BAB IV HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV HASIL DAN PEMBAHASAN"

Transkripsi

1 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah dibuat dengan menggunakan gelombang elektromagnetik. Adapun jenis gelombang yang dipilih adalah planewave dengan sumber yang terletak di dalam domain komputasi. Planewave yang digunakan memiliki bentuk umum sesuai dengan Persamaan (25) 16 : y = Asin( ωt kx) (25) Alasan pemilihan bentuk gelombang tersebut adalah karena kemudahan dalam melakukan analisis dan kemudahan dalam melakukan simulasi. Gambar 11 menunjukan hasil simulasi ketika planewave dirambatkan dalam arah sumbu x. Selain itu, domain komputasi diberikan buffer pada setiap bagian tepinya sedemikian sehingga diperoleh visualisasi yang lebih optimal. Buffer Gelombang disrap oleh PML Gambar 11. Planewave dirambatkan dalam medium hampa dengan batas domain komputasi dengan ukuran mesh 100 x 50. Tampak bahwa medan listrik Ez berubah terhadap waktu. Pada batas medium tidak terjadi efek pemantulan disebabkan oleh adanya PML yang menyerap gelombang saat melewati batas domain komputasi.

2 24 Dalam simulasi, nilai frekuensi maupun panjang gelombang yang digunakan harus disesuaikan dengan increment domain dan bentuk struktur sensor. Hal ini bertujuan agar fenomena yang terjadi di dalam struktur dapat teramati sehingga lebih mudah dalam melakukan analisis. Dari beberapa kali simulasi, diperoleh nilai increment ( x ) yang optimal, yaitu 10 x λ (26) 11 atau dengan kata lain 11, 17 dengan nilai yang sedikit lebih kecil. x harus memiliki orde yang sama dengan λ namun 4.2 Visualisasi Disain dan Spesifikasi Sensor Model sensor ini menggunakan struktur dasar yang terdapat pada Gambar 10. Sensor didisain dengan menggunakan lempengan yang bagian dalamnya terdapat sebelas pilar dengan dua buah defek pada pilar ke-4 dan ke-8. Lempeng menggunakan bahan silikon (Si) dengan indeks bias 3,48 dengan delapan buah pilar regular dari bahan SiO 2 dengan indeks bias 1,44 dan radius masing-masing sebesar 600 nm. Defek pertama (pilar ke-4) menggunakan bahan Al 2 O 3 dengan indeks bias 1,7 dan defek kedua memiliki indeks bias yang divariasikan (sebagai tempat sampel yang akan diuji). Pemilihan nilai indeks bias struktur sensor didasarkan pada bahan-bahan yang sudah ada dalam aplikasi riil sehingga untuk ke depannya diharapkan dapat mempermudah pabrikasi. Pada Gambar 11 tampak disain biosensor dengan struktur berdasarkan nilai permitivitas relatifnya. Variasi nilai permitivitas terendah divisualisasikan dengan warna biru dan nilai tertinggi dengan warna merah. Dengan adanya hubungan antara nilai indeks bias dengan permitivitas relatif, maka akan memudahkan pembuatan program dengan mengikuti relasi sesuai Persamaan (27). n = ε r. (27) Visualisasi nilai permitivitas struktur bertujuan untuk mengecek kesesuaian program yang telah dibuat. Jika terdapat kekeliruan coding, maka tampilan struktur akan tampak tidak sesuai dengan disain. Pada Gambar 12 tampak bahwa distribusi nilai permitivitas sudah sesuai dengan disain struktur dari Gambar 10, ini berarti bahwa program sudah benar dan siap untuk digunakan.

3 25 Gambar 12. Penampang struktur berdasarkan perbedaan nilai permitivitas bahan. Visualisasi ini berfungsi untuk mengecek kesesuaian antara disain struktur dengan coding. Keunggulan penggunaan metode FDTD dalam melakukan simulasi adalah kemudahan dalam menganalisis proses yang terjadi. Karena selama simulasi berlangsung program menampilkan proses perambatan gelombang memasuki sensor. Dengan demikian semua mekanisme fisis dari gelombang dapat teramati. 4.3 Distribusi Medan Listrik E z di Dalam Sensor Prinsip utama dari kerja sensor berbasis optik adalah adanya fenomena refleksi dan refraksi ketika sebuah gelombang elektromagnetik melewati batas dua medium dielektrik dengan perbedaan nilai indeks bias tertentu. Proses perambatan medan listrik dapat teramati beserta mekanisme-mekanisme rafleksi dan refraksi yang terjadi. Hal ini dapat terlihat pada Gambar 13.

4 26 Gambar 13. Mekanisme perambatan medan listrik E z di dalam sensor pada saat memasuki time step ke-301, 750, 1136 dan 2827 (saat 2,508x10-2 ps, 6,250 x10-2 ps, 9,467 x10-2 ps dan 2,356 x10-2 ps). Sensor menggunakan jari-jari regular 600 nm dan jari-jari defek 800 nm. Indeks bias defek ke-2 sebesar 1,40. Gambar 13 menunjukan proses perambatan medan listrik yang terekam pada saat time step ke-301, 750, 1136 dan Pada gambar tersebut tampak bahwa setelah gelombang keluar dari sensor ada sebagian medan listrik yang tarpantul kembali ke dalam sensor. Selain itu tampak pula bahwa proses perambatan gelombang di dalam struktur berjalan lebih lambat, kondisi tersebut terlihat jelas pada time step ke-750 dan ke Hal ini menunjukan bahwa gelombang elektromagnetik mengalami pengurangan kecepatan ketika melalui suatu bahan dielektrik dengan nilai indeks bias yang lebih besar. Nilai panjang gelombang mengalami pengurangan ketika memasuki struktur sensor, pada Gambar 12 divisualisasikan dengan garis-garis muka gelombang yang lebih halus pada bagian struktur jika dibandingkan dengan garis pada bagian luar struktur.

5 27 Selain itu, perbesaran gambar pada time step ke-2827 menunjukan adanya penguatan medan pada bagian dalam pilar. Hal ini terjadi disebabkan adanya mekanisme pemantulan internal di dalam pilar. Pilar memiliki bahan dielektrik dengan indeks bias yang lebih rendah dari lempengan (slab) sensor, sehingga saat gelombang merambat keluar pilar dengan sudut yeng lebih besar atau sama dengan sudut kritisnya maka gelombang dipantulkan kembali ke dalam pilar sehingga muncul efek penguatan medan. Gambar 14 menunjukan bahwa medan listrik di bagian dalam struktur mengalami penurunan amplitudo. Hal ini menunjukan bahwa panjang gelombang yang digunakan terlokalisasi di dalam band-gap, kondisi tersebut diindikasikan dengan adanya sejumlah besar medan yang terpantul kembali. Mekanisme yang terjadi di dalam struktur sensor sangat kompleks serta meliputi berbagai proses fisis. Akan tetapi, secara lebih khusus dapat diketahui adanya proses interferensi antara gelombang datang dengan gelombang pantul. Mekanisme interferensi tersebut menghasilkan output yang berbeda-beda ketika bahan dan dimensi pilar diubah-ubah. Pada akhirnya diperoleh pola hubungan menyerupai linier antara perubahan indeks bias bahan terhadap rapat energi output rata-rata. Hal ini yang menjadi dasar bahwa struktur tersebut dapat diaplikasikan sebagai sensor. Simulasi dilakukan dengan menggunakan jumlah mesh berukuran dengan masing-masing mesh memiliki ukuran increment x = y = 500 nm, adapun time step t = 500 ns. Adapun gelombang yang digunakan dalam simulasi adalah gelombang datar (plane wave) dengan panjang gelombang pada kisaran 560 nm. Gambar 14. Distribusi medan listrik di dalam sensor optik setelah proses perambatan selama 260,5 ps. Defek kedua mengandung bahan material dengan indeks bias 1,40.

6 Pengukuran Kinerja Sensor Variasi nilai indeks bias bahan pada defek ke-2 akan berpengaruh terhadap energi output yang didefinisikan menurut persamaan: h ( ) = ε E( t) dy (28) Q t 0 Persamaan (28) menunjukan bahwa energi output dihitung dengan cara menintegrasikan nilai mutlak medan listrik E z sepanjang garis vertikal pada sisi kanan sensor (sisi output setelah gelombang melewati sensor). Dengan menggunakan kalkulasi ini didapat nilai energi per satuan panjang untuk setiap time step, dalam hal ini dinotasikan dengan simbol Q. Untuk itu diperlukan kalkukasi berikutnya untuk menghitung nilai energi output yang dapat merepresentasikan keseluruhan proses. Dengan demikian, perhitungan hasil juga memerlukan definisi parameter rapat energi rata-rata sebagai berikut: t 1 W = Q( t) dt t 0 Persamaan (29) menunjukan bahwa energi sudah terintegrasi secara total terhadap waktu kemudian dirata-ratakan untuk total waktu selama. Sehingga nilai rapat energi W sudah dapat merepresentasikan keseluruhan proses. 2 (29) Gambar 15. Perubahan rapat energi terhadap waktu pada posisi input dan output. Indeks bias defek kedua sebesar 1,4, pilar regular berjari-jari 600 nm.

7 29 Gambar 15 menunjukan perubahan rapat energi terhadap waktu pada posisi input (bagian kiri) dan output (bagian kanan) dari sensor untuk nilai indeks bias defek kedua 1,4. Pada gambar tampak bahwa rapat energi berfluktuasi selama berlangsungnya proses, hal ini bersesuaian dengan jenis gelombang yang digunakan yaitu planewave dengan menggunakan fungsi gelombang sinus. Untuk interval waktu kurang dari 0,5 x sekon, rapat energi pada posisi input berfluktuasi dengan sangat singkat sedangkan pada posisi output berharga nol. Dengan demikian dapat diketahui bahwa pada selang waktu tersebut posisi input terjadi refleksi dengan jumlah yang sangat besar dan gelombang belum sampai ke posisi output. Selain itu, dapat diketahui pula bahwa sensor memiliki nilai absorbansi yang sangat besar sehingga pada gambar terlihat bahwa amplitudo energi pada posisi output jauh lebih kecil jika dibandingkan dengan posisi input. Pengukuran kinerja sensor dilakukan dengan mencari nilai integrasi rapat energi terhadap waktu yang kemudian dirata-ratakan sesuai dengan Persamaan (29). Dengan kata lain, output yang sudah didapat pada Gambar 16 merupakan data mentah yang kemudian akan diintegralkan untuk mendapatkan rapat energi rata-rata. Dengan menggunakan Persamaan (29) didapat nilai rapat energi ratarata untuk nilai indeks bias tertentu pada defek yang kedua. Setelah itu akan didapat hubungan antara rapat energi output terhadap nilai indeks bias defek. Hubungan inilah yang kemudian dijadikan sebagai parameter ukur dari kinerja sensor. Secara lebih detil alur pengukuran dapat dilihat pada Lampiran 3. Gambar 16. Perubahan rapat energi pada posisi output (bagian kanan sensor) terhadap waktu. Jarijari defek ke nm dengan indeks bias 1,45. Jari-jari pilar reguler 500 nm. Integrasi grafik ini akan mendapatkan nilai rapat energi rata-rata output sebesar nj/m.

8 30 (a) (b) Gambar 17. (a) Perubahan rapat energi rata-rata terhadap variasi indeks bias defek ke-2 untuk jarijari defek 300 nm (dot kotak) dan jari-jari defek 800 nm (dot lingkaran). (b) Perubahan rapat energi rata-rata terhadap variasi jari-jari defek ke-2 dengan nilai indeks bias 1,4. Sensor didisain dengan menggunakan pilar regular berjari-jari 600 nm Dari banyaknya simulasi yang telah dilakukan, maka diperoleh nilai hubungan antara perubahan rapat energi rata-rata terhadap indeks bias defek. Seperti terlihat pada Gambar 17(a), untuk nilai radius defek sebesar 800 nm, perubahan indeks biasnya berpengaruh terhadap perubahan rapat energi rata-rata W, sedemikian sehingga tampak kenaikan nilai rapat energi seiring dengan bertambahnya indeks bias. Kesensitifan ini terukur untuk interval indeks bias pada kisaran 1,33 sampai 1,45. Untuk jari-jari sebesar 300 nm, tampak tidak ada pengaruh perubahan indeks bias untuk kisaran yang sama. Dengan demikian dapat diketahui bahwa struktur kristal dengan jari-jari 800 nm dapat diaplikasikan sebagai sensor untuk mengukur sampel berupa cairan. Dalam aplikasi riil bisa berupa jaringan, larutan gula, membran dan lain-lain. Selain itu dapat diketahui pula bahwa kesensitifan sensor hanya berlaku pada nilai jari-jari defek tertentu saja. Karakteristik lain yang dapat diketahui dari sensor ini adalah adanya pengaruh perubahan nilai rapat energi terhadap variasi jari-jari pilar defek. Pada Gambar 17(b) tampak bahwa seiring bertambahnya jari-jari pilar defek, rapat energi rata-rata mengalami penurunan. Khusus untuk jari-jari sebesar 450 nm, terjadi kenaikan rapat energi rata-rata yang maksimum untuk kemudian turun dan naik kembali pada jari-jari 550 nm dan kemudian turun hingga jari-jari 700 nm.

9 31 (a) (b) Gambar 18. Perubahan rapat energi rata-rata terhadap indeks bias untuk disain sensor menggunakan jari-jari pilar reguler sebesar 500 nm. (a) Sensor bekerja dengan kesensitifan yang baik jika menggunakan defek ke-2 dengan jari jari 400 nm atau 500 nm. (b) Sensor tidak dapat bekerja secara efektif jika menggunakan jari-jari defek ke-2 sebesar 600 nm, 700 nm dan 800 nm. Dengan mengganti jari-jari pilar reguler yang sebelumnya 600 nm menjadi 500 nm, ternyata sensor tidak lagi sensitif jika jari-jari defek sebesar 800 nm (lihat Gambar 18 (b)), akan tetapi kesensitifan diperoleh untuk jari-jari defek 400 nm dan 500 nm (lihat Gambar 18 (a)). Dari hasil ini dapat diambil kesimpulan bahwa nilai kesensitifan sensor akan berubah jika terjadi perubahan jari-jari defek ke-2. Selain itu, kesensitifan sensor dapat diatur pada interval indeks bias yang tertentu dengan cara mencari nilai jari-jari defek yang bersesuaian. Dari banyaknya variasi yang dilakukan, dapat dikatakan bahwa sensor memiliki tingkat kesensitifan yang beragam disesuaikan dengan kebutuhan di lapangan. Selain itu, perubahan disain pada salah satu bagian akan turut mempengaruhi perubahan disain pada bagian lainnya jika ingin mendapatkan kesensitifan yang sama dari sensor. 4.5 Perbandingan dengan Beberapa Sensor Optik Lainnya Jika dibandingkan dengan beberapa model sensor optik yang sudah ada, sensor dengan struktur berupa pilar-pilar memiliki beberapa kelebihan dalam hal flaksibilitas pengukuran jika diterapkan dalam aplikasi. Dengan struktur berupa

10 32 rod, sampel dapat lebih mudah dimasukan dengan cara mencelupkannya. Pada aplikasi yang lebih riil, perubahan dimensi jari-jari disesuaikan dengan jenis sampel yang akan diukur. Sebagai contoh, jika ingin mengukur larutan makromolekul maka disain sensor yang sesuai adalah dengan menggunakan jarijari pilar defek yang besar sehingga dapat menampung larutan dalam jumlah yang lebih banyak. Selain itu, perbedaan metode simulasi juga dapat menentukan perbedaan parameter ukur dari suatu sensor. Sebagai pembanding, model sensor berupa layer 15 yang menggunakan metode matriks transfer memiliki parameter ukur yang berbeda dengan model pilar periodik yang menggunakan metode FDTD. Dalam metode matriks transfer, karakteristik optik suatu material ketika berinteraksi dengan foton dapat diketahui dengan memperoleh nilai transmitansinya seperti dijelaskan pada Gambar 19. Dengan menggunakan metode FDTD, parameter ukur yang didapat berupa nilai rapat energi rata-rata. Metode FDTD sulit untuk menentukan nilai transmitansi suatu bahan. Selain itu, metode FDTD cenderung memakan waktu lebih lama ketika menentukan batas kesensitifan struktur sensor karena data simulasi diperoleh secara satu persatu dalam setiap simulasi. Kelebihan yang dimiliki metode FDTD adalah dalam hal menganalisis dinamika yang terjadi selama waktu perambatan gelombang. Karena proses perambatan gelombang ditampilkan secara terus-menerus sebagai fungsi waktu. " Gambar 19. (a) Pergeseran nilai transmitansi (T ω ) terhadap lebar defek untuk d = mλ / 4 untuk m 2 0 = 3 (garis padat), m = 3.1 (garis putus-putus) dan m = 3.2 (garis titik-titik) untuk M = 8, N = 10 dan L = 2. M dan N adalah jumlah segman grating dengan hubungan N = M + L. (b) Nilai T ω untuk d = 3 mλ / 4 dengan kombinasi bilangan segmen M = 8, N = 10 dan L = 2 (garis " 2 0 padat); M = 9, N = 12 dan L = 3 (garis putus-putus); M = 11, N = 16 dan L = 5 (garis titiktitik). (c) Perubahan nilai transmitansi yang bergantung secara linier terhadap perubahan indeks bias defek n 2 untuk parameter M = 11, N = 16 dan L = 5. (Alatas, H. et al, 2006)

11 33 Pada dasarnya penggunaan metode disesuaikan dengan kebutuhan simulasi serta model struktur yang sedang dikembangkan. Sebagai contoh, penerapan metode FDTD pada pilar dielektrik juga dapat diaplikasikan sebagai sensor jarak sebagaimana yang telah dilakukan oleh Zhenfeng Xu et al (2006). Dengan skema seperti pada Gambar 20, jarak a antara kristal fotonik dinamis (moving PhC segment) terhadap kristal fotonik statis (fixed PhC segment) dapat ditentukan dengan cara mengatur jari-jari pilar berwarna biru. 18 Gambar 20. Skema sensor jarak dengan menggunakan fotonik kristal dua dimensi. Struktur tersusun atas pilar-pilar yang dikondisikan sebagai pandu gelombang (waveguide) (Zhenfeng Xu et al, 2006)

KARAKTERISTIK SENSOR OPTIK KRISTAL FOTONIK SATU DIMENSI DENGAN DUA PILAR DEFEK MARDANIH

KARAKTERISTIK SENSOR OPTIK KRISTAL FOTONIK SATU DIMENSI DENGAN DUA PILAR DEFEK MARDANIH KARAKTERISTIK SENSOR OPTIK KRISTAL FOTONIK SATU DIMENSI DENGAN DUA PILAR DEFEK MARDANIH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 HALAMAN PERNYATAAN Dengan ini saya menyatakan bahwa tesis

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 21 Analisis output dilakukan terhadap hasil simulasi yang diperoleh agar dapat mengetahui variabel-variabel yang mempengaruhi output. Optimasi juga dilakukan agar output meningkat mendekati dengan hasil

Lebih terperinci

FABRIKASI KRISTAL FOTONIK ASIMETRIK SATU DIMENSI DENGAN DEFEK GEOMETRIS TAHYUDI

FABRIKASI KRISTAL FOTONIK ASIMETRIK SATU DIMENSI DENGAN DEFEK GEOMETRIS TAHYUDI FABRIKASI KRISTAL FOTONIK ASIMETRIK SATU DIMENSI DENGAN DEFEK GEOMETRIS TAHYUDI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 28 Tahyudi (G741328). FABRIKASI

Lebih terperinci

BAB III DASAR DASAR GELOMBANG CAHAYA

BAB III DASAR DASAR GELOMBANG CAHAYA BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

Lampiran 1. Diagram alir penelitian

Lampiran 1. Diagram alir penelitian LAMPIRAN 41 42 43 Lampiran 1. Diagram alir penelitian Penelusuran Literatur Sudah Siap Penguasaan Software Penentuan Parameter Pembuatan dan Pengujian Program Analisis Output Penyusunan Laporan 44 45 Lampiran

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

RANCANGAN SOFTWARE UNTUK DESAIN KRISTAL FOTONIK SATU DIMENSI BERBASIS GRAPHICAL USER INTERFACE DICKY ARDIYANTO WIBOWO

RANCANGAN SOFTWARE UNTUK DESAIN KRISTAL FOTONIK SATU DIMENSI BERBASIS GRAPHICAL USER INTERFACE DICKY ARDIYANTO WIBOWO RANCANGAN SOFTWARE UNTUK DESAIN KRISTAL FOTONIK SATU DIMENSI BERBASIS GRAPHICAL USER INTERFACE DICKY ARDIYANTO WIBOWO DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

Gambar 3. 1 Ilustrasi pemantulan spekuler (kiri) dan pemantulan difuse (kanan)

Gambar 3. 1 Ilustrasi pemantulan spekuler (kiri) dan pemantulan difuse (kanan) 3.1. Cahaya Cahaya merupakan gelombang elektromagnetik yang memiliki sifat-sifat yaitu dapat dipantulkan (refleksi), dibiaskan (refraksi), diserap (absorpsi), interferensi, difraksi, dan polarisasi. Cahaya

Lebih terperinci

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli.

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli. Nama: NIM : Kuis I Elektromagnetika II TT38G1 Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam 14.30 15.00 di N107, berupa copy file, bukan file asli. Kasus #1. Medium A (4 0, 0, x < 0) berbatasan

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Elektromagnet - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK Interferensi Pada

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang

Lebih terperinci

BAB I GETARAN, GELOMBANG DAN BUNYI

BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI Kompetensi dasar : Memahami Konsep Dan Prinsip-Prinsip Gejala Gelombang Secara Umum Indikator : 1. Arti fisis getaran diformulasikan 2. Arti fisis gelombang dideskripsikan

Lebih terperinci

BAB I GETARAN, GELOMBANG DAN BUNYI

BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI Kompetensi dasar : Memahami Konsep Dan Prinsip Prinsip Gejala Gelombang Secara Umum Indikator Tujuan 1. : 1. Arti fisis getaran diformulasikan

Lebih terperinci

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari FISIKA 2 SKS By : Sri Rezeki Candra Nursari MATERI Satuan besaran Fisika Gerak dalam satu dimensi Gerak dalam dua dan tiga dimensi Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik) Gelombang

Lebih terperinci

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK 3.1 Gelombang Ultrasonik Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau gelombang bunyi dengan persamaan

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK BAB GELOMBANG ELEKTROMAGNETIK I. SOAL PILIHAN GANDA Diketahui c = 0 8 m/s; µ 0 = 0-7 Wb A - m - ; ε 0 = 8,85 0 - C N - m -. 0. Perhatikan pernyataan-pernyataan berikut : () Di udara kecepatannya cenderung

Lebih terperinci

Polarisasi Gelombang. Polarisasi Gelombang

Polarisasi Gelombang. Polarisasi Gelombang Polarisasi Gelombang Polarisasi Gelombang Gelombang cahaya adalah gelombang transversal, sedangkan gelombang bunyi adalah gelombang longitudinal. Nah, ada satu sifat gelombang yang hanya dapat terjadi

Lebih terperinci

Gambar dibawah memperlihatkan sebuah image dari mineral Beryl (kiri) dan enzim Rubisco (kanan) yang ditembak dengan menggunakan sinar X.

Gambar dibawah memperlihatkan sebuah image dari mineral Beryl (kiri) dan enzim Rubisco (kanan) yang ditembak dengan menggunakan sinar X. EKO NURSULISTIYO Gambar dibawah memperlihatkan sebuah image dari mineral Beryl (kiri) dan enzim Rubisco (kanan) yang ditembak dengan menggunakan sinar X. Struktur gambar tersebut disebut alur Laue (Laue

Lebih terperinci

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t Modul Pembelajaran Fisika XII-IPA 1 BAB 1 GEJALA GELOMBANG A. Persamaan Dasar Gelombang 1). Pengertian Gelombang Gelombang adalah usikan yang merambat secara terus menerus. Medium yang dilalui gelombang

Lebih terperinci

PENGARUH BAHAN DIELEKTRIK DALAM UNJUK KERJA WAVEGUIDE

PENGARUH BAHAN DIELEKTRIK DALAM UNJUK KERJA WAVEGUIDE PENGARUH BAHAN DIELEKTRIK DALAM UNJUK KERJA WAVEGUIDE Lince Markis Jurusan Teknik Elektro Politeknik Negeri Padang Kampus Unand Limau Manis Padang E-mail: lincemarkis@yahoo.com ABSTRAK Makalah ini menyajikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Skema Teori Listrik dan Magnetik Untuk mempelajari tentang ilmu kelistrikan dan ilmu kemagnetikan diperlukan dasar dari kelistrikan dan kemagnetikan yang ditunjukkan oleh gambar

Lebih terperinci

Xpedia Fisika. Optika Fisis - Soal

Xpedia Fisika. Optika Fisis - Soal Xpedia Fisika Optika Fisis - Soal Doc. Name: XPFIS0802 Version: 2016-05 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) muatan listrik yang diam (2) muatan listrik yang bergerak lurus

Lebih terperinci

BAB III GROUND PENETRATING RADAR

BAB III GROUND PENETRATING RADAR BAB III GROUND PENETRATING RADAR 3.1. Gelombang Elektromagnetik Gelombang elektromagnetik adalah gelombang yang terdiri dari medan elektrik (electric field) dan medan magnetik (magnetic field) yang dapat

Lebih terperinci

KARAKTERISASI FIBER BRAGG GRATING (FBG) TIPE UNIFORM DENGAN MODULASI AKUSTIK MENGGUNAKAN METODE TRANSFER MATRIK

KARAKTERISASI FIBER BRAGG GRATING (FBG) TIPE UNIFORM DENGAN MODULASI AKUSTIK MENGGUNAKAN METODE TRANSFER MATRIK KARAKTERISASI FIBER BRAGG GRATING (FBG) TIPE UNIFORM DENGAN MODULASI AKUSTIK MENGGUNAKAN METODE TRANSFER MATRIK Pipit Sri Wahyuni 1109201719 Pembimbing Prof. Dr. rer. nat. Agus Rubiyanto, M.Eng.Sc ABSTRAK

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. ( Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang

Lebih terperinci

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

Gejala Gelombang. gejala gelombang. Sumber:

Gejala Gelombang. gejala gelombang. Sumber: Gejala Gelombang B a b B a b 1 gejala gelombang Sumber: www.alam-leoniko.or.id Jika kalian pergi ke pantai maka akan melihat ombak air laut. Ombak itu berupa puncak dan lembah dari getaran air laut yang

Lebih terperinci

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1 KELAS XII LC FISIKA SMA KOLESE LOYOLA M1-1 MODUL 1 STANDAR KOMPETENSI : 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah KOMPETENSI DASAR 1.1. Mendeskripsikan gejala dan ciri-ciri

Lebih terperinci

BAB I PENDAHULUAN. informasi dengan kapasitas besar dengan keandalan yang tinggi. Pada awal

BAB I PENDAHULUAN. informasi dengan kapasitas besar dengan keandalan yang tinggi. Pada awal BAB I PENDAHULUAN A. Latar Belakang Serat optik adalah salah satu media transmisi yang dapat menyalurkan informasi dengan kapasitas besar dengan keandalan yang tinggi. Pada awal penggunaannya, serat optik

Lebih terperinci

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM)

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM) Disusun oleh : MIRA RESTUTI 1106306 PENDIDIKAN FISIKA (RM) PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI PADANG 2013 Kompetensi Dasar :

Lebih terperinci

CAHAYA. CERMIN. A. 5 CM B. 10 CM C. 20 CM D. 30 CM E. 40 CM

CAHAYA. CERMIN. A. 5 CM B. 10 CM C. 20 CM D. 30 CM E. 40 CM CAHAYA. CERMIN. A. 5 CM B. 0 CM C. 20 CM D. 30 CM E. 40 CM Cahaya Cermin 0. EBTANAS-0-2 Bayangan yang terbentuk oleh cermin cekung dari sebuah benda setinggi h yang ditempatkan pada jarak lebih kecil

Lebih terperinci

Jenis dan Sifat Gelombang

Jenis dan Sifat Gelombang Jenis dan Sifat Gelombang Gelombang Transversal, Gelombang Longitudinal, Gelombang Permukaan Gelombang Transversal Gelombang transversal merupakan gelombang yang arah pergerakan partikel pada medium (arah

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

Gelombang Transversal Dan Longitudinal

Gelombang Transversal Dan Longitudinal Gelombang Transversal Dan Longitudinal Pada gelombang yang merambat di atas permukaan air, air bergerak naik dan turun pada saat gelombang merambat, tetapi partikel air pada umumnya tidak bergerak maju

Lebih terperinci

KATA PENGANTAR. Kupang, September Tim Penyusun

KATA PENGANTAR. Kupang, September Tim Penyusun KATA PENGANTAR Puji syukur tim panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas berkat dan rahmat-nya tim bisa menyelesaikan makalah yang berjudul Optika Fisis ini. Makalah ini diajukan guna memenuhi

Lebih terperinci

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik BAB II GELOMBANG ELEKTROMAGNETIK 2.1 Umum elektromagnetik adalah gelombang yang dapat merambat walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik seperti yang diilustrasikan pada

Lebih terperinci

Macam-macam berkas cahaya: 1. Berkas mengumpul (Konvergen) 2. Berkas Menyebar ( divergen) 3. Berkas Sejajar.

Macam-macam berkas cahaya: 1. Berkas mengumpul (Konvergen) 2. Berkas Menyebar ( divergen) 3. Berkas Sejajar. BAB V CAHAYA Cahaya adalah gelombang yang memindahkan tenaga tanpa perambatan massa. Cahaya merupakan gelombang elektromagnetik yang terdiri dari beberapa macam warna. Di dalam ruang hampa warna warna

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi yang begitu cepat dan arus informasi yang semakin transparan, serta perubahan-perubahan dinamis yang tidak dapat dielakkan

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang 1 BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA 01. Persamaan antara getaran dan gelombang adalah (1) keduanya memiliki frekuensi (2) keduanya memiliki amplitude (3) keduanya memiliki panjang gelombang A.

Lebih terperinci

ELEKTROMAGNETIKA TERAPAN

ELEKTROMAGNETIKA TERAPAN ELEKTROMAGNETIKA TERAPAN GELOMBANG DATAR SERBASAMA D W I A N D I N U R M A N T R I S U N A N G S U N A R YA H A S A N A H P U T R I AT I K N O V I A N T I POKOK BAHASAN 1. Definisi Gelombang Datar ( Plane

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Optika Fisis - Latihan Soal Doc Name: AR12FIS0399 Version : 2012-02 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) Mauatan listrik yang diam (2) Muatan listrik

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT GELOMBANG STASIONER COBA PERHATIKAN GAMBAR GRAFIK BERIKUT POLA GELOMBANG APAKAH YANG DIHASILKAN APABILA PERTEMUAN GELOMBANG DATANG DARI TITIK A DAN YANG SATUNYA LAGI DIPANTULKAN DARI TITIK B SEPERTI YANG

Lebih terperinci

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI 4.1 TINJAUAN UMUM Tahapan simulasi pada pengembangan solusi numerik dari model adveksidispersi dilakukan untuk tujuan mempelajari

Lebih terperinci

SIFAT DAN PERAMBATAN CAHAYA. Oleh : Sabar Nurohman,M.Pd

SIFAT DAN PERAMBATAN CAHAYA. Oleh : Sabar Nurohman,M.Pd SIFAT DAN PERAMBATAN CAHAYA Oleh : Sabar Nurohman,M.Pd PERKEMBANGAN TEORI TENTANG CAHAYA Teori abad ke-10 Abu Ali Hasan Ibn Al-Haitham /Alhazen (965 sekitar 1040), menganggap bahwa sinar cahaya adalah

Lebih terperinci

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I CAHAYA O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I PETA KONSEP Cahaya Dualisme Cahaya Kelajuan Cahaya

Lebih terperinci

BAB II TEORI DASAR (2.1) sin. Gambar 2.1 Prinsip Huygen. Gambar 2.2 Prinsip Snellius yang menggambarkan suatu yang merambat dari medium 1 ke medium 2

BAB II TEORI DASAR (2.1) sin. Gambar 2.1 Prinsip Huygen. Gambar 2.2 Prinsip Snellius yang menggambarkan suatu yang merambat dari medium 1 ke medium 2 BAB II TEORI DASAR.1 Identifikasi Bentuk Gelombang Perambatan gelombang pada media bawah permukaan mengikuti beberapa prinsip fisika sebagai berikut : a. Prinsip Huygen menyatakan bahwa setiap titik yang

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Elektromagnetik Teori gelombang elektromagnetik pertama kali dikemukakan oleh James Clerk Maxwell (83 879). Hipotesis yang dikemukakan oleh Maxwell, mengacu pada tiga aturan dasar listrik-magnet

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

Fisika Dasar. Gelombang Mekanik 08:36:22. Mampu menentukan besaran-besaran gelombang yaitu amplitudo,

Fisika Dasar. Gelombang Mekanik 08:36:22. Mampu menentukan besaran-besaran gelombang yaitu amplitudo, Kompetensiyang diharapkan Gelombang Mekanik Mampu mendeskripsikan gejala dan ciri-ciri gelombang secara umum Mampu menentukan besaran-besaran gelombang yaitu amplitudo, frekuensi, kecepatan, fasa dan konstanta

Lebih terperinci

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa 2 Metode yang sering digunakan untuk menentukan koefisien serap bunyi pada bahan akustik adalah metode ruang gaung dan metode tabung impedansi. Metode tabung impedansi ini masih dibedakan menjadi beberapa

Lebih terperinci

SOLUSI EKSAK GELOMBANG SOLITON: PERSAMAAN SCHRODINGER NONLINEAR NONLOKAL (NNLS)

SOLUSI EKSAK GELOMBANG SOLITON: PERSAMAAN SCHRODINGER NONLINEAR NONLOKAL (NNLS) Solusi Eksak Gelombang Soliton: Persamaan Schrodinger Nonlinier Nonlokal SOLUSI EKSAK GELOMBANG SOLITON: PERSAMAAN SCHRODINGER NONLINEAR NONLOKAL (NNLS) Riski Nur Istiqomah Dinnullah Jurusan Pendidikan

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 20 BAB 3 METODOLOGI PENELITIAN 3.1 Populasi dan Sampel Penelitian Dalam penulisan skripsi ini, populasi dalam penelitian adalah semua produk speaker komputer dengan berbagai kualitasnya. Speaker komputer

Lebih terperinci

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1 GELOMBANG MEKANIK Pada pembelajaran ini kita akan mem pelajari gelombang mekanik Gelombang mekanik dapat dipelajari gejala gelombang pada tali melalui Pernahkah kalian melihat sekumpulan anak anak yang

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

Gelombang. Rudi Susanto

Gelombang. Rudi Susanto Gelombang Rudi Susanto Pengertian Gelombang Gelombang adalah suatu gejala terjadinya perambatan suatu gangguan (disturbane) melewati suatu medium dimana setelah gangguan ini lewat keadaan medium akan kembali

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

BAB IV PEMODELAN DAN ANALISIS

BAB IV PEMODELAN DAN ANALISIS BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

Fisika I. Gelombang Mekanik 01:26:19. Mampu menentukan besaran-besaran gelombang yaitu amplitudo,

Fisika I. Gelombang Mekanik 01:26:19. Mampu menentukan besaran-besaran gelombang yaitu amplitudo, Kompetensiyang diharapkan Mampu mendeskripsikan gejala dan ciri-ciri gelombang secara umum Mampu menentukan besaran-besaran gelombang yaitu amplitudo, frekuensi, kecepatan, fasa dan konstanta penjalaran.

Lebih terperinci

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X Pengukuran, Besaran dan Satuan: 1. Besi mempunyai massa jenis 7,86 kg/m 3. Tentukan volume sepotong besi yang massanya 3,93 g. A. 0,5 cm 3 B. 0,5 m 3 C. 2,0 cm 3 D. 2,0 m 3 (hubungan besaran pokok dan

Lebih terperinci

SMA IT AL-BINAA ISLAMIC BOARDING SCHOOL UJIAN AKHIR SEMESTER GANJIL TAHUN AJARAN 2011/2012

SMA IT AL-BINAA ISLAMIC BOARDING SCHOOL UJIAN AKHIR SEMESTER GANJIL TAHUN AJARAN 2011/2012 PTUNJUK UMUM SMA T AL-NAA SLAMC OARDNG SCHOOL UJAN AKHR SMSTR GANJL TAHUN AJARAN 2011/2012 LMAR SOAL Mata Pelajaran : isika Pengajar : Harlan, S.Pd Kelas : X Hari/Tanggal : Senin/26 Desember 2011 AlokasiWaktu

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya 1. EBTANAS-06-22 Berikut ini merupakan sifat-sifat gelombang cahaya, kecuali... A. Dapat mengalami pembiasan B. Dapat dipadukan C. Dapat dilenturkan D. Dapat dipolarisasikan E. Dapat menembus cermin cembung

Lebih terperinci

INTERFERENSI GELOMBANG

INTERFERENSI GELOMBANG INERFERENSI GELOMBANG Gelombang merupakan perambatan dari getaran. Perambatan gelombang tidak disertai dengan perpindahan materi-materi medium perantaranya. Gelombang dalam perambatannya memindahkan energi.

Lebih terperinci

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam)

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam) Kumpulan Soal Fisika Dasar II Universitas Pertamina (16-04-2017, 2 jam) Materi Hukum Biot-Savart Hukum Ampere GGL imbas Rangkaian AC 16-04-2017 Tutorial FiDas II [Agus Suroso] 2 Hukum Biot-Savart Hukum

Lebih terperinci

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R DOKUMEN ASaFN. Sebuah uang logam diukur ketebalannya dengan menggunakan jangka sorong dan hasilnya terlihat seperti pada gambar dibawah. Ketebalan uang tersebut adalah... A. 0,0 cm B. 0, cm C. 0, cm D.

Lebih terperinci

BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit

BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit BAB II PEMBAHASAN A. Difraksi Sesuai dengan teori Huygens, difraksi dapat dipandang sebagai interferensi gelombang cahaya yang berasal dari bagian-bagian suatu medan gelombang. Medan gelombang boleh jadi

Lebih terperinci

BAB GEJALA GELOMBANG

BAB GEJALA GELOMBANG BAB GEJALA GELOMBANG 1 BAB GEJALA GELOMBANG Contoh 1.1 Pengertian besaran-besaran pada gelombang transversal 1. Pengertian panjang gelombang Gelombang air laut mendekati mercusuar dengan cepat rambat

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Key words : external electrics field, non-linear optics, polarization, polarization angle

Key words : external electrics field, non-linear optics, polarization, polarization angle ANALISIS PENGARUH MEDAN LISTRIK LUAR TERHADAP SUDUT PUTAR POLARISASI SINAR LASER DALAM LARUTAN GULA DAN GLISERIN Oleh: Linda Perwirawati, K.Sofjan Firdausi, Indras M Laboratorium Optoelektronik & Laser

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Karakterisasi XRD. Pengukuran

Karakterisasi XRD. Pengukuran 11 Karakterisasi XRD Pengukuran XRD menggunakan alat XRD7000, kemudian dihubungkan dengan program dikomputer. Puncakpuncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

Polarisasi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0

Polarisasi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0 Polarisasi Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Teori Korpuskuler (Newton) Cahaya Cahaya adalah korpuskel korpuskel yang dipancarkan oleh sumber dan merambat lurus dengan

Lebih terperinci

BAB GEJALA GELOMBANG

BAB GEJALA GELOMBANG BAB GEJALA GELOMBANG Contoh. Pengertian besaran-besaran pada gelombang transversal. Pengertian panjang gelombang Gelombang air laut mendekati mercusuar dengan cepat rambat 7 m/s. Jarak antara dua dasar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Grafika Komputer Grafika komputer atau dalam bahasa Inggris computer graphics dapat diartikan sebagai perangkat alat yang terdiri dari hardware dan software untuk membuat gambar,

Lebih terperinci

GELOMBANG SEISMIK Oleh : Retno Juanita/M

GELOMBANG SEISMIK Oleh : Retno Juanita/M GELOMBANG SEISMIK Oleh : Retno Juanita/M0208050 Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat

Lebih terperinci

BAB II SALURAN TRANSMISI

BAB II SALURAN TRANSMISI BAB II SALURAN TRANSMISI 2.1 Umum Penyampaian informasi dari suatu sumber informasi kepada penerima informasi dapat terlaksana bila ada suatu sistem atau media penyampaian di antara keduanya. Jika jarak

Lebih terperinci

KISI-KISI SOAL UJI COBA. Menurut medium perambatannya, gelombang

KISI-KISI SOAL UJI COBA. Menurut medium perambatannya, gelombang LAMPIRAN IV KISI-KISI SOAL UJI COBA No Indikator soal Teknik Bentuk Instrumen 1 Peserta didik menjelaskan karakteristik mekanik dan elektromagnetik Contoh Soal Menurut medium perambatannya, diklasifiikasikan

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

HASIL DAN PEMBAHASAN. Absorbansi Probe Sensor terhadap Variasi Konsentrasi Gas H 2 S

HASIL DAN PEMBAHASAN. Absorbansi Probe Sensor terhadap Variasi Konsentrasi Gas H 2 S 7 yang besar, karena probe sensor sangat sensitif dan jika mengalami guncangan yang besar, dapat mengakibatkan data yang diambil kurang baik. Setelah semua disiapkan, program pengambilan data dijalankan

Lebih terperinci

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG MEKANIS

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG MEKANIS YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. Bandung 0. 7 Fa. 0. 587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id HANDOUT FISIKA KELAS XII

Lebih terperinci

PolarisasiCahaya. Dede Djuhana Kuliah Fisika Dasar 2 Fakultas Teknik Kelas FD2_06 Universitas Indonesia 2011

PolarisasiCahaya. Dede Djuhana Kuliah Fisika Dasar 2 Fakultas Teknik Kelas FD2_06 Universitas Indonesia 2011 PolarisasiCahaya Dede Djuhana Kuliah Fisika Dasar Fakultas Teknik Kelas FD_06 Universitas Indonesia 011 1 KonsepCahaya Teori Korpuskuler(Newton) Cahaya adalah korpuskel-korpuskel yang dipancarkan oleh

Lebih terperinci

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK Bab 4 PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK 4.1 Kasus 2 buah Balok Dalam bahasan ini akan dipelajari proses transmisi dan refleksi yang terjadi untuk kasus 2 buah balok dengan bentuk geometri yang

Lebih terperinci

Kumpulan Soal Fisika Dasar II.

Kumpulan Soal Fisika Dasar II. Kumpulan Soal Fisika Dasar II http://personal.fmipa.itb.ac.id/agussuroso http://agussuroso102.wordpress.com Topik Gelombang Elektromagnetik Interferensi Difraksi 22-04-2017 Soal-soal FiDas[Agus Suroso]

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Getaran Dalam Zat Padat BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Pendahuluan Getaran atom dalam zat padat dapat disebabkan oleh gelombang yang merambat pada Kristal. Ditinjau dari panjang gelombang yang digelombang yang digunakan dan dibandingkan

Lebih terperinci

Sifat-sifat gelombang elektromagnetik

Sifat-sifat gelombang elektromagnetik GELOMBANG II 1 MATERI Gelombang elektromagnetik (Optik) Refleksi, Refraksi, Interferensi gelombang optik Pembentukan bayangan cermin dan lensa Alat-alat yang menggunakan prinsip optik 1 Sifat-sifat gelombang

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci