BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari"

Transkripsi

1 BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis ini kemudian ditetapkan menjadi peubah stokastik oleh Harold Hotelling pada tahun 1933 Analisis ini merupakan analisis tertua Perhitungan dalam analisis ini pada waktu tersebut merupakan pekerjaan yang sukar walaupun hanya menggunakan beberapa peubah Analisis ini baru berkembang penggunaannya setelah tersedianya fasilitas komputasi elektronik Satu buku yang khusus membahas AKU telah ditulis oleh Jolliffe 1986 Analisis komponen utama merupakan an atheoretic approach yang menghasilkan kombinasi linear dari variabel-variabel yang diperoleh dari mereduksi variabel asli/awal yang banyak sekali Di dalam proses mereduksi, diperoleh variabel yang lebih sedikit akan tetapi masih mengandung informasi yang termuat dalam data asli/awal Variabel hasil mereduksi tersebut dinamakan faktor yang juga disebut komponen atau faktor komponen Secara teknis, analisis komponen utama merupakan suatu teknik mereduksi data multivariat (multivariable) yang mengubah (mentranformasi) suatu matriks data/asli menjadi suatu set kombinasi linier yang lebih sedikit akan tetapi menyerap sebagian besar jumlah varian dari data awal

2 9 Tujuan utamanya ialah menjelaskan sebanyak mungkin jumlah varian data asli dengan sedikit mungkin komponen utama yang disebut faktor Analisis Komponen Utama biasanya digunakan untuk : 1 Identifikasi peubah baru yang mendasari data peubah ganda 2 Mengurangi banyaknya dimensi himpunan peubah yang biasanya terdiri atas peubah yang banyak dan saling berkolerasi dengan mempertahankan sebanyak mungkin keragaman dalam himpunan data tersebut, dan 3 Menghilangkan peubah-peubah asal yang mempunyai sumbangan informasi yang relatif kecil Peubah baru yang dimaksud di atas disebut komponen utama yang mempunyai ciri sebagai berikut: 1 merupakan kombinasi linier peubah-peubah asal, 2 jumlah kuadrat koefisien dalam kombinasi linier tersebut berrnilai satu, 3 tidak berkorelasi, dan 4 mempunyai ragam berurut dari yang terbesar ke yang terkecil Peubah-peubah baru ini memanfaatkan informasi dari peubah-peubah asal dan nilai yang nantinya diperoleh dari masing-masing objek merupakan ordinat objek-objek tersebut dalam peubah baru yang merupakan suatu sumbu koordinat Tidak adanya korelasi antar peubah baru ini merupakan sifat yang diingikan karena peubah-peubah tersebut mengukur dimensi-dimensi yang berbeda dalam

3 10 data Ragam suatu peubah merupakan sifat yang penting yang digunakan dalam suatu analisis Makin beragam suatu peubah makin besar perannya dalam pemilahan antar objek Dari peubah-peubah baru tersebut yang terurut keragamannya, diharapkan beberapa peubah baru pertama akan dapat menjelaskan dengan baik keragaman yang ada dalam data asal Jika dua komponen utama pertama dari masing-masing objek digambar dalam diagram pencar maka akan diperoleh gambaran posisi objek dengan hampiran jarak Euclid dari objek asal AKU tidak selalu bermanfaat digunakan untuk mereduksi banyaknya peubah asal menjadi beberapa peubah baru yang dapat menjelaskan dengan baik keragaman data asal Bila tidak ada korelasi antara peubah asal, AKU tidak akan memberikan hasil yang diinginkan, karena peubah baru yang diperoleh hanyalah peubah asal yang ditata berdasarkan besar keragamannya Makin erat korelasi (baik positif maupun negatif) antar peubah, makin baik pula hasil yang diperoleh dari AKU Dalam analisis eksplorasi ini tidak ada anggapan tentang sebaran peubah acaknya, tidak ada hipotesis yang diuji, dan juga tidak ada model yang mendasarinya Bila pendekatan pearson dapat dikaitkan dengan masalah ruang vektor, yaitu mencari ruang vektor optimum, pendekatan Hotelling dapat dikaitkan dengan masalah peubah acak, yaitu peubah acak baru yang tertata keragamannya dan tidak berkorelasi, maka pendekatan lainnya ialah dari sisi komputasi Gourlay dan Watson 1973 menggunakan metode kuasa untuk memperoleh skor komponen utama suatu objek dengan sekuens penggunaan bergantian antara regresi linier sederhana dengan kalibrasi

4 Prosedur Andaikan X =(X 1,X 2,, X p ) merupakan vektor peubah acak asal yang diamati dengan matriks kovarian =[σ ij ], maka komponen utama pertama yang dilambangkan oleh Y 1 didefinisikan sebagai : Y 1 = a ij X j = a 1 X, yang memaksimumkan ragam Y 1, yaitu a 1 a 1, dengan kendala a 1 a 1 =1 Komponen utama kedua, dilambangkan oleh Y 2 didefinisikan sebagai : Y 1 = a 2 X, yang memaksimumkan ragam Y 2, dengan kendala a 2 a 2 = 1, dan tidak ada korelasi antara Y 1 dan Y 2 (kovarian Y 1 dan Y 2 yaitu a 1 a 2 = 0 yang nantinya akan berarti a 1 a 2 = 0) Komponen utama yang ketiga dilambangkan oleh Y 3 didefinisikan sebagai: Y 3 = a 3 X, yang memaksimumkan ragam Y 3, dengan kendala a 3 a 3 = 1, dan tidak ada korelasi antara Y 1 dan Y 3 (kovarian Y 1 dan Y 3 yaitu a 1 a 3 = 0 yang nantinya akan berarti a 1 a 3 = 0),dan tidak ada korelasi antara Y 2 dan Y 3 (kovarian Y 2 dan Y 3 yaitu a 2 a 3 = 0 yang nantinya akan berarti a 2 a 3 = 0) Demikian seterusnya untuk komponen utama ke-4 sampai yang ke-p Dengan menggunakan pengganda Lagrange diperoleh a 1,a 2,, a p sebagai eigenvektor yang berpandanan dengan eigenvalue λ 1 λ 2 λ p dari matriks kovarian Nilai eigenvalue ke-i merupakan komponen utama ke-i Karena

5 12 solusi bagi vektor a merupakan eigenvektor maka vektor ini tidak bersifat khas, misalnya penggandaanya dengan -1 juga akan merupakan solusinya Salah satu ukuran kesesuaian untuk memperoleh gambaran layak tidaknya penggunaan k komponen utama pertama yang digunakan untuk interpretasi atau analisis lanjutannya ialah persentase keragaman yang dapat dijelaskan oleh k komponen utama pertama tersebut, yaitu (λ 1 + λ λ k )/(λ 1 + λ λ p )x100%; dimana λ 1 + λ λ k merupakan eigenvalue, matriks yang ditata dari yang terbesar ke yang terkecil Makin besar nilai ukuran kesesuaian tersebut, makin layak k komponen utama pertama tersebut digunakan Ada peneliti yang menggunakan petunjuk praktis untuk menggunakan k komponen utama pertama bila keragaman yang dapat dijelaskannya 80% Bila matriks kovarian yang digunakan merupakan matriks korelasi, banyak peneliti dibidang sosial yang mengabaikan komponen utama yang berpadanan dengan eigenvalue yang kurang dari 1 Interpretasi dari peubah baru yang diperoleh, komponen utama, kadangkala mudah, kadang sukar, bahkan kadangkala dapat pula meragukan Chatfield dan Collins 1980 memberikan contoh kemungkinan tersebut Tidak ada jaminan bahwa komponen utama ini mudah diinterpretasikan selain bahwa komponenkomponen utama ini merupakan peubah-peubah baru (dengan segala sifat yang diinginkan) yang diharapkan dapat mereduksi banyaknya peubah-peubah asal Tampaknya pemahaman masalah yang dihadapi dan penggunaan informasi dalam data asal misalnya matriks korelasi akan dapat membantu upaya pengambilan simpulan yang layak Untuk menginterpretasikan komponen utama ke-i biasanya digunakan unsur-unsur dalam eigenvektor a i, yang bernilai relatif besar (baik positif maupun negatif) yang digunakan untuk memperoleh peubah-peubah asal

6 13 yang relatif berperan dalam menentukan komponen utama ini dan kemudian mencoba untuk menginterpretasikannya Dalam beberapa program kemasan komputer, untuk membandingkan unsurunsur eigenvektor sebagai koefisisen dari peubah asal yang terkait pada komponen utama, maka diberikan sebagai hasilnya ialah eigenvektor yang sudah digandakan dengan value dari eigenvalue padanannya Penggandaan ini dapat dikaitkan dengan bobot pentingnya suatu komponen utama Bila digunakan matriks korelasi dalam analisis ini maka besaran unsur-unsur tersebut merupakan korelasi antara peubah asal dengan komponen utamanya Hasil analisis ini, misalnya penggambaran objek yang disajikan dalam ruang berdimensi rendah, katakanlah 3 dimensi, dapat pula digunakan untuk melihat pengelompokan antar objek, dengan ukuran kedekatan yang merupakan pendekatan jarak Euclid dari objek-objek asal dengan menggunakan semua peubah asal yang diamati Bila suatu komponen utama mempunyai eigenvalue = 0, berarti peubah baru ini tidak memiliki keragaman, atau peubah baru ini merupakan suatu konstanta, maka ada keterkaitan linier antar peubah yang diamati Bila nilai (p-1) peubah asal diketahui maka nilai peubah lainnya akan dapat diperoleh Dalam bidang sosial ekonomi yang umumnya mengamati banyak peubah, hal ini digunakan untuk melihat adanya kolinieritas ganda dari peubah yang diamati, yang digunakan untuk menghilangkan peubah yang tidak memberikan tambahan informasi setelah ada peubah lainnya

7 14 22 Matriks 221 Defenisi Matriks adalah suatu kumpulan angka-angka, sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga berbentuk persegi panjang, dimana panjang dan lebarnya ditunjukkan oleh banyaknya kolom dan baris serta dibatasi tanda [ ] atau ( ) Sebuah matriks dinotasikan dengan simbol huruf besar seperti A mxn, X, atau Z dan sebagainya Sebuah matriks yang berukuran m baris dan n kolom dengan a ij dapat dituliskan sebagai berikut : a 11 a 12 a 1n a 21 a 22 a 2n A mxn = a m1 a m2 a mn atau juga dapat ditulis : A =[a ij ] i =1, 2, m; j =1, 2,, n Contoh : [ ] a11 a A 2x3 = 12 a 13 a 21 a 22 a 23 Disebut matriks A dengan 2 baris dan 3 kolom Jika A sebuah matriks, kita gunakan a ij untuk menyatakan elemen yang terdapat didalam baris i dan kolam j dari A Dalam contoh ini i =1, 2 dan j =1, 2, 3 atau dapat ditulis A =[a ij ]; i =1, 2; j =1, 2, 3

8 Operasi Matriks Perkalian skalar Defenisi : Jika A =[a ij ] adalah matriks mxn dan r adalah suatu skalar, maka hasil kali A dari r adalah B =[b ij ] matriks mxn dengan b ij = ra ij (1 i m, 1 j n) contoh : A= 4A= 4 [ ] dengan diberikan r = 4 maka [ ] = [ 8 ] Perkalian Matriks Definisi : Jika A =[a ij ] adalah matriks mxp dan B =[b ij ] adalah matriks pxn maka hasil kali dari matriks A dan matriks B yang ditulis dengan AB adalah C matriks mxn Secara matematik dapat ditulis sebagai berikut : C ij = a i1 b 1j + a i2 b 2j + + a i1 b 1j = p k=1 a ikb kj Penjumlahan Matriks Jika A = [a ij ] adalah matriks mxp dan B = [b ij ] adalah matriks mxp maka penjumlahan matriks dari matriks A dan matriks B yang ditulis dengan C =[c ij ]=a ij + b ij Pengurangan Matriks Jika A =[a ij ] adalah matriks mxp dan B =[b ij ] adalah matriks mxp maka

9 16 pengurangan matriks dari matriks A dan matriks B yang ditulis dengan C =[c ij ] dimana c ij = a ij b ij (i =1, 2,, m; j =1, 2,, n) Teorema Jika A =[a ij ] adalah matriks nxn yang mengandung sebaris bilangan nol, maka A =0 Contoh : A 3x3 = [ ] A = Matriks Segitiga Matriks A =[a ij ] suatu matriks bujur sangkar dikatakan segitiga bawah (lower tringular) jika a ij = 0 untuk i<jdan matriks A =[a ij ] suatu matriks bujur sangkar dikatakan segitiga atas (upper tringular) jika a ij = 0 untuk i>j Contoh : Segitiga bawah A= , Segitiga atas B= Teorema Jika A adalah matriks segitiga nxn, maka A adalah hasil kali elemen-elemen pada diagonal utama, yakni A = a 11 a 22 a nn Contoh : A 4x4 = , A = (2)( 3)(6)(1) =

10 17 Teorema : jika A adalah sembarang matriks kuadrat, maka A = A t Teorema : jika A dan B adalah matriks kuadrat yang ordonya sama, mka AB = A B Contoh : A 2x2 = 23 AB = 23 [ ] , B 2x2 = [ ] , AB 2x2 = [ ] A B = (1)( 23) = sehingga det (AB) = det (A) det (B) 23 Eigenvalue dan Eigenvektor Definisi Jika A adalah matriks nxn, maka vektor tak nol X didalam R n dinamakan eigenvektor dari A jika AX adalah kelipatan skalar dari X; yakni, AX = λx Untuk suatu skalar λ Skalar λ dinamakan nilai eigen(eigenvalue) dari A dan X dikatakan eigenvektor yang bersesuaian dengan λ Untuk mencari nilai eigen matriks A yang berukuran nxn: a 11 a 12 a 1n a 21 a 22 a 2n A nxn =, a n1 a n2 a nn I nxn =, 0 0 1

11 18 X 1 X 2 X = X n AX = λx, X 0 AX = λix λix AX =0 (λi A)X =0 X 0 λi A =0 untuk memperoleh nilai λ λi A =0 λ a 11 a 1n =0 a n1 λ a nn f(λ) =a 0 λ n + a 1 λ n a n 1 λ + a n =0 n buah akar λ 1,λ 2,, λ n Jika eigenvalue λ n adalah substitusi pada persamaan (λi A)X = 0, maka solusi dari eigenvektor X n adalah (λ n I A)X n =0 Definisi Misalkan A =[a ij ] matriks nxn Determinan λ a 11 a 12 a 1n a 21 λ a 22 a 2n f(λ) =det(λi n A) = a n1 a n2 λ a nn Dikatakan karakteristik polinom dari A, persamaan

12 19 f(λ) =det(λi n A) =0 dikatakan persamaan karakteristik dari A Definisi Matriks kuadrat A dinamakan didiagonalisasi (diagonalizable) jika terdapat matriks P yang dapat dibalik sehingga P 1 AP diagonal, matriks P dikatakan mendiagonalisasi B Teorema : Jika A adalah matriks nxn, maka pernyataan-pernyataan berikut ekivalen satu sama lain 1 A dapat didiagonalisasi 2 A mempunyai n vektor eigen bebas linier 24 Matriks Korelasi Misalnya pada persamaan : Y = β 0 + β 1 X β p X P + ɛ persamaan tersebut dinyatakan sebagai : Y =(β 0 + β 1 X1 + β 2 X2 + + β p XP )+β 1 (X 1 X 1 )+β 2 (X 2 X 2 )+ + β p (X p X p )+ɛ dengan X j,j =1, 2,, p adalah nilai tengah yang dihitung dari data Persamaan dapat ditulis : Y = β 0 + β 1(X 1 X 1 )+β 2 (X 2 X 2 )+ + β p (X p X p )+ɛ dimana

13 20 β 0 = β 0 + β 1 X 1 + β 2 X β p X P ) jika β 0 = Ȳ, Y β 0 = β 1 (X 1 X 1 )+β 2 (X 2 X 2 )+ + β p (X p X p )+ɛ matriks X t X untuk model ini adalah : S 11 S 12 S 1p X t S 21 S 22 S 2p X= S p1 S p2 S pp dengan S ij = n (xiu x i )(x ju x j ),i=1, 2, nj =1, 2, p kemudian bagi setiap peubah dengan jumlah kuadrat terkoreksinya, dan namakan peubah barunya : z ij = x ij x j, Sjj S ij = n i=1 (x ij x j ) 2 dan yi = x i ȳ, Syy S yy = n i=1 (y i ȳ) 2 i =1, 2,, n dan j =1, 2,, p ini akan mengubah model diatas kedalam bentuk baru : y1s yy 1/2 = β 1 S 1/2 11 Z 1 + β 2 S 1/ β p Spp 1/2 + ɛ atau y 1 = b 1 Z 1 + b 2 Z b p Z p + ɛ

14 21 dengan b j = β j ( Sjj S yy ) 1/2, j =1, 2, p melalui metode kuadrat terkecil, nilai dugaan parameter ˆb pada persamaan diatas dapat ditentukan yaitu : ˆb =(Z t Z) 1 Z t Y matriks Z t Z merupakan matriks korelasi yaitu : 1 r 12 r 13 r 1p r 21 1 r 23 r 2p Z t Z= r 31 r 32 1 r 3p r p1 r p2 r p3 1 dengan r ij = n i=1 ( ) xui x i Sii ( x uj x j ), Sjj hubungan antara koefisien antara regresi data awal ( ˆβ j ) dengan koefisien regresi yang dibakukan ˆb j adalah : ˆβ j = ˆb j ( Syy S jj ) 1/2, j =1, 2,, p dan ˆβ0 =ȳ p j=1 ˆβ j x j dengan ȳ dan x merupakan nilai rata-rata dari y dan nilai rata-rata dari x

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai landasan teori yang akan digunakan dalam bab selanjutnya. 2.1 Matriks Sebuah matriks, biasanya dinotasikan dengan huruf kapital tebal seperti A,

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

TINJAUAN PUSTAKA Analisis Biplot Biasa

TINJAUAN PUSTAKA Analisis Biplot Biasa TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2 Analisis Korelasi Analisis korelasi adalah alat statistik yang dapat digunakan untuk mengetahui deraat hubungan linear antara satu variabel dengan variabel lain (Algifari, 997)

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

Analisa Numerik. Matriks dan Komputasi

Analisa Numerik. Matriks dan Komputasi Analisa Numerik Matriks dan Komputasi M AT R I K S Matriks adalah suatu susunan angka atau bilangan, variabel, atau parameter yang berbentuk empat persegi dan biasanya ditutup dengan tanda kurung K O N

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi BAB II TINJAUAN PUSTAKA Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi linear, metode kuadrat terkecil, restriksi linear, multikolinearitas, regresi ridge, uang primer, dan koefisien

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS)

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS) BAB. IX ANALII REGREI FAKTOR (REGREION FACTOR ANALYI) 9. PENDAHULUAN Analisis regresi faktor pada dasarnya merupakan teknik analisis yang mengkombinasikan analisis faktor dengan analisis regresi linier

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Kemiskinan Menurut Badan Pusat Statistik (BPS) dan Departemen Sosial kemiskinan adalah ketidakmampuan individu untuk memenuhi kebutuhan dasar minimal untuk hidup layak (baik

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

BAB II KAJIAN TEORI. linier, varian dan simpangan baku, standarisasi data, koefisien korelasi, matriks

BAB II KAJIAN TEORI. linier, varian dan simpangan baku, standarisasi data, koefisien korelasi, matriks BAB II KAJIAN TEORI Pada bab II akan dibahas tentang materi-materi dasar yang digunakan untuk mendukung pembahasan pada bab selanjutnya, yaitu matriks, kombinasi linier, varian dan simpangan baku, standarisasi

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Sumber kerumitan masalah keputusan bukan hanya dikarenakan faktor ketidakpasatian atau ketidaksempurnaan informasi saja. Namun masih terdapat penyebab

Lebih terperinci

Minggu XI ANALISIS KOMPONEN UTAMA. Utami, H

Minggu XI ANALISIS KOMPONEN UTAMA. Utami, H Minggu XI ANALISIS KOMPONEN UTAMA Utami, H Outline 1 Pendahuluan 2 Tujuan 3 Analisis Komponen Utama 4 Contoh Utami, H Minggu XIANALISIS KOMPONEN UTAMA 2 / 16 Outline 1 Pendahuluan 2 Tujuan 3 Analisis Komponen

Lebih terperinci

BAB 2. DETERMINAN MATRIKS

BAB 2. DETERMINAN MATRIKS BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Analisis Regresi Tidak jarang dihadapkan dengan persoalaan yang melibatkan dua atau lebih peubah atau variabel yang ada atau diduga ada dalam suatu hubungan tertentu. Misalnya

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 2.1.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat variabel bebas, variabel tak bebas dan derivative-derivatif

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam bab ini akan dipaparkan beberapa teori pendukung yang digunakan dalam

BAB II TINJAUAN PUSTAKA. Dalam bab ini akan dipaparkan beberapa teori pendukung yang digunakan dalam BAB II TINJAUAN PUSTAKA Dalam bab ini akan dipaparkan beberapa teori pendukung yang digunakan dalam proses analisis klaster pada bab selanjutnya. 2.1 DATA MULTIVARIAT Data yang diperoleh dengan mengukur

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Rancangan Percobaan Rancangan percobaan merupakan suatu uji dalam atau deretan uji baik menggunakan statistika deskripsi maupun statistika inferensia, yang bertujuan untuk mengubah

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Hal ini sangat membantu dalam proses pembuktian sifat-sifat dan perhitungan

BAB II TINJAUAN PUSTAKA. Hal ini sangat membantu dalam proses pembuktian sifat-sifat dan perhitungan 6 BAB II TINJAUAN PUSTAKA 2.1 Matriks Persamaan regresi linear berganda dapat dinyatakan dalam bentuk matriks. Hal ini sangat membantu dalam proses pembuktian sifat-sifat dan perhitungan matematis dari

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

TINJAUAN PUSTAKA. dianalisis dan hasilnya ditransformasi menjadi matriks berukuran??

TINJAUAN PUSTAKA. dianalisis dan hasilnya ditransformasi menjadi matriks berukuran?? TINJAUAN PUSTAKA Data Disagregat dan Agregat Berdasarkan cara pengumpulannya, data dapat dibedakan atas data internal dan data eksternal. Data internal berasal dari lingkungan sendiri sedangkan data eksternal

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability)

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability) Institut Teknologi Sepuluh Nopember Surabaya Keterkendalian (Controlability) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Vektor Bebas Linear Keterkendalian Keadaan Secara Sempurna dari

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

Didin Astriani P, Oki Dwipurwani, Dian Cahyawati (Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sriwijaya)

Didin Astriani P, Oki Dwipurwani, Dian Cahyawati (Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sriwijaya) (M.2) ANALISIS BIPLOT UNTUK MENGETAHUI KARAKTERISTIK PUTUS SEKOLAH PENDIDIKAN DASAR PADA MASYARAKAT MISKIN ANTAR WILAYAH KECAMATAN DI KABUPATEN OGAN ILIR Didin Astriani P, Oki Dwipurwani, Dian Cahyawati

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

PENDAHULUAN LANDASAN ANALISIS

PENDAHULUAN LANDASAN ANALISIS 10 PENDAHULUAN Latar Belakang Biplot merupakan metode eksplorasi analisis data peubah ganda yang dapat memberikan gambaran secara grafik tentang kedekatan antar objek, keragaman peubah, korelasi antar

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

TINJAUAN PUSTAKA Analisis Gerombol

TINJAUAN PUSTAKA Analisis Gerombol 3 TINJAUAN PUSTAKA Analisis Gerombol Analisis gerombol merupakan analisis statistika peubah ganda yang digunakan untuk menggerombolkan n buah obyek. Obyek-obyek tersebut mempunyai p buah peubah. Penggerombolannya

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

MODUL V EIGENVALUE DAN EIGENVEKTOR

MODUL V EIGENVALUE DAN EIGENVEKTOR MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan.

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. BAB II KAJIAN TEORI A. Matriks 1. Definisi Matriks Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks (Howard

Lebih terperinci

TINJAUAN PUSTAKA. Model Regresi Linier Ganda

TINJAUAN PUSTAKA. Model Regresi Linier Ganda TINJAUAN PUSTAKA Model Regresi Linier Ganda Hubungan antara y dan X dalam model regresi linier umum adalah y = X ß + e () dengan y merupakan vektor pengamatan pada peubah respon (peubah tak bebas) berukuran

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (MATRIK) Drs. A. NABABAN PURNAWAN, S.Pd.,M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 MATRIKS I. PENGERTIAN

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.2. Analisis Faktor Analisis faktor merupakan salah satu metode statistik multivariat yang mencoba menerangkan hubungan antara sejumlah variabel variabel yang saling independen antara

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1 Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Matriks Matriks (matrix) adalah jajaran empat persegi panjang dan bilanganbilangan. Bilangan-bilangan dalam jajaran tersebut disebut entri dari matriks. Berikut ini beberapa

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Statistika Multivariat Analisis statistika multivariat adalah teknik-teknik analisis statistik yang memperlakukan sekelompok variabel terikat yang saling berkorelasi sebagai

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks 2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

Lebih terperinci

Pertemuan 4 Aljabar Linear & Matriks

Pertemuan 4 Aljabar Linear & Matriks Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci