Analisis Kestabilan Linear dan Simulasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Analisis Kestabilan Linear dan Simulasi"

Transkripsi

1 Bab 4 Analisis Kestabilan Linear dan Simulasi Pada Bab ini kita akan membahas mengenai ketidakstabilan dari lapisan kondensat. Analisis kestabilan linier kita gunakan untuk melihat kondisi serta parameterparameter apa saja yang membuat sistem menjadi tidak stabil. Kondisi ketidakstabilan terjadi, ditandai pada saat growth rate(ω) bernilai positif. Untuk selanjutnya karena kita mempunyai dua buah persamaan maka nilai growth rate(ω) yang dicari tidak lain adalah nilai eigen dari matriks yang dibentuk sebagai hasil analisis kestabilan linear terhadap persamaan-persamaan tersebut. Pada bagian simulasi kita akan melihat perubahan yang dihasilkan terhadap ketidakstabilan sistem jika salah satu parameter kita ubah dan yang lainnya kita tetapkan. 4.1 Analisis Kestabilan Linear Analisis kestabilan linear mempunyai peranan yang paling penting dalam melihat kestabilan dari ketebalan lapisan kondensat berdasarkan model matematika yang telah dibangun. Melalui metode ini kita bisa melihat apakah ketebalan dari lapisan kondensat (h) akan terus membesar (growing) sehingga membuatnya tidak stabil atau justru sebaliknya, terus mengecil (decaying) membuatnya stabil. Semua itu 19

2 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI 20 bergantung pada suatu parameter yang kita definisikan sebagai growth rate[6]. Z,W wind Stress w (x,t)= Insoluble Surfactant h(x,t) = h o+h Lapisan Kondensat ho=1 Dinding Pipa X,U Gambar 4.1: Kondisi Perturbasi pada koordinat Cartesius Kita definisikan bahwa nilai ketebalan dari lapisan kondensat di permukaan h(x,t) merupakan nilai konstan dari ketebalan awal h 0 (dalam hal ini kita berikan nilai 1) di tambah dengan nilai pertubasinya (h ). begitu juga sama halnya dengan kondisi untuk nilai konsentrasi surfaktan, sehingga diperoleh: h(x,t) = 1 + h, Γ(x,t) = 1 + Γ. (4.1.1) Didefinisikan juga nilai perturbasinya sebagai fungsi dari bilangan gelombang k yang dirumuskan dalam bentuk : Dengan H(t) dan Γ(t) di definisikan sebagai: (h, Γ ) = (H(t)e (ikx), Γ(t)e (ikx)) ). (4.1.2) H(t) = H 0 e ωt, Γ(t) = Γ 0 e ωt. (4.1.3) dimana H 0 dan Γ 0 menyatakan amplitudo awal dari masing-masing variable sedangkan ω menyatakan growth rate. Dengan mensubstitusi Persamaan (4.1.1) dan (4.1.2)

3 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI 21 diatas pada model ketebalan lapisan kondensat(3.3.8), dalam orde 1 akan didapat persamaan: H(t)e (ikx) = σk4 3µ H(t)e(ikx) + Mk2 2µ(1 β) Γ(t)e(ikx) + i k µ τ wh(t)e (ikx). (4.1.4) Dari hasil diatas bisa dilihat bahwa suku imaginer terdapat pada bagian parameter(τ) (wind stress) sehingga bisa disimpulkan bahwa efek dari wind stress hanya memberikan efek osilasi pada permukaan lapisan kondensat. Kemudian dengan proses yang sama kita lakukan terhadap persamaaan konsentrasi surfaktan Persamaan (3.3.10), maka diperoleh: Γ(t)e (ikx) = σk4 2µ H(t)e(ikx) + Mk2 2µ(1 β) Γ(t)e(ikx). (4.1.5) sehingga dengan mengambil bagian yang real dari kedua hasil tersebut, maka dalam bentuk persamaan matriks bisa kita tulis sebagai: dimana H(t) Γ(t) = σk4 3µ σk4 2µ Mk 2 2µ(1 β) Mk 2 2µ(1 β) h Γ. (4.1.6) H(t) dan Γ(t) menyatakan nilai turunan perturbasi terhadap waktu. Nilai growth rate (ω) menentukan kestabilan dari lapisan kondensat, bila nilainya positif maka akan membuat lapisan kondensat menjadi tidak stabil, sebaliknya jika nilainya negatif maka akan membuatnya menjadi stabil. Untuk selanjutnya mudah dibuktikan bahwa nilai growth rate merupakan nilai eigen dari matriks diatas, sehingga di dapat : (ω 1,ω 2 ) = ( k4 M ( + k2 σ 0 2(1 β) 3 )2 k6 Mσ 0 k 4 M ( 4µ 2 4µ 2 (1 β) )1 2 ± ( + k2 σ 0 ) 2(1 β) 3 2µ ) (4.1.7) Jika salah satu saja nilai eigennya bernilai positif maka hal tersebut akan menyebabkan ketidakstabilan sistem.

4 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Simulasi dan Pembahasan Tegangan Permukaan Tegangan permukaan merupakan salah satu besaran dalam cairan dimana permukaan bebas pada cairan berperilaku seperti lapisan yang meregang dengan kecenderungan untuk menutupi dan menempati wilayah permukaan yang minimum. Selain itu, tegangan permukaan dapat pula didefinisikan sebagai sekumpulan energi yang harus dikeluarkan untuk melebarkan permukaan persatuan wilayah [9] Σ 5 Σ 1 Σ 0.5 Σ Σ 5 Σ 1 Σ 0.5 Σ 0.1 Gambar 4.2: growth rate pada saat µ=3, M =0.3, β=0.1, dengan nilai tegangan permukaan (σ) yang berbeda Gambar 4.2 mendeskripsikan tentang pengaruh dari besarnya tegangan permukaan terhadap kestabilan lapisan kondensat. Pada simulasi ini diberikan 4 harga tegangan permukaan yang berbeda, dengan parameter lainnya tetap. Bisa dilihat bahwa semakin besar nilai tegangan permukaan, maka nilai dari growth rate akan menjadi semakin bernilai negatif. Sehingga bisa disimpulkan bahwa semakin besar tegangan permukaan akan membuat lapisan kondensat menjadi semakin lebih stabil.

5 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Viskositas Viskositas merupakan ukuran daya hambat aliran fluida, yang juga dapat dinyatakan sebagai keengganan fluida untuk mengalir [2]. Semakin besar nilai viskositas dari suatu fluida, maka semakin sulit fluida tersebut mengalir. Gambar 4.3 di bawah merupakan deskripsi hubungan antara bilangan gelombang terhadap growth rate dengan nilai viskositas yang berubah-rubah dan 3 parameter lainnya konstan Μ 300 Μ 30 Μ 3 Μ Μ 300 Μ 30 Μ 3 Μ Gambar 4.3: growth rate pada saat σ=0.5, M =0.3, β=0.1, dengan nilai viskoitas (µ) yang berbeda Hasil simulasi diatas memberikan kesimpulan bahwa semakin kecil nilai viskositas dari lapisan kondensat maka semakin besar juga kemungkinan lapisan tersebut menjadi tidak stabil. Hal ini bisa kita lihat pada Gambar 4.3 diatas. Saat viskositasnya(µ) bernilai 1, nilai growth ratenya jauh bernilai positif jika dibandingkan dengan nilai viskositas lainnya yang lebih besar. Dengan memperhitungkan kondisi fisisnya, secara logis kesimpulan ini memang cukup benar, karena semakin kecil viskositasnya maka semakin mudah kondensat bergerak sehingga semakin mudah juga untuk tidak stabil.

6 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Efek Konsentrasi Surfaktan Terdapat dua buah parameter yang mewakili efek surfakatan terhadap ketidakstabilan dari lapisan kondensat, yaitu Marangoni Number(M) dan fraksi konsentrasi surfaktan di permukaan (β). Pertama akan dibahas terlebih dahulu untuk parameter Marangoni Number. Dalam keadaan tak berdimensi Marangoni Number dirumuskan sebagai berikut [1] : M = E Γ 0 σ 0. (4.2.1) dimana E menyatakan elastisitas dari permukaan, Γ 0 menyatakan besarnya konsentrasi surfaktan dan σ 0 menyatakan tegangan permukaan. Dari Persamaan (4.2.1) di atas didapatkan informasi bahwa konsentrasi surfaktan berpengaruh terhadap nilai marangoni number. Hasil simulasi yang dideskripsikan pada Gambar 4.4 di bawah, memberikan kesimpulan bahwa semakin besar nilai Marangoni Number maka lapisan kondensat akan menjadi semakin tidak stabil. Hal ini dapat dilihat dari nilai growth rate yang semakin positif jika nilai marangoni numbernya dinaikkan, dan sebaliknya jika Marangoni Numbernya sangat kecil maka growth ratenya akan cendrung bernilai negatif,seperti yang terlihat pada grafik di M=0.01, dan sebagai akibatnya lapisan kondensat akan menjadi stabil M 1 M 0.3 M 0.1 M M 1 M 0.3 M 0.1 M Gambar 4.4: growth rate pada saat µ=3, σ=0.5, β=0.1, dengan nilai Marangoni Number (M) yang berbeda

7 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI 25 Parameter yang kedua yang memiliki kaitannya dengan efek surfaktan yaitu fraksi konsentrasi surfaktan di permukaan (β). Nilai fraksi ini menggambarkan proporsi antara besarnya konsentrasi surfaktan di permukaan dengan konsentrasi jenuhnya. Parameter ini memiliki kecenderungan untuk membuat sistem menjadi tidak stabil jika nilainya semakin membesar. Hal ini bisa pada hasil simulasi yang diilustrasikan pada Gambar 4.5 di bawah ini: Β 0.5 Β Β 0.5 Β Β 0.1 Β Β 0.1 Β Gambar 4.5: growth rate pada saat µ=3, M=0.3, σ=0.5, dengan fraksi konsentrasi surfaktan di permukaan (β) yang berbeda Grafik yang berwarna hijau pada Gambar 4.5 menyatakan kondisi pada saat perbandingan konsentrasi surfaktan di permukaan dengan konsentrasi jenuhnya masih kecil (β = 0.01) atau bisa dikatakan jumlah konsentrasi di permukaan baru 1 persen dari kondisi jenuhnya, sedangkan yang berwarna kuning (β = 0.1) menyatakan jumlah konsentrasi di permukaan sudah mencapai 10 persen dari kondisi jenuhnya dimana nilai kedua growth ratenya lebih positif jika dibandingkan pada saat (β = 0.01) sehingga lapisan kondensat pada kondisi tersebut akan menjadi lebih tidak stabil. Kemudian seperti yang dideskripsikan pada Gambar 4.5, lapisan kondensat akan menjadi lebih tidak stabil lagi, bila nilai paramater β dinaikkan, seperti pada saat β = 0.2 (merah) atau β = 0.5 (biru) karena masing-masing kedua nilai growth ratenya menjadi lebih positif dari dua kondisi sebelumnya.

8 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Critical Marangoni Number cr M Viskositas Μ Gambar 4.6: Nilai kritis dari Marangoni Number (M cr )sebagai fungsi dari viskositas (µ), pada saat k = 0.1, σ = 0.5 dan β = 0.1 Untuk semua sistem yang terjadi kita bisa mencari nilai dari Marangoni Number yang menjadi tolak ukur kapan membuat kondisi sistem menjadi stabil atau tidak stabil. Kita definisikan nilai-nilai tersebut sebagai nilai kritis dari Marangoni Number (M cr ). Kita simulasikan hubungan antara besarnya viskositas dengan nilai kritis Marangoni Number yaitu pada saat nilai growth ratenya sama dengan nol, dengan k = 0.1, σ = 0.5 dan β = 0.1 bernilai konstan. Hasil simulasinya bisa dilihat pada Gambar 4.6. Hal ini menarik sekali karena jika kita ambil nilai Marangoni Number diatas grafik tersebut dengan nilai viskositas serta parameter lainnya sama maka kondisi tersebut akan menyebabkan keadaan menjadi tidak stabil dan berlaku keadaan sebaliknya, jika nilai yang diambil di bawah grafik, maka hal tersebut akan membuatnya stabil. Dari hasil simulasi ini, kita bisa mendapatkan berapa nilai minimum konsentrasi surfaktan yang diwakili oleh variabel Marangoni Number sedemikian sehingga lapisan kondensat akan menjadi tidak stabil.

9 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Critical Marangoni Number Mcr Tegangan Permukaan Σ Gambar 4.7: Nilai kritis dari Marangoni Number (M cr )sebagai fungsi dari tegangan permukaan (σ), pada saat k = 0.1 dan µ=3 dengan nilai fraksi konsentrasi surfaktan di permukaan (β) yang berubah-ubah. Warna biru menyatakan β = 0.1, merah β = 0.3, kuning β = 0.5, dan hijau β = 0.9. Selain dengan parameter kekentalan dari lapisan kondensat kita juga bisa mendapatkan hubungan nilai kritis dari Marangoni Number yang bergantung pada nilai tegangan permukaan dari lapisan kondensat. Kita simulasikan hubungan tersebut, pada saat pada saat k = 0.1 dan µ=3, dengan nilai fraksi konsentrasi surfaktan di permukaan (β) yang berubah-ubah, yang hasilnya bisa kita lihat pada Gambar 4.7. Jika kita ambil nilai Marangoni Number diatas grafik tersebut dengan nilai tegangan permukaan serta parameter lainnya sama maka kondisi tersebut akan menyebabkan keadaan menjadi tidak stabil dan berlaku keadaan sebaliknya, jika nilai yang diambil di bawah grafik, maka hal tersebut akan membuatnya stabil. selain itu bisa kita lihat bahwa seiring fraksi dari konsentrasinya bertambah maka nilai marangoni number yang di perlukan semakin kecil untuk nilai tegangan permukaan yang sama.

10 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI Critical Fraksi konsentrasisurfaktan Βcr Tegangan Permukaan Σ Gambar 4.8: Nilai kritis dari fraksi konsentrasi surfaktan di permukaan (β cr ) sebagai fungsi dari tegangan permukaan,pada saat k = 0.1 dan µ=3 dengan nilai Marangoni Number (M) yang berubah-ubah. Warna biru menyatakan M = 0.01, merah M = 0.03, kuning M = 0.07, dan hijau pada saat M = 0.1. Gambar 4.8 menggambarkan kondisi nilai kritis untuk parameter fraksi konsentrasi surfaktan di permukaan, yang di notasikan sebagai (β cr ). Kita simulasikan hubungan antara besarnya tegangan permukaan dengan nilai (β cr ) pada saat pada saat k = 0.1 dan µ=3, dengan nilai Marangoni yang berubah-rubah. Kita bisa lihat bahwa nilai kritis dari fraksi konsentrasi surfaktan di permukaan akan terus membesar seiring bertambahnya nilai tegangan permukaan. Hal tersebut cukup logis karena jumlah konsentrasi surfaktan yang diperlukan untuk membuat lapisan kondensat menjadi tidak stabil akan semakin banyak untuk menurunkan tegangan permukaan. Selain itu bisa dilihat, bahwa seiring nilai Marangoni Number nya bertambah maka nilai kritis dari fraksi konsentrasi surfaktan di per-

11 BAB 4. ANALISIS KESTABILAN LINEAR DAN SIMULASI 29 mukaan pun menjadi berkurang dengan nilai tegangan permukaan yang sama. Hal ini memungkinkan, karena semakin besarnya konsentrasi surfaktan yang diwakili oleh parameter Marangoni Number tersebut akan membutuhkan nilai β yang lebih kecil dalam membuat kondisinya menjadi tidak stabil.

Analisis Kestabilan Linear dan Simulasi

Analisis Kestabilan Linear dan Simulasi BAB 4 Analisis Kestabilan Linear dan Simulasi Pada bab ini kita akan membahas mengenai ketidakstabilan dari lapisan fluida tipis. Analisis kestabilan linear kita gunakan untuk melihat kondisi serta parameter

Lebih terperinci

3.1 Analisis Dimensional persamaan Navier Stokes

3.1 Analisis Dimensional persamaan Navier Stokes Bab 3 Model Matematika Pada bab ini akan dibahas mengenai proses dalam pembuatan model. Analisis dimensional serta pendekatan lubrikasi kita gunakan terhadap persamaan-persamaan dasar (Navier Stokes) serta

Lebih terperinci

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

BAB 2. Landasan Teori. 2.1 Persamaan Dasar BAB 2 Landasan Teori Objek yang diamati pada permasalahan ini adalah lapisan fluida tipis, yaitu akan dilihat perubahan ketebalan dari lapisan fluida tipis tersebut dengan adanya penambahan surfaktan ke

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi 1 Jurnal Matematika, Statistika, & Komputasi Vol 5 No 1, 1-9, Juli 2008 Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi Sri Sulasteri Jurusan Pend. Matematika UIN Alauddin Makassar Jalan Sultan

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang

Bab 1. Pendahuluan. 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Salah satu masalah yang dihadapi oleh negara kita adalah masalah ketersediaan sumber energi. Mengingat ketersediaan sumber energi nonmigas belum dapat menggantikan

Lebih terperinci

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Vol. 14, No. 1, 69-76, Juli 017 Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Sri Sulasteri Abstrak Hal yang selalu menjadi perhatian dalam lapisan fluida

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

MODEL KUASISTATIK UNTUK EFEK SURFAKTAN TAK LARUT PADA LAPISAN KONDENSAT DI PIPA TRANSMISI GAS

MODEL KUASISTATIK UNTUK EFEK SURFAKTAN TAK LARUT PADA LAPISAN KONDENSAT DI PIPA TRANSMISI GAS MODEL KUASISTATIK UNTUK EFEK SURFAKTAN TAK LARUT PADA LAPISAN KONDENSAT DI PIPA TRANSMISI GAS TUGAS AKHIR Diajukan untuk Memenuhi Persyaratan Sidang Sarjana Program Studi Matematika ITB Oleh Atika Permata

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan BAB IV HASIL DAN PEMBAHASAN 4. 1 Analisis Elektrohidrodinamik Analisis elektrohidrodinamik dimulai dengan mengevaluasi medan listrik dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

Tanggapan Alih (Transient Respond) dan Kestabilan System

Tanggapan Alih (Transient Respond) dan Kestabilan System Tanggapan Alih (Transient Respond) dan Kestabilan System Indrazno Siradjuddin April 8, 2017 1 Bilangan Kompleks (a) Koordinat cartesian (b) Koordinat polar Gambar 1: Representasi bilangan kompleks dalam

Lebih terperinci

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis III.1 III.1.1 Solusi Dasar dari Model Prekursor Persamaan Fluida Tipis Dimensi Satu Sebagai langkah pertama untuk memahami karakteristik aliran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 21 Analisis output dilakukan terhadap hasil simulasi yang diperoleh agar dapat mengetahui variabel-variabel yang mempengaruhi output. Optimasi juga dilakukan agar output meningkat mendekati dengan hasil

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada BAB II ALIRAN FLUIDA DALAM PIPA.1 Sifat-Sifat Fluida Fluida merupakan suatu zat yang berupa cairan dan gas. Fluida memiliki beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Melalui penerapan metode bedahingga dengan interpolasi Lagrange sebagai syarat batas terkait, maka solusi numerik dari dinamika dan interaksi soliton DNA model PBD dapat dicari

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 4. Penentuan Titik Tetap I HAIL DAN PEMBAHAAN Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah terhadap waktu (solusi konstan). Titik

Lebih terperinci

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 72 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION IVONE LAWRITA ERWANSA, EFENDI, AHMAD

Lebih terperinci

Bab V Model Dengan Faktor Denda Bagi Para Perokok

Bab V Model Dengan Faktor Denda Bagi Para Perokok Bab V Model Dengan Faktor Denda Bagi Para Perokok V.1 Pembentukan Model Model ketiga ini merupakan pengembangan dari model kedua yaitu dengan memasukkan faktor yang dapat menekan laju pertambahan jumlah

Lebih terperinci

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Eristia Arfi 1 1 Prodi Matematika terapan Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER T - 2 Andini Putri Ariyani 1, Kus Prihantoso Krisnawan 2 Jurusan Pendidikan Matematika FMIPA UNY 1 e-mail:andiniputri_ariyani@yahoo.com, 2 e-mail:

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

BAB IV PENGEMBANGAN MODEL KAPLAN

BAB IV PENGEMBANGAN MODEL KAPLAN BAB IV PENGEMBANGAN MODEL KAPLAN Pada bab ini akan dibahas model yang dikembangkan dari model Kaplan. Terdapat beberapa asumsi Kaplan yang akan dimodifikasi. Selain itu, pada bab ini juga diberikan analisis

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

III MODEL MATEMATIKA S I R. δ δ δ

III MODEL MATEMATIKA S I R. δ δ δ 9 III MODEL MATEMATIKA 3.1 Model SIRS Model dasar yang digunakan untuk menggambarkan penyebaran pengguna narkoba adalah model SIRS. Model ini dikemukakan oleh Kermac dan McKendric (1927) sebagai model

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Pada penelitian tesis kali ini, ada beberapa hasil penelitian yang akan dipaparkan pada bagian ini. Adapun hasil penelitian yang akan dibahas pada bagian ini adalah mengenai

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

Boundary condition yang digunakan untuk proses simulasi adalah sebagai berikut :

Boundary condition yang digunakan untuk proses simulasi adalah sebagai berikut : BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Penelitian Hasil dari simulasi penelitian fluktuasi tekanan pada kondensasi Steam pada pipa konsentrik dengan pendinginan searah pada ruang anulus dengan menggunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah

Lebih terperinci

Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro

Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro Signal Models {Rangkaian Elektrik} By: Gutama Indra Gandha, M.Eng Program Studi Teknik Elektro Fakultas Teknik Universitas Dian Nuswantoro Tujuan perkuliahan Mahasiswa mampu membuat model matematis sinyal

Lebih terperinci

Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri

Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri Riri Jonuarti* dan Freddy Haryanto Diterima 21 Mei 2011, direvisi 15 Juni 2011, diterbitkan 2 Agustus 2011 Abstrak Beberapa peneliti

Lebih terperinci

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK Bab 4 PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK 4.1 Kasus 2 buah Balok Dalam bahasan ini akan dipelajari proses transmisi dan refleksi yang terjadi untuk kasus 2 buah balok dengan bentuk geometri yang

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data berupa ketinggian permukaan fluida uji (h), debit aliran dari ketinggian permukaan fluida

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis studi kasus pada pipa penyalur yang dipendam di bawah tanah (onshore pipeline) yang telah mengalami upheaval buckling. Dari analisis ini nantinya

Lebih terperinci

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear Prosiding Penelitian SPeSIA Unisba 2015 ISSN: 2460-6464 Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Lebih terperinci

Analisis Dimensi 1. Oleh : Abdurrouf Tujuan. 0.2 Ringkasan

Analisis Dimensi 1. Oleh : Abdurrouf Tujuan. 0.2 Ringkasan Analisis Dimensi 1 Oleh : Abdurrouf 2 0.1 Tujuan Setelah mempelajari topik ini, diharapkan peserta dapat memahami pengertian dimensi, mengenal dimensi besaran pokok, dapat menurunkan dimensi besaran satuan,

Lebih terperinci

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1) DAFTAR NOTASI A : sebuah konstanta, pada Persamaan (5.1) a c a m1 / 3 a m /k s B : Koefisien-koefisien yang membentuk elemen matrik tridiagonal dan dapat diselesaikan dengan metode eliminasi Gauss : amplitudo

Lebih terperinci

BAB 5. PROPERTIS FISIK BUNYI

BAB 5. PROPERTIS FISIK BUNYI BAB 5. PROPERTIS FISIK BUNYI Definisi: Suara - gangguan yang menyebar melalui bahan elastis pada kecepatan yang merupakan karakteristik dari bahan tersebut. Suara biasanya disebabkan oleh radiasi dari

Lebih terperinci

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

BAB IV HASIL YANG DIPEROLEH

BAB IV HASIL YANG DIPEROLEH BAB IV : HASIL YANG DIPEROLEH 25 BAB IV HASIL YANG DIPEROLEH Model yang telah diturunkan pada bab 3, selanjutnya akan dianalisis dengan menggunakan MATLAB 7.0 untuk mendapatkan hasil numerik. 4.1 Simulasi

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008 BAB II DASAR TEORI 2.1 KLASIFIKASI ALIRAN FLUIDA Secara umum fluida dikenal memiliki kecenderungan untuk bergerak atau mengalir. Sangat sulit untuk mengekang fluida agar tidak bergerak, tegangan geser

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

BAB VI KESIMPULAN DAN SARAN

BAB VI KESIMPULAN DAN SARAN BAB VI KESIMPULAN DAN SARAN A. Kesimpulan Serangkaian penelitian telah dilaksanakan dengan tujuan untuk mengetahui potensi indikasi kemunculan likuifaksi pada clean sand kondisi longgar (Dr = 25%) dengan

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4. PERHITUNGAN DATA Dari percobaan yang telah dilakukan dengan menggunakan pipa spiral dan pipa bulat ½ in, didapatkan data mentah berupa perbedaan tekanan manometer

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro PETUNJUK UMUM 1. Tuliskan NAMA dan ID peserta di setiap lembar jawaban dan lembar kerja. 2. Tuliskan jawaban akhir di kotak yang disediakan untuk di lembar Jawaban. Lembar kerja dapat digunakan untuk melakukan

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan...

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan... DAFTAR ISI Halaman HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSEMBAHAN... ii PERNYATAAN... iv PRAKATA... v DAFTAR ISI...viii DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv DAFTAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3.1 Perumusan Model Pada bagian ini akan dirumuskan model pertumbuhan ekonomi yang mengoptimalkan utilitas dari konsumen dengan asumsi: 1. Terdapat tiga sektor dalam perekonomian:

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA BAB III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1. Pendahuluan Pemodelan yang dibangun menggunakan kode komputer digunakan untuk melakukan perhitungan matematis dengan memasukkan varibel-variabel yang

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci