UN SMA IPA 2008 Matematika

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "UN SMA IPA 2008 Matematika"

Transkripsi

1 UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima bukan bilangan genap. Ada bilangan prima bukan bilangan genap. Ada bilangan genap bukan bilangan prima. Ada bilangan genap bukan bilangan prima. 0. Diketahui premis-premis () Jika Badu rajin belajar dan patuh pada orang tua, maka Aah membelikan bola basket. () Aah tidak membelikan bola basket. Kesimpulan ang sah Badu rajin belajar dan Badu patuh pada orang tua. Badu tidak rajin belajar dan Badu tidak patuh pada orang tua. Badu tidak rajin belajar atau Badu tidak patuh pada orang tua. Badu tidak rajin belajar dan Badu tidak patuh pada orang tua. Badu rajin belajar atau Badu tidak patuh pada orang tua. 0. Bentuk ( 8 ) dapat disederhanakan menjadi Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

2 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 0. Diketahui dan log7 a log b, maka nilai dari 6 log a a b a a b a b a a( b) a a( b) 0. Persamaan grafik fungsi kuadrat ang mempunai titik balik minimum (, ) dan melalui titik (, ) 06. Invers dari fungsi f() 8, adalah f'() = Jika dan penelesaian dari persamaan: 6. nilai dari dengan..., maka Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

3 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 08. Himpunan penelesaian dari pertidaksamaan eksponen: atau atau Akar-akar persamaan log 6, log 8 log dan. Nilai adalah 0. Perbandingan umur Ali dan Badu 6 tahun ang lalu adalah : 6. Hasil kali umur keduana sekarang adalah.. Umur Ali sekarang 0 tahun tahun 6 tahun 8 tahun tahun. Persamaan garis singgung melalui titik A(-, -) pada lingkaran ² + ² = Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

4 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman. Salah satu faktor suku banak: P() 0 n adalah ( + ). Faktor laina Pada toko buku "Murah", Adil membeli buku, pulpen dan pensil dengan harga Rp 6.000,00. Bima membeli buku, pulpen, dan pensil dengan harga Rp.00,00. Citra membeli buku dan pensil dengan harga Rp.00,00. Jika Dina membeli pulpen dan pensil, maka ia harus membaar... Rp.000,00 Rp 6.00,00 Rp 0.000,00 Rp.000,00 Rp.000,00. 0 Daerah ang di arsir pada gambar merupakan himpunan penelesaian suatu sistem pertidaksamaan linear. Nilai maksimum dari f(, ) = Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

5 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman. Seorang pembuat kue mempunai kg gula dan 9 kg tepung. Untuk membuat sebuah kue jenis A dibutuhkan 0 gram gula dan 60 gram tepung, sedangkan untuk membuat sebuah kue jenis B dibutuhkan 0 gram gula dan 0 gram tepung. Jika kue A dijual dengan harga Rp.000,00/buah dan kue B dijual dengan harga Rp.000,00/buah, maka pendapatan maksimum ang dapat diperoleh pembuat kue tersebut Rp ,00 Rp ,00 Rp ,00 Rp ,00 Rp ,00 6. Diketahui persamaan matriks: a c d b Nilai a + b + c + d = Diketahui mtriks P dan Q. Jika P adalah invers metriks P dan Q adalah invers matriks Q, maka determinan matriks P Q Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

6 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 6 8. Diketahui vektor: a ti j k b tî ĵ kˆ c ti t j k Jika vektor (a b) tegak lurus c maka nilai t =... - atau atau atau atau - atau 9. Diketahui vektor a dan b 0. Jika hasil proeksi vektor pada adalah 0 maka salah satu nilai Persamaan baangan parabola = ² + karena rotasi dengan pusat O (0, 0) sejauh 80 = ² + = -² + = -² - = -² - = ² + a b Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

7 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 7. Persamaan baangan garis + - = 0 oleh transformasi ang bersesuaian dengan matriks 0 dilanjutkan matriks = = = = = 0. Diketahui suku ke- dan suku ke-6 suatu deret aritmatika berturut-turut adalah 8 dan 7. Jumlah delapan suku pertama deret tersebut sama dengan Seutas tali dipotong menjadi bagian ang masing-masing potongan membentuk deret aritmatika. Bila potongan tali terpendek adalah cm dan ang terpanjang adalah 0 cm, maka panjang tali semula.60 cm.808 cm.70 cm. cm 808 cm. Diketahui deret geometri dengan suku pertama 6 dan suku keempat adalah 8. Jumah enam deret suku pertama deret tersebut Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

8 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 8. Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Jarak titik H dan garis AC 8 cm 8 cm 6 cm cm cm 6. Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Jika sudut antara diagonal AG dengan bidang alas ABCD adalah α, maka sin α cm cm cm cm 7. Dikathui segitiga MAB dengan AB = 00 cm, sudut MAB = 60 dan sudut ABM 7. Maka AM =... 0( 0( 0( 0( 0( ) cm ) cm ) cm 6 ) cm 6 ) cm 8. Jika tan α = dan tan dengan α dan β sudut lancip, maka sin (α - β) =... Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

9 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 9 cos 0 cos 0 9. Nilai dari o o sin0 sin Himpunan penelesaian persamaan: o o cos 7sin {0, 00} {0, 0} {0, 0} {60, 0} {0, 0} 0, 0 60 o o o. Nilai dari 6 8 lim.... Turunan pertama dari adalah ' =... sin sin cos cos (sin cos ) (sin cos ) (sin cos ) sin cos (sin cos ) sin cos (sin cos ) Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

10 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 0. Diketahui f(). Jika f'() menata kan turunan pertama f(), maka f(0) + f(0) = Sebuah kotak tanpa tutup ag alasna berbentuk persegi, mempunai volume m³ terbuat dari selembar karton. Agar karton ang diperlukan sedikit mungkin, maka ukuran panjang, lebar, dan tinggi kotak berturut-turut m, m, m m, m, m m, m, m m, m, m m, m, m. Hasil d Hasil dari cos sin d cos cos sin sin sin c c c c c Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

11 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 7. Luas daerah ang dibatasi oleh kurva = - ² +, sumbu X, garis =, dan = satuan luas satuan luas satuan luas satuan luas satuan luas 8. Volume benda putar ang terbentuk jika daerah ang dibatasi oleh kurva - ² + = 0, -, dan sumbu X diputar mengelilingi sumbu X sejauh satuan volume satuan volume satuan volume satuan volume satuan volume 9. Perhatikan data berikut! Berat badan Frekuensi Kuartil atas dari data pada tabel 69,0 70,00 70,0 70,7 7,00 Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

12 UN SMA IPA 008 Matematika, Kode Soal D0 doc. version : 0-06 halaman 0. Dua buah dadu dilempar undi secara bersamaan sebanak satu kali. Peluang kejadian muncul jumlah mata dadu 9 atau 6 8 Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 87 ke menu search. Copright 0 Zenius Education

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran : Matematika Prgram Studi : IPA PELAKSANAAN Hari/Tanggal : Selasa, April 008 Jam : 0.0.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawabam Ujian Nasinal (LJUN)

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran : Matematika Prgram Studi : IPA PELAKSANAAN Hari/Tanggal : Selasa, April 008 Jam : 0.0.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawabam Ujian Nasinal (LJUN)

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua

Lebih terperinci

Istiyanto.Com Media Belajar dan Berbagi Ilmu

Istiyanto.Com Media Belajar dan Berbagi Ilmu Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA

Lebih terperinci

UN SMA IPA 2003 Matematika

UN SMA IPA 2003 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui remis remis : () Jika Badu rajin belajar dan atuh ada orang tua, maka Aah membelikan bola basket () Aah tidak membelikan bola

Lebih terperinci

UN SMA IPA 2002 Matematika

UN SMA IPA 2002 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Name: UNSMAIPA00MAT999 Doc. Version : 0-0 halaman 0. Ditentukan nilai a = 9, b =, dan c =. Nilai 9 8 0. Hasil kali akar-akar persamaan kuadrat 0 adalah... - a b

Lebih terperinci

USBN SMA IPA 2018 Matematika IPA

USBN SMA IPA 2018 Matematika IPA USBN SMA IPA 08 Matematika IPA Soal USBN SMA 08-Matematika IPA Doc. Name: USBNSMAIPA08MATIPA999 Version: 08-0 Halaman 0. Bentuk sederhana dari - - - a b b. : - b a a a b b a a b a b a b 0. Jika log = x

Lebih terperinci

UN SMA IPA 2012 Matematika

UN SMA IPA 2012 Matematika UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak

Lebih terperinci

UN SMA IPA 2014 Pre Matematika

UN SMA IPA 2014 Pre Matematika UN SMA IPA 04 Pre Matematika Kode Soal Doc. Name: UNSMAIPA04PREMAT999 Doc. Version : 04-0 halaman 0. Diketahui premis-premis berikut: Premis : Jika harga turun, maka penjualan naik. Premis : Jika permintaan

Lebih terperinci

UN SMA IPA 2007 Matematika

UN SMA IPA 2007 Matematika UN SMA IPA 007 Matematika Kode Soal P Doc. Version : 0-0 halaman 0. Bentuk sederhana dari ( + ) - ( - 0 ) adalah... 8 8 8 0. Jika log a dan log b, maka log 0... a ab a( b) a b ab a(b ) ab 0. Persamaan

Lebih terperinci

UN SMA IPA 2011 Matematika

UN SMA IPA 2011 Matematika UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT999 Doc. Version : 0- halaman 0. Suku ke- dan ke-9 suatu barisan aritmetika berturut-turut adalah 0 dan 50. Suku ke- 0 barisan aritmetika tersebut

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

UN SMA IPA 2006 Matematika

UN SMA IPA 2006 Matematika UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Sebidang tanah berbentuk persegi panjang dengan luas 8 m². Jika perbandingan panjang dan lebarnya sama dengan sebanding, maka panjang diagonal

Lebih terperinci

UN SMA IPS 2008 Matematika

UN SMA IPS 2008 Matematika UN SMA IPS 008 Matematika Kode Soal Doc. Name: UNSMAIPS008MAT999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan. adalah. Matematika mengasyikan atau

Lebih terperinci

c) d). 5 3 e). 5 d). 3

c) d). 5 3 e). 5 d). 3 MATA PELAJARAN JURUSAN : MATEMATIKA : TKJ Pilihlah Jawaban yang tepat!. Gula dibeli dengan harga Rp. 6.000 per 0 kg. Kemudian diual dengan harga Rp..00,00 per kg. Persentase keuntungannya adalah... % b).

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci

UN SMA IPS 2008 Matematika

UN SMA IPS 2008 Matematika UN SMA IPS 008 Matematika Kode Soal P Doc. Name: UNSMAIPS008MATP Doc. Version : 0-0 halaman 0. Negasi dari pernyataan: Permintaan terhadap sebuah produk tinggi dan harga naik. Adalah. Permintaan terhadap

Lebih terperinci

Copyright all rights reserved

Copyright   all rights reserved Latihan Soal UN SMK 0 Program Teknik Mata Pelajaran : Matematika Jumlah Soal : 0 Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

UN SMA 2014 Matematika IPA

UN SMA 2014 Matematika IPA UN SMA 0 Matematika IPA Kode Soal Doc. Name: UNSMA0MATIPA999 Doc. Version : 0- halaman 0. Diketahui premis-premis berikut: Premis : Jika harga BBM naik, maka harga. bahan pokok naik. Premis : Jika harga

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

2014 ACADEMY QU IDMATHCIREBON

2014 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/15 April 2014 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Bentuk

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah 00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah

Lebih terperinci

UN SMA 2017 Matematika IPA

UN SMA 2017 Matematika IPA UN SMA 07 Matematika IPA Soal UN SMA 07 - Matematika IPA Doc. Name: UNSMA07MATIPA Version: 07-0 Halaman 5-8 5 4 0. Hasil dari - 8 8.4 5 7 7 8 8 8 7 0. Bentuk sederhana dari ( 5 + ) ( - 5 ) - ( 5 +4 ) 4

Lebih terperinci

Pembahasan UN Matematika Program IPA

Pembahasan UN Matematika Program IPA Pembahasan UN Matematika Program IPA. Diketahui premis - premis : () Jika hari hujan, maka udara dingin. () Jika udara dingin, maka ibu memakai baju hangat. () Ibu tidak memakai baju hangat Kesimpulan

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

UN SMA IPA 2005 Matematika Kode Soal P11

UN SMA IPA 2005 Matematika Kode Soal P11 UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Keliling Segitiga AB pada gambar adalah 8. Panjang sisi AB =... 8. Kawat panjang m akan dibuat kerangka seperti pada gambar. P Agar luasna maksimum,

Lebih terperinci

Matematika SMA/MA. Nama : No. Peserta :

Matematika SMA/MA. Nama : No. Peserta : DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA Nama : No. Peserta : 1. Ujian Nasional 2014 Diketahui premis-premis berikut Premis 1: Jika semua pejabat negara kuat imannya, maka korupsi tidak merajalela.

Lebih terperinci

UN SMA IPA 2013 Matematika

UN SMA IPA 2013 Matematika UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT Doc. Version : 0-06 halaman 0. Diketahui premis-premis berikut: Premis I : Jlika Budi ulang tahun maka semua kawannya datang. Premis II : Jika

Lebih terperinci

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-8080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL 0 0-0-D0-P0

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : MATEMATIKA : SMA/MA : IPA PELAKSANAAN Hari/Tanggal Jam : Isi sesuai waktu anda latihan : Isi sesuai waktu anda latihan PETUNJUK UMUM. Isikan identitas

Lebih terperinci

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit *Pilihlah satu jawaban yang benar * Tidak diperkenankan menggunakan kalkulator atau alat hitung lainnya.. Diketahui premis - premis:

Lebih terperinci

PREDIKSI UN SMA 2019 Matematika IPA

PREDIKSI UN SMA 2019 Matematika IPA PREDIKSI UN SMA 09 Matematika IPA Prediksi UN SMA 09 - Matematika IPA Doc. Name: UNSMA09PREMATIPA999 Version: 09-0 Halaman 6 4 log6 log8 log 0. Nilai dari adalah... 9 log 7-9 - 0. Jika f(x) = x +6x-, maka

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E 1. Diketahui premis-premis berikut: Premis 1: jika lampu menyala merah, maka semua kendaraan berhenti. Premis 2: Jika polisi memberi tilang, maka ada kendaraan yang tidak berhenti. Premis 3: Lampu menyala

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL B

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL B SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL B. Diberikan premis-premis seperti berikut : ) Jika kurikulum pendidikan sesuai dengan karakter bangsa maka semua anak pandai.

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN SOAL DAN PEMBAHASAN JIAN NASIONAL TAHN PELAJARAN / SMA/MA PROGRAM STDI IPA MATEMATIKA PAKET A Disusun KHAIRL BASARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com SOAL DAN PEMBAHASAN SOAL N PAKET

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA. Diketahui premis-premis : (): Jika Ani lulus ujian maka ia bekerja atau kuliah di luar negeri (): Jika rajin dan tekun

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah... NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA Senin, 6 Pebruari 5. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah A. Jika semua sampah

Lebih terperinci

MATEMATIKA PROGRAM BAHASA. 3 x y 1. Bentuk sederhana dari. adalah. 2. Nilai dari... A. 7 B. 5 C. 3 D. 2 E. 1 A. 1 B. 2 C. 3 D. 4 E.

MATEMATIKA PROGRAM BAHASA. 3 x y 1. Bentuk sederhana dari. adalah. 2. Nilai dari... A. 7 B. 5 C. 3 D. 2 E. 1 A. 1 B. 2 C. 3 D. 4 E. MATEMATIKA PROGRAM BAHASA 1. Bentuk sederhana dari 1 adalah. A. 7 B. C. D. E. 16. Nilai dari... 16 A. 7 B. C. D. E. 1. Nilai dari log 0 log 9 log 60 A. 1 B. C. D. E. adalah.. Jika log = p maka log 80 =...

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor KISI KISI US 2014 NO BAB INDIKATOR JENIS SOAL Menentukan penarikan Diketahui buah premis (ada bentuk ekuivalen) menarik kesimpulan dari buah 1 kesimpulan dari beberapa premis premis Menentukan ingkaran

Lebih terperinci

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2 PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.

Lebih terperinci

SANGGAR 16 SMA JAKARTA TIMUR

SANGGAR 16 SMA JAKARTA TIMUR SANGGAR 6 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA Senin, 6 Pebruari 05. Ingkaran dari pernyataan : Jika semua sampah dibuang pada tempatnya maka Jakarta tidak banjir adalah Jika semua sampah tidak dibuang

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

Prediksi 1 UN SMA IPS Matematika

Prediksi 1 UN SMA IPS Matematika Prediksi UN SMA IPS Matematika Kode Soal Doc. Version : 0-06 halaman 0. () Jika jalan basah maka hari hujan () Jika hari tidak hujan maka jalan tidak basah () Jika jalan tidak basah maka hari tidak hujan

Lebih terperinci

SOAL: MATEMATIKA Kelas : XII Mipa

SOAL: MATEMATIKA Kelas : XII Mipa SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA Pilihlah salah satu jawaban yang paling benar! PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA TAHUN PELAJARAN 2012 / 2013 1. Ditentukan premis-premis: I. Jika Badu rajin bekerja, maka ia disayang

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 . Jika SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / f k 6 9 selalu bernilai negatif untuk setiap, maka k harus memenuhi... k 9 k k 6 k k Solusi: [Jawaban

Lebih terperinci

a b 243a 243b x adalah. x adalah p dan q. Jika p 2q 1 m m atau m 2 2 m Pilihlah salah satu jawaban yang Anda anggap paling benar!

a b 243a 243b x adalah. x adalah p dan q. Jika p 2q 1 m m atau m 2 2 m Pilihlah salah satu jawaban yang Anda anggap paling benar! Pilihlah salah satu jawaban ang Anda anggap paling benar!. Diketahui premis-premis berikut. Premis : jika sebuah segitiga siku-siku maka salah satu sudutna 90 Premis : jika salah satu sudut segitiga 90

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

TO UN SMA / MA tahun Bidang Studi : Matematika Program IPA

TO UN SMA / MA tahun Bidang Studi : Matematika Program IPA TO UN SMA / MA tahun 0 0 Bidang Studi : Matematika Program IPA. Diketahui premis-premis. Jika ulangan dibatalkan, maka semua siswa senang. Jika suasana kelas tidak ramai, maka beberapa siswa tidak senang.

Lebih terperinci

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> 1

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >>  1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 2 NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut.

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K T E

Lebih terperinci

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA C MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M9-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

Matematika EBTANAS Tahun 2001

Matematika EBTANAS Tahun 2001 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai

Lebih terperinci

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN / LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : Pebruari Jam : PETUNJUK UMUM. Isilah lembar jawaban tes uji coba

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

PREDIKSI UN SMA 2019 MATEMATIKA IPS

PREDIKSI UN SMA 2019 MATEMATIKA IPS PREDIKSI UN SMA 019 MATEMATIKA IPS Prediksi UN SMA 019 - Matematika IPS Halaman 1 01. Diketahui fungsi f ( x) x 4 dan fungsi g( x) x 1. Bentuk sederhana dari fungsi komposisi ( f g)( x) adalah... (A) 4x

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci