TE Teknik Numerik Sistem Linear
|
|
|
- Ari Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember
2 O U T L I N E. Objektif. Teori 3. Contoh 4. Simpulan 5. Latihan
3 Objektif Teori Tujuan Pembelajaran Mahasiswa mampu: ) menggunakan transformasi linear menggunakan operator linear untuk suatu vektor ) menggambarkan operator linear untuk vektor dalam representasi geometri dalam R dan R 3
4 Objektif Teori Pendahuluan Operator linear digunakan untuk memetakan vektor atau titik ke dalam vektor atau titik ang lain. Beberapa operator linear ang dibahas dalam objek pembelajaran ini adalah refleksi, proeksi ortogonal, kontraksi dan dilasi, dan rotasi.
5 Objektif Teori Operator Refleksi Misal operator T: R R memetakan vektor ke image simetris pada sumbu- Hubungan antara komponen dan w w + w + w w Matriks standar T: [T ]
6 Objektif Teori Refleksi pada sumbu Operator refleksi: memetakan vektor ke dalam image simetrisna pada garis atau bidang (-, ) (, ) wt()
7 Objektif Teori Refleksi pada sumbu/garis Operator Ilustrasi Persamaan Matriks standar Refleksi pada sumbu- (-, ) wt() (, ) w w Refleksi pada sumbu- wt() (, ) (, -) w w Refleksi pada garis wt() (, ) (, ) w w
8 Objektif Teori Refleksi pada bidang Operator Ilustrasi Persamaan Matriks standar Refleksi pada bidang- z w (,, z) (,, -z) w w w 3 z Refleksi pada bidang-z (, -, z) w z (,, z) w w w 3 z Refleksi pada bidang-z z w (-,, z) (,, z) w w w 3 z
9 Objektif Teori Operator Proeksi Operator T: R R memetakan vektor ke dalam proeksi ortogonalna pada sumbu- Hubungan antara komponen dan w w + w + w w Matriks standar T: [T ]
10 Objektif Teori Proeksi Ortogonal pada sumbu Operator proeksi: memetakan vektor ke dalam proeksi ortogonalna pada garis atau bidang melalui origin (, ) w (, )
11 Objektif Teori Proeksi Ortogonal pada sumbu Operator Ilustrasi Persamaan Matriks standar Proeksi ortogonal pada sumbu- (, ) w (, ) w w Proeksi ortogonal pada sumbu- (, ) w (, ) w w
12 Objektif Teori Proeksi Ortogonal pada bidang Operator Ilustrasi Persamaan Matriks standar Proeksi ortogonal pada bidang- z w (,, z) (,, ) w w w 3 Proeksi ortogonal pada bidang-z Proeksi ortogonal pada bidang-z (,, z) w z (,, z) z (,, z) w (,, z) w w w 3 z w w w 3 z
13 Objektif Teori Operator Rotasi Rotasi vektor pada R sebesar sudut θ Sudut rotasi positif: berlawanan dengan jarum jam w(w, w ) r (, ) r θ φ Hubungan antara dan w: r cosφ r sinφ w r cos( θ + φ) w r sin( θ + φ)
14 Objektif Teori Operator Rotasi Identitas trigonometri: w r cosθ cosφ r sinθ sinφ w r sinθ cosφ + r cosθ sinφ Komponen vektor w w cosθ sinθ w sinθ + cosθ Operator rotasi: [T ] cosθ sinθ sinθ cosθ
15 Objektif Teori Operator Kontraksi dan Dilasi Operator T() k dengan k tidak negatif Kontraksi ( k < ) Dilasi (k > ) T()k T()k
16 Objektif Teori Operator Kontraksi dan Dilasi Operator Ilustrasi Persamaan Matriks standar Kontraksi sebesar k pada R ( k < ) Dilasi sebesar faktor k pada R (k > ) w (, ) (k, k) w (k, k) (, ) w k w k w k w k k k Contoh
17 Objektif Teori Komposisi Transformasi Linear Transformasi linear dari T A : R n R k dan T B : R k R m Komposisi dari T B dengan T A T A diikuti T B : transformasi dari R n ke R m Notasi T B T A R n R k R m T A T B T B T A T B (T A ())(T B T A )()
18 Objektif Teori Representasi Komposisi Komposisi dari rotasi sebesar θ dan θ berlawanan jarum jam (T T )() T (T ()) T (T ()) θ +θ θ θ T () Komposisi dari refleksi pada garis diikuti proeksi ortogonal pada sumbu- T (T ()) T ()
19 Objektif Teori Komposisi: tidak komutatif Komposisi dari refleksi pada garis (T ()) dan proeksi ortogonal (T ()) T (T ()) T () T () T (T ())
20 Objektif Teori Komposisi: komutatif Komposisi dari refleksi pada sumbu- dan sumbu- (,) T (T ()) (-,- ) T () (,-) (-,) T () (,) (-,- ) T (T ()) Contoh
21 Objektif Teori Interpretasi geometris dari eigenvektor T: operator linear; A: matriks standar; : vektor T() λ A λ Eigenvektor untuk eigenvalue terkait Eigenvalue Perkalian dengan A memetakan ke dalam perkalian skalar terhadap dirina
22 Objektif Teori Interpretasi geometris dari eigenvektor Perkalian dengan A di R dan R 3 memetakan eigenvektor ke dalam vektor ang segaris dengan λ λ λ λ λ λ - λ λ - Contoh 3
23 Objektif Teori Contoh Dapatkan image dari a) vektor (-, ) bila dilakukan refleksi terhadap garis b) vektor (,3,3) bila direfleksikan pada bidang z c) vektor (3, -4) bila di rotasi sebesar 9 d) vektor (,-,3) bila dilakukan proeksi ortogonal pada bidang z
24 Objektif Teori Contoh a) Vektor image dari vektor (-, ) bila dilakukan refleksi terhadap garis w T () (-, ) wt() (, -)
25 Objektif Teori Contoh b) Vektor image dari vektor (,3,3) bila direfleksikan pada bidang z w T () (, 3, 3) w z (, -3, 3)
26 Objektif Teori Contoh c) Vektor image dari vektor (3,-4) bila di rotasi sebesar cos9 sin 9 sin 9 cos9 w T () (4, 3) (3, -4) w
27 Objektif Teori Contoh d) Vektor image dari vektor (, -,3) bila dilakukan proeksi ortogonal pada bidang z 3 3 w T () (, -, 3) w z (, -, 3)
28 Objektif Teori Contoh a) Dapatkan matriks standar pada R untuk komposisi proeksi ortogonal pada sumbu- diikuti kontraksi dengan faktor k½ Buktikan apakah komposisi tersebut komutatif serta berikan contoh secara geometri b) Dapatkan matriks standar untuk komposisi dari operator linear pada R 3 : refleksi pada bidang, diikuti proeksi ortogonal pada bidang z Buktikan apakah komposisi tersebut komutatif serta berikan contoh secara geometri
29 Objektif Teori Contoh a) T : proeksi ortogonal pada sumbu- T : kontraksi dengan faktor k½ T T T T T T (, ) T () T (T ()) ) ( T T (, ) T () T (T ())
30 Objektif Teori Contoh b) T : refleksi pada bidang, T : proeksi ortogonal pada bidang z T T (, 4, 3) z (, 4, -3) (,, -3) T (T ()) T T )) ( ( T T
31 Objektif Teori Contoh (, 4, 3) z (,, 3) T () (,, -3) T (T ()) b) T : refleksi pada bidang, T : proeksi ortogonal pada bidang z T T T T )) ( ( T T
32 Objektif Teori Contoh 3 T: R 3 R 3 adalah operator proeksi ortogonal pada bidang Buktikan bahwa: Vektor pada bidang dipetakan ke dalam dirina oleh T Vektor pada aksis- z dipetakan ke dalam oleh T vektor tak-nol dalam bidang : vektor eigen ang berkaitan dengan eigenvalue λ vektor tak-nol pada aksis-z: vektor eigen ang berkaitan dengan eigenvalue λ
33 Objektif Teori Contoh 3 Matriks standar untuk T A ) ( ) det( λ λ λ λ λ λ A I Persamaan karakteristik A Eigenvalue: λ dan λ
34 Objektif Teori Contoh 3 Eigenvektor matriks A berkaitan dengan eigenvalue λ 3 λ λ λ 3 t 3 Vektor terletak pada aksis-z Solusi: ; ; 3 t
35 Objektif Teori Contoh 3 Eigenvektor matriks A berkaitan dengan eigenvalue λ 3 3 t s 3 λ λ λ Solusi: s; t; 3 Vektor terletak pada bidang-
36 Objektif Teori Operator Linear ) Refleksi, proeksi ortogonal, kontraksi dan dilasi, rotasi merupakan operator linear ) Bergantung pada operator ang digunakan, komposisi dapat bersifat komutatif atau tidak komutatif 3) Komposisi dari transformasi linear dari T A : R n R k diikuti dengan T B : R k R m dinotasikan T B T A
37 Objektif Teori,. Soal Latihan ) Dapatkan matriks standar pada R untuk komposisi: rotasi sebesar 9 diikuti refleksi pada garis ) Buktikan bahwa
38 Objektif Teori
TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember
TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF
Transformasi Linear dari R n ke R m
TE0967 Teknik Numerik Sistem Linear Transformasi Linear dari R n ke R m Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember OUTLINE
BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.
BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab
Esther Wibowo
Esther Wibowo [email protected] Topik Hari Ini Dasar Transformasi Translation Pemindahan, Penggeseran Scaling Perubahan Ukuran Shear Distorsi? Rotation Pemutaran Representasi Matriks Transformasi
Trihastuti Agustinah
TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN
Trihastuti Agustinah
TE 9467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN
TE 1467 Teknik Numerik Sistem Linear
TE 67 Teknik Numerik Sistem Linear Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI ONTOH SIMPULN
Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan
Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus
TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)
Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline
21. SOAL-SOAL TRANSFORMASI GOMETRI
21. SOAL-SOAL TRANSFORMASI GOMETRI Maka rotasi terhadap R[, 18 ] = cos18 sin18 sin18 cos18 UAN22 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: A. y = x + 1 C. y = 2 x - 1 E.
BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F
BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
Bab 1 : Skalar dan Vektor
Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar
1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1
Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )
PENDAHULUAN LANDASAN ANALISIS
10 PENDAHULUAN Latar Belakang Biplot merupakan metode eksplorasi analisis data peubah ganda yang dapat memberikan gambaran secara grafik tentang kedekatan antar objek, keragaman peubah, korelasi antar
PEMETAAN STANDAR ISI (SK-KD)
PEMETAAN STANDAR ISI (SK-KD) MATA PELAJARAN : MATEMATIKA KELAS/SEMESTER : XII IPA / 1 SK KD THP INDIKATOR THP MATERI PEMBELAJARAN RUANG LINGKUP *) 1 2 3 4 5 6 ALOKASI WKT 1. Menggunakan konsep integral
ALJABAR LINEAR DAN MATRIKS. MODUL 9 Vektor dalam Ruang Euklidian
ALJABAR LINEAR DAN MATRIKS MODUL 9 Vektor dalam Ruang Euklidian Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 16 日 ( 日 ) Vektor dalam Ruang Euklidian Sebelum kita menginjak
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS XII ( 3 ) SEMESTER I
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS XII ( 3 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas / : XII Semester : I (SATU)
MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.
20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b
. TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis
Materi Aljabar Linear Lanjut
Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA
Transformasi Datum dan Koordinat
Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk
STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR
STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks
Transformasi Geometri Sederhana
Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan
III HASIL DAN PEMBAHASAN
Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =
INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y
INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x
panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d
INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi
MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR
MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR Disusun oleh : 1. Supriyani (0903040095) 2. Sri Hartati (0903040113) 3. Anisatul M. (0903040065) TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS
Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014
Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut
Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A =
Bab 2 cakul fi080 by khbasar; sem1 2010-2011 Matriks Dalam BAB ini akan dibahas mengenai matriks, sifat-sifatnya serta penggunaannya dalam penyelesaian persamaan linier. Matriks merupakan representasi
SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.
SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan
Matriks Sebagai Representasi Orientasi Objek 3D
Matriks Sebagai Representasi Orientasi Objek 3D Cendhika Imantoro - 13514037 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear
TINJAUAN PUSTAKA Analisis Biplot Biasa
TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi
BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.
BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan
Pertemuan 6 Transformasi Linier
Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers
19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)
9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan
ANALISA VEKTOR. Skalar dan Vektor
ANALISA VEKTOR Skalar dan Vektor Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Contoh dari besaran skalar antara lain massa, kerapatan, tekanan, dan volume. Sedangkan besaran
MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2
MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2 SMA Santa Angela Tahun Pelajaran 26 27 Transformasi Geometri Matematika Wajib XI BAB I.PENDAHULUAN A. Deskripsi Dalam modul ini, anda akan mempelajari
BILANGAN KOMPLEKS. Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo. Aswad
4. Kompleks Kojugate (Sekawan) 5. Bentuk Polar & Eksponensial Bilangan Kompleks BILANGAN KOMPLEKS Muhammad Hajarul Aswad Pendidikan Matematika Institut Agama Islam Negeri (IAIN) Palopo 6. Perkalian & Pembagian
BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR
BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan
Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,
Fisika Matematika II 2011/2012
Fisika Matematika II 2/22 diterjemahkan dari: Mathematical Methods for Engineers and Scientists, 2, dan 3 K. T. Tang Penterjemah: Imamal Muttaqien dibantu oleh: Adam, Ma rifatush Sholiha, Nina Yunia, Yudi
BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain
BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional
Aplikasi Aljabar Geometri dalam Menentukan Volume Parallelepiped Beserta Penurunan ke Rumus Umum dengan Memanfaatkan Sifat Aljabar Vektor
Aplikasi Aljabar Geometri dalam Menentukan Volume Parallelepiped Beserta Penurunan ke Rumus Umum dengan Memanfaatkan Sifat Aljabar Vektor Ade Yusuf Rahardian / 13514079 1 Program Studi Teknik Informatika
, ω, L dan C adalah riil, tunjukkanlah
. Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk
dengan vektor tersebut, namun nilai skalarnya satu. Artinya
1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas DEFINISI Transformasi merupakan pemetaan titik, garis atau bidang ke titik, garis atau bidang lain pada bidang yang sama. Misalkan transformasi T memetakan titik P (, y) ke titik P(, y) dan
1. TRANSLASI OPERASI GEOMETRIS 2. ROTASI TRANSLASI 02/04/2016
1. TRANSLASI OPERASI GEOMETRIS Rumus translasi citra x = x + m y = y + n dimana : m = besar pergeseran dalam arah x n = besar pergeseran dalam arah y 4/2/2016 1 TRANSLASI 2. ROTASI Jika citra semula adalah
Bab 1 Sistem Bilangan Kompleks
Bab 1 Sistem Bilangan Kompleks Bab 1 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Pengertian bilangan kompleks, Sifat-sifat aljabat, dan
Bab II TEORI ENCOUNTER PLANET
Bab II TEORI ENCOUNTER PLANET Terdapat beberapa populasi asteroid di tata surya. Populasi terbesar berada pada sabuk utama yang terletak di antara orbit Mars dan orbit Jupiter (Main Belt Asteroids, MBAs).
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
IPA. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP)
PEMBELAJARAN STANDAR ISI 2006 þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus þ Rencana Pelaksanaan Pembelajaran (RP MATEMATIKA Untuk Menengah Atas 12 IPA CV. SINDHUNATA 12 A IPA (Standar
SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU
SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep
VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =
VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang
Eigen value & Eigen vektor
Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan
VEKTOR. Oleh : Musayyanah, S.ST, MT
VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, k, k ) B B k k 7/6/7 [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,
Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.
Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya
Sistem Bilangan Kompleks (Bagian Kedua)
Sistem Bilangan Kompleks (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemuan Minggu II) Outline 1 Penyajian Secara Geometris
DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE
DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE Rosita Melindawati (2211106002) Pembimbing : Dr. Trihastuti Agustinah, ST., MT. Bidang Studi Teknik Sistem Pengaturan JURUSAN TEKNIK ELEKTRO Fakultas Teknologi
BAB I SISTEM KOORDINAT
BAB I SISTEM KOORDINAT 1.1 Sistem Koordinat Sistem koordinat adalah suatu cara ang digunakan untuk menentukan letak suatu titik pada bidang ( R ) atau ruang ( R ). Beberapa macam sistem koordinat ang kita
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian
1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan
BAB V TRANSFORMASI 2D
BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah
>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<
>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA
BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor
BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain
VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB
Komposisi Transformasi
Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun
BAB I ANALISIS VEKTOR
BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x
SOAL DAN PEMBAHASAN REFLEKSI DAN DILATASI
SOAL DAN PEMBAHASAN REFLEKSI DAN DILATASI 1. ABCD sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh
ALJABAR LINEAR DAN MATRIKS
ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,
Trihastuti Agustinah. TE Teknik Numerik Sistem Linear
E 09467 eknik Nmerik Sistem Linear rihastti Agstinah Bidang Stdi eknik Sistem Pengatran Jrsan eknik Elektro - FI Institt eknologi Seplh Nopember O U L I N E OBJEKIF EORI 3 CONOH 4 SIMPULAN 5 LAIHAN OBJEKIF
Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,
VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,
fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi
BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang
7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal
7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada
MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab
Ruang Vektor Euclid R 2 dan R 3
Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2013 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) Vektor memiliki besar dan arah Massa Waktu Kecepatan Percepatan
King s Learning Be Smart Without Limits
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.
Penerapan Transformasi Lanjar pada Proses Pengolahan Gambar
Penerapan Transformasi Lanjar pada Proses Pengolahan Gambar Pratama Nugraha Damanik 13513001 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
BAB 2 HEMISPHERIC STRUCTURE OF HIDDEN LAYER NEURAL NETWORK, PCA, DAN JENIS NOISE Hemispheric structure of hidden layer neural network
BAB 2 HEMISPHERIC STRUCTURE OF HIDDEN LAYER NEURAL NETWORK, PCA, DAN JENIS NOISE Bab ini akan menjelaskan tentang Hemispheric Structure Of Hidden Layer Neural Network (HSHL-NN), Principal Component Analysis
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2012 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) massa, waktu, suhu, panjang, luas, volum Vektor memiliki besar
Aljabar Linier & Matriks
Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat
Matematika II : Vektor. Dadang Amir Hamzah
Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macammacam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti itu disebut dengan skalar.
Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika
Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya
BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta
BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema
Bagian 2 Matriks dan Determinan
Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika
Aljabar Linier & Matriks
Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya
VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :
1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan
Antiremed Kelas 12 Matematika
Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +
