O, k] : P(x,y) P (kx, ky) [O,3k] : P(x,y) P (3x, 3y) pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 : P(x,y) P (x, -y) P (3x, -3y) x " = 3x x = 3 1 x " y " = - 3y y = y " Sehingga : P(x,y) P " (-3y, 3x) P(-1,2), Q(3,2), R (3,-1), S(-1,-1) P(-1,2) P " (-6,-3) Q(3,2) Q " (-6,9) R (3,-1) R " (3,9) S(-1,-1) S " (3,-3) Buat sketsa gambarnya: y Q " (-6,9) Q " (-6,9) 9 Substitusi pada persamaan y = x 2-3x + 2 menjadi: y " = ( 3 1 x " ) x " y " = 9 1 x " 2 - x " + 2 x 9-3 y " = x " 2-9 x " y " + x " 2-9 x " + 18 = 3 y + x 2-9x + 18 = jawabannya adalah A EBTANAS Luas bayangan persegipanjang PQRS dengan P(-1,2), Q(3,2), R (3,-1), S(-1,-1) karena dilatasi [,3] dilanjutkan rotasi pusat O bersudut 2 π adalah A. 36 B. 48 C.72 D. 96 E. 18 dilatasi [,3] : [O,3k] : P(x,y) P (3x, 3y) Rotasi pusat O bersudut 2 π { R [, 2 π ] }: P(x,y) P (-y, x) [,3] (-y, x) P(x,y) P (3x, 3y) P " (-3y, 3x) -6 3 x P " (-6,-3) -3 S " (3,-3) (6+3) satuan Sehingga luas transformasinya adalah : Panjang (p) x lebar (l) = 12 x 9 = 18 satuan luas jawabannya adalah E (9+3) satuan luas EBTANAS Segitiga ABC dengan A(2,1), B(6,1), C(6,4) 3 ditransformasikan dengan matriks transformasi. 1 Luas bangun hasil transformasi segitiga ABC adalah. A. 56 satuan luas C. 28 satuan luas E. 18 satuan luas B. 36 satuan luas D. 24 satuan luas 3 misalkan T maka 1 Luas bayangan/transformasi ABC = det T x luas ABC det T = ad bc = 3- = 3 luas ABC : - 5
6 buat sketsa gambar: 4 C(6,4) 1 A(2,1) B(6,1) Luas ABC = 2 1 alas x tinggi ; = 2 1 x AB x BC = 2 1.x 4 x 3 = 6 Luas bayangan/transformasi ABC = det T x luas ABC = 3 x 6 = 18 satuan luas Jawabannya adalah E - 6
Komposisi Transformasi
Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun
20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b
. TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis
STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR
STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks
TRANSFORMASI GEOMETRI
TRANSFORMASI GEOMETRI 0 MODUL TRANSFORMASI GEOMETRI KELAS XII. IPA 16.1.6 Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen
19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)
9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan
SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL
SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik transformasi geometri. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam
TRANSFORMASI GEOMETRI
0 MODUL TRANSFORMASI GEOMETRI KELAS XII. IPA 16.1.6 Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.
SOAL DAN PEMBAHASAN REFLEKSI DAN DILATASI
SOAL DAN PEMBAHASAN REFLEKSI DAN DILATASI 1. ABCD sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh
TRANSFORMASI GEOMETRI
MODUL TRANSFORMASI GEOMETRI KELAS XII. IPA Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341)
BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.
TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri
MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2
MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2 SMA Santa Angela Tahun Pelajaran 26 27 Transformasi Geometri Matematika Wajib XI BAB I.PENDAHULUAN A. Deskripsi Dalam modul ini, anda akan mempelajari
MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.
TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI
TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI OLEH: 1. RATMI QORI (06081181320002) 2. FAUZIAH (06081181320015) 3. NYAYU ASTUTI (06081281320018) 4. ISKA WULANDARI (06081281320038) PENDIDIKAN
Matematika EBTANAS Tahun 2001
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas DEFINISI Transformasi merupakan pemetaan titik, garis atau bidang ke titik, garis atau bidang lain pada bidang yang sama. Misalkan transformasi T memetakan titik P (, y) ke titik P(, y) dan
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut
LATIHAN ULANGAN BAB. INTEGRAL
LATIHAN ULANGAN BAB. INTEGRAL A. PILIHAN GANDA 4( ). d... A. 4( ) 5 B. 4( ) 4 C. + 8 9 4 + C D. + 8 + C E. 4 5 + C 5. Nilai ( 4 ) d... A. 6 D. B. 4 6 E. C. 8. Hasil dari. cos d... (UAN 4) A. (.sin.cos
f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}
1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1
5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A B) = sin A cos B cos A sin B 2) cos (A B) = cos A cos B sin A sin B.
5. TRIGONOMETRI II A. Jumlah dan Selisih Dua Sudut ) sin (A B) = sin A cos B cos A sin B ) cos (A B) = cos A cos B sin A sin B tan A tan B ) tan (A B) = tan A tan B. UN 00 Nilai sin 5º cos 5º + cos 5º
Matematika EBTANAS Tahun 2002
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0
TRANSFORMASI GEOMETRI
TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
TE Teknik Numerik Sistem Linear
TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E. Objektif.
Transformasi Geometri Sederhana
Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat
Pembahasan Matematika IPA SNMPTN 2012 Kode 483
Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
Materi Aljabar Linear Lanjut
Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0
Matematika EBTANAS Tahun 1991
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai
Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran
Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran
Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA
Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)
Pembahasan Matematika IPA SNMPTN 2012 Kode 132
Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,
ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA
PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan
King s Learning Be Smart Without Limits
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan
7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian
1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan
Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010
PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh
OSN Guru Matematika SMA (Olimpiade Sains Nasional)
ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE
m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.
. Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan
III HASIL DAN PEMBAHASAN
Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =
Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi
Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi [email protected] Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB
MATEMATIKA EBTANAS TAHUN 2002
MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan
Matematika EBTANAS Tahun 1986
Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo
Xpedia Matematika. Kapita Selekta Set 05
Xpedia Matematika Kapita Selekta Set 05 Doc. Name: XPMAT9705 Doc. Version : 0-07 halaman 0a Garis singgung pada kurva y=x -x + akan sejajar dengan sumbu x di titik yang absisnya... x = x = 0 x = 0 dan
Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013
Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis
19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =
19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =
Soal Ujian Nasional Tahun 2005 Bidang Matematika
Soal Ujian Nasional Tahun 2005 Bidang Matematika Oleh : Fendi Alfi Fauzi 7 Desember 2012 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... C A B A. 4 2 cm B. (4 2) cm C. (4 2 2) cm
Matematika EBTANAS Tahun 2003
Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +
MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab
PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK
PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.
TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember
TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF
15. TURUNAN (DERIVATIF)
5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u
Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.
Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya
Istiyanto.Com Media Belajar dan Berbagi Ilmu
Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA
Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014
Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut
V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI
V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI 5.1 Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat: 1. menyebutkan definisi sinus, cosinus dan tangen dalam segitiga
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +
SOAL MATEMATIKA IPA UJIAN NASIONAL TRIGONOMETRI
SOAL MATEMATIKA IPA UJIAN NASIONAL 04 0 TRIGONOMETRI. UN 04 Diberikan segi-4 ABCD seperti pada gambar. Panjang CD 6 6 cm cm cm 9 cm E. cm. UN 04 Nilai dari sin 75 sin5 cos 45... 0 cm A 45 D C 45 0 B 4
UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2004/2005 MATEMATIKA (C3) ( U T A M A )
UJIAN NASIONAL SMP/MTs Tahun Pelajaran 00/005 MATEMATIKA (C3) ( U T A M A ) P MATA PELAJARAN MATEMATIKA Hari/Tanggal : Rabu, 8 Juni 005 Jam : 08.00 0.00 PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda
2009 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh
x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran
Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit *Pilihlah satu jawaban yang benar * Tidak diperkenankan menggunakan kalkulator atau alat hitung lainnya.. Diketahui premis - premis:
PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA
PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan
SOAL DAN SOLUSI UJIAN SEKOLAH UTAMA TAHUN 2013
SOAL DAN SOLUSI UJIAN SEKOLAH UTAMA TAHUN. Diberikan premis-premis berikut!. Mathman belajar tidak serius atau ia dapat mengerjakan semua soal Ujian Nasional dengan benar.. Jika ia dapat mengerjakan semua
4. TRIGONOMETRI I. A. Trigonometri Dasar y. sin α = r. cos α = r. tan α = x
4. TRIGONOMETRI I A. Trigonometri Dasar y sin α = r cos α = r x tan α = x y B. Perandingan trigonometri sudut Istimewa (0º, 4º, 60º) Nilai perandingan trigonometri sudut istimewa dapat dicari dengan menggunakan
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.
SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd
SUSUNAN KOORDINAT BAGIAN-1 Oleh: Fitria Khasanah, M. Pd Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta 2010 Letak Suatu Titik pada Garis Lurus O g
TRANSFORMASI. Bab. Di unduh dari : Bukupaket.com. Translasi Refleksi Rotasi Dilatasi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab 0 TRNSFORMSI. KOMPETENSI DSR DN PENGLMN BELJR Kompetensi Dasar Setelah mengikuti pembelajaran transformasi siswa mampu:. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin,
18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
8. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA UN00.Nilai (n 6). n A. 88 B. 00 C. 00 D. 97 E. 060 n (n 6) (. 6) + (. 6) + (. 6)+ + (. 6) + 9 + +...+ 99 a b 9 9 n n(akhir) (n(awal)-) (-)
( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75
Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran
Esther Wibowo
Esther Wibowo [email protected] Topik Hari Ini Dasar Transformasi Translation Pemindahan, Penggeseran Scaling Perubahan Ukuran Shear Distorsi? Rotation Pemutaran Representasi Matriks Transformasi
TRYOUT UAS SMT GANJIL 2015
TRYOUT UAS SMT GANJIL 201 1. Himpunan penyelesaian dari SPLDV dibawah ini adalah... 3x 2y = x + 3y = 2 A. (, -2 ) B. ( 2, - ) C. ( -2, ) D. ( -2, - ) E. ( -, 2 ) 2. Tentukan himpunan penyelesaian SPL TV
UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN
Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :
Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y
SMA / MA IPA Mata Pelajaran : Matematika
Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban
5. TRIGONOMETRI II. A. Jumlah dan Selisih Dua Sudut 1) sin (A ± B) = sin A cos B ± cos A sin B 2) cos (A ± B) = cos A cos B m sin A sin B
. TRIGONOMETRI II A. Jumlah dan Selisih Dua Sudut ) sin (A ± B) = sin A cs B ± cs A sin B ) cs (A ± B) = cs A cs B m sin A sin B tan A ± tan B ) tan (A ± B) = m tan A tan B. UN 00 PAKET B Diketahui p dan
Soal Latihan Matematika
Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi
Matematika EBTANAS Tahun 1995
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat
SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA
SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai
D. 90 meter E. 95 meter
1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x
18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:
8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a
Trigonometri. Trigonometri
Penggunaan Rumus Sinus dan Cosinus Jumlah Dua Sudut, Selisih ; Dua Sudut, dan Sudut Ganda Rumus Jumlah dan Selisih Sinus dan Cosinus ; Menggunakan Rumus Jumlah dan Selisih Sinus dan Cosinus ; Pernahkah
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015
SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan
SOAL TO UN SMA MATEMATIKA
1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas
SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter
SILABUS Satuan Pendidikan Mata Pelajaran Kelas/semester Reference Standar Kompetensi : SMA Negeri 5 Surabaya : : XII/1 : BSNP / CIE : 1.Menggunakan konsep integral dalam pemecahan masalah Kompetensi Dasar
SOAL UN DAN PENYELESAIANNYA 2009
1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan
Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA
Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan
Soal Ujian Nasional Tahun 2007 Bidang Matematika
Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15
SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D
. UN A dan E8 Nilai dari d.... UN A dan E8. UN A Hasil dari SOAL-SOAL LATIHAN C. C C. UN A dan D d... D. C. C D. C E. E. C Luas daerah yang dibatasi oleh kurva y dan y adalah 9 satuan luas C. satuan luas
C. 9 orang B. 7 orang
1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN /5. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB... A. cm C B. (- ) cm C. (- ) cm D. (8- ) cm E. (8- ) cm A B misal panjang
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E
1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8
Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan
Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan
