Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri

Ukuran: px
Mulai penontonan dengan halaman:

Download "Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri"

Transkripsi

1 Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri Riri Jonuarti* dan Freddy Haryanto Diterima 21 Mei 2011, direvisi 15 Juni 2011, diterbitkan 2 Agustus 2011 Abstrak Beberapa peneliti telah menemukan bukti bahwa dinamika fluida pembuluh darah memainkan peran utama dalam pengembangan dan perkembangan penyakit arteri. Arteri yang menyempit disebabkan oleh perkembangan plak aterosklerosis yang mencuat ke dalam lumen, mengakibatkan terjadinya stenosis arteri. Ketika sebuah obstruksi (penghalang) berkembang dalam arteri, salah satu konsekuensi paling serius adalah resistansi aliran meningkat dan terjadi pengurangan jumlah aliran darah ke tempat tertentu yang dipasok melalui arteri. Telah dibuat simulasi kecepatan aliran darah dalam pembuluh arteri dan dalam kaitannya dengan penyakit stenosis. Dalam simulasi ini digunakan aliran berdenyut dan darah dianggap sebagai fluida yang dinamis, mampat dan kental. Untuk stenosis telah digunakan model fluida Casson. Profil kecepatan aliran dalam pembuluh arteri dengan variasi jarak stenosis dari sumbu pembuluh darah diperoleh makin jauh posisi stenosis dari sumbu pembuluh darah makin rendah kecepatan aliran. Resistansi aliran bertambah dengan bertambahnya ukuran (tinggi dan panjang) stenosis. Kata-kata kunci: aliran darah, arteri, femoralis, fluida Casson, stenosis. Pendahuluan Proses peredaran darah dipengaruhi oleh kecepatan darah, luas penampang pembuluh darah, tekanan darah dan kerja otot yang terdapat pada jantung dan pembuluh darah. Salah satu pembuluh darah yang ditinjau pada tulisan ini adalah pembuluh darah arteri femoralis. Arteri femoralis adalah arteri yang memanjang dari pangkal paha sampai lutut. Arteri ini adalah arteri utama yang membawa pasokan darah ke tungkai bawah. Ada banyak bukti bahwa dinamika fluida pembuluh darah memainkan peran utama dalam pengembangan dan perkembangan penyakit arteri [1,2]. Salah satu dari penyakit arteri adalah penyempitan arteri atau di dalam istilah kedokteran dikenal juga dengan stenosis arteri. Arteri yang menyempit disebabkan oleh perkembangan plak aterosklerosis yang mencuat ke dalam lumen, mengakibatkan terjadinya stenosis arteri. Ketika sebuah obstruksi (penghalang) berkembang dalam arteri, salah satu konsekuensi paling serius adalah resistansi aliran meningkat dan terjadi pengurangan jumlah aliran darah ke tempat tertentu yang dipasok melalui arteri. Stenosis ini berhubungan dengan penumpukkan zat lemak (seperti kolesterol) pada dinding dalam pembuluh arteri ataupun perubahan patologis dalam struktur jarigan [3]. Perkembangan dari stenosis ini dapat menyebabkan gangguan peredaran darah yang serius, dimana pada stenosis, perilaku aliran darah sangat berbeda dari keadaan arteri normal. Dengan demikian, studi aliran darah pada stenosis memainkan peran penting untuk pemahaman, diagnosis dan pengobatan penyakit penyumbatan arteri. Teori Aliran darah dalam arteri didorong oleh jantung, oleh karena itu alirannya berdenyut. Model sederhana untuk aliran berdenyut dikembangkan oleh Womersley [4]. Untuk aliran darah yang berosilasi dimodelkan dari fluida yang mampat dalam silinder, melingkar lurus dengan panjang l, dan jari-jari R yang terisi fluida dengan kerapatan ρ dan kekentalan µ. Bila aliran tunak, maka gradien tekanan adalah (p 1 p 2 )/l bernilai konstan, dengan p 1 dan p 2 adalah tekanan pada ujung-ujung pipa. Anggap w adalah kecepatan longitudinal cairan pada suatu titik pada jarak r dari sumbu pipa. Persamaan gerak cairan dinyatakan dengan: dengan solusinya:. (1). (2) Bila gradien tekanan tidak konstan, maka persamaan (1) berbentuk:. (3) Tinjau gradien tekanan sinusoidal yang terdiri dari sinus dan kosinus, ISBN xxx-x-xxxx-xxxx-x 1

2 . (4) Dengan frekuensi osilasi adalah ω/2π. Subsitusi persamaan (4) ke persamaan (3) diperoleh:. (5) Penyelesaian dari persamaan ini akan memberikan komponen aksial dan radial dari laju aliran darah dalam arteri. Solusi persamaan (5) diperoleh dengan cara pemisahan variabel sebagai berikut:. (6) Dengan memasukan persamaan (6) ke dalam persamaan (5) diperoleh: matematis untuk jari-jari bagian stenosis dinyatakan sebagai berikut [5,6]:,(10) dengan R 0 adalah jari-jari arteri normal (tanpa stenosis), R(z) adalah jari-jari arteri dalam daerah stenosis, L adalah panjang arteri, L 0 adalah panjang stenosis, d adalah lokasi stenosis, p i adalah tekanan inlet, p o adalah tekanan outlet, δ h adalah tinggi maksimum stenosis. Dalam model fluida Casson, persamaan konstitutif adalah:, (11). (7) Persamaan (7) merupakan persamaan Bessel, dengan solusi sebagai berikut: dengan w adalah kecepatan aksial, τ 0 adalah tegangan dan η 2 adalah viskositas fluida. Resistansi aliran diperoleh dengan menerapkan persamaan konstitutif; yaitu:, Akhirnya, persamaan (6) menjadi:, (8), (9), (12) dengan koefisien f, g, dan h diberikan oleh persamaan berikut [6]. dengan J 0 adalah fungsi Bessel untuk orde nol, v = µ/ρ adalah viskositas kinematika, y = r/r dan α = adalah parameter tanpa dimensi yang dikenal sebagai bilangan Womersley., (13) dan G 1, G 2 dan G 3 diberikan dalam persamaan:, (14) d L 0 δ h R 0 R(z) τ 0 p i p 0 z 0, (15) L Gambar 1. Geometri dari arteri stenosis. Diasumsikan bahwa stenosis terbentuk dalam arteri secara simetris radial bergantung pada jarak aksial z dan tinggi pertumbuhannya, seperti terlihat dalam Gambar 1. Model. (16) ISBN xxx-x-xxxx-xxxx-x 2

3 Metode Metode yang digunakan dalam penelitian ini adalah metode kajian pustaka dan simulasi. Untuk mencapai tujuan penelitian akan dilakukan kegiatan-kegiatan seperti digambarkan dalam diagram alir pada Gambar 2. Persamaan umum aliran darah dalam arteri (Pers(9)) Hasil profil kecepatan Persamaan Aliran Darah Analisa dan Kesimpulan Gambar 2. Diagram alir penelitian. Hasil dan diskusi Persamaan aliran darah arteri untuk kasus stenosis Persamaan resistansi aliran darah model fluida Casson (Pers(12)) Hasil profil kecepatan Hasil simulasi profil kecepatan untuk beberapa nilai bilangan Womersley (α) diperlihatkan dalam Gambar 3, dimana profil kecepatan diambil plot antara posisi radial terhadap posisi sudut (ωt) yang berbeda-beda. Gambar 3. Profil kecepatan aliran darah dalam arteri untuk beberapa bilangan Womersley. Profil kecepatan diplot untuk interval ωt = (a). α = 3,34. (b). α = 3,52. (c). α = 3,75, (d). α = 4,00. Terlihat profil kecepatan aliran darah dalam Gambar 3 menunjukkan pola yang sama untuk setiap bilangan Womersley, namun dengan nilai kecepatan yang berbeda, seperti diplot dalam Gambar 4. Ketika bilangan Womersley makin besar, terlihat profil kecepatan menjadi lebih datar. Profil kecepatan untuk ωt = memiliki nilai yang sama dengan ωt = 0 0 tetapi dengan tanda yang berlawanan. Hal ini mengikuti pola dari sumber aliran berdenyut (berosilasi) yang menggunakan gradien tekanan sinusoidal yang terdiri dari sinus dan kosinus, dimana terjadi pembalikan fase setelah Kecepatan (cm/s) Profil Kecepatan Posisi radial Bil. Womersley : 3.34 Bil. Womersley : 3.52 Bil. Womersley : 3.75 Bil. Womersley : 4.00 Bil. Womersley : 4.72 Gambar 4. Profil kecepatan aliran darah dalam arteri untuk beberapa bilangan Wormersley pada saat ωt = 0 0. Gambar 4 memperlihatkan profil kecepatan aliran darah saat ωt = 0 0 untuk beberapa nilai bilangan Womersley. Terlihat bahwa hubungan bilangan Womersley dengan kecepatan aliran adalah semakin kecil bilangan Womersley semakin besar kecepatan aliran. Misalnya untuk bilangan Womersley paling kecil 3,34 kecepatannya berfluktuasi disekitar 12 sampai 13 cm/s, besar kecepatan aliran untuk bilangan ini adalah paling besar diantara tiga bilangan Womersley lainnya. Dalam Gambar 4 juga terlihat profil kecepatan memiliki puncak maksimum dan minimum yang tingginya berbeda untuk setiap bilangan Womersley yang dipakai. Rata-rata untuk tiap-tiap bilangan Womersley puncak maksimumnya terletak pada posisi radial antara 0,4 sampai 0,8, sedangkan untuk puncak minimunnya untuk semua variasi bilangan Womerley terletak di sumbu pembuluh darah. Adanya puncak maksimum dan puncak minimum pada profil kecepatan ini dikarenakan aliran darah dipompa oleh jantung yang menghasilkan gradien tekanan yang berdenyut sehingga aliran darah berosilasi. Simulasi profil kecepatan aliran darah pada kasus stenosis dibuat dengan parameter sebagai berikut: α = 3,52; R 0 = 0,24 cm; L = 10 cm, ρ = 1,05 g/cm 3, dan µ = 3,0 x 10-3 Kg/m.s. Profil kecepatan aliran dalam pembuluh arteri dengan variasi jarak stenosis dari sumbu pembuluh darah (R i ) diperlihatkan dalam Gambar 5. Dari hasil simulasi diperoleh makin jauh posisi stenosis dari sumbu pembuluh darah makin rendah kecepatan aliran. Hal ini ISBN xxx-x-xxxx-xxxx-x 3

4 disebabkan oleh makin jauh posisi stenosis dari sumbu pembuluh darah, berarti juga makin kecil ukuran stenosis, sehingga penampang lintang aliran yang dilalui darah makin besar. Gambar 5. Profil kecepatan aliran darah untuk beberapa nilai jarak stenosis dari sumbu pembuluh darah. dengan bertambahnya ukuran (tinggi dan panjang) stenosis. Hal ini terjadi karena pada stenosis terdapat penghalang yang terbentuk dari plak pada dinding-dinding pembuluh darah. Kurva tinggi stenosis terhadap resistansi aliran untuk beberapa nilai tegangan geser diperlihatkan dalam Gambar 6b. Perhitungan diambil untuk nilai n = 1, ρ = 1,05 g/cm 3, µ = 3,5 x 10-3 Kg/m.s, dan L 0 = 0,5L. Dalam Gambar 6b terlihat bahwa resistansi aliran berkurang apabila tegangan geser bertambah. Misalnya untuk tegangan geser yang bernilai rendah seperti 0 Pa, 0,02 Pa dan 0,04 Pa resistansi alirannya cenderung bertambah sangat besar seiring bertambahnya ukuran stenosis. Sedangkan untuk nilai tegangan geser yang relatif besar yaitu 19,25 Pa, kenaikan resistansi aliran terhadap bertambahnya ukuran stenosis tidak terlalu besar. Hal ini terjadi karena tegangan geser membuat pembuluh darah menjadi lentur sehingga memudahkan darah mengalir. Hasil simulasi ini mempunyai pola yang sama dengan hasil yang diperoleh oleh Joshi.P dkk [6]. Kesimpulan Makin besar bilangan Womersley, terlihat profil kecepatan menjadi tumpul. Profil kecepatan untuk ωt = memiliki nilai yang sama dengan ωt = 0 0 tetapi dengan tanda yang berlawanan. Makin jauh posisi stenosis dari sumbu pembuluh darah makin rendah kecepatan aliran. Hal ini disebabkan oleh makin jauh posisi stenosis dari sumbu pembuluh darah, berarti juga makin kecil ukuran stenosis, sehingga penampang lintang aliran yang dilalui darah makin besar. Untuk model fluida Casson, resistansi aliran bertambah dengan bertambahnya ukuran (tinggi dan panjang) stenosis. Sedangkan resistansi aliran berkurang apabila tegangan geser bertambah. Gambar 6. (a).variasi nilai resistansi aliran (λ) dengan tinggi stenosis (δ/r 0 ) saat τ = 19,25 Pa untuk beberapa nilai panjang stenosis (L 0 ). (b). Variasi nilai resistansi aliran (λ) dengan tinggi stenosis (δ/r 0 ) untuk beberapa nilai tegangan geser (τ). Kurva tinggi stenosis terhadap resistansi aliran untuk nilai panjang stenosis berturut-turut L 0 = 0,1L, L 0 = 0,5L, dan L 0 = L diperlihatkan dalam Gambar 6a. Perhitungan dilakukan dengan parameter-parameter; n = 1, R 0 = 2,4 mm, ρ = 1,05 g/cm 3, µ = 3,5 x 10-3 Kg/m.s, τ = 19,25 Pa, dan α = 3,59. Dalam Gambar 6a terlihat bahwa resistansi aliran bertambah Referensi [1] Srivastava. L.M, (1985): Flow of couple stress fluid through stenotic blood vessels. J. Biomech, 18, [2] Tu. C, dan Deville. M, (1996): Pulsatile flow of non-newtonian fluids through arterial stenosis. J. Biomech, 29, [3] Liepsch. D, M. Singh, dan L. Martin, (1992): Experimental analysis of the influence of stenotic geometry on steady flow, Biorheology 29, [4] Womersley. J.R. (1955): Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries when the Pressure Gradient is Known. J. Physiol [5] Sankar. D.S dan Hemalatha, (2006): Pulsatile flow of Hershel-Bulkley fluid through stenosed arteries- A mathematical ISBN xxx-x-xxxx-xxxx-x 4

5 model, International Journal of Non-Linier Mechanics 41, [6] Joshi. P, Pathak. A, dan Joshi, B. K, (2010): Modelling of arterial stenosis and its effect on flow of blood, International Journal of Applied Mathematics and Computation, 2 (4), Riri Jonuarti* Nuclear Physics and Biophysis Research Division Institut Teknologi Bandung riri_jonuarti@yahoo.com Freddy Haryanto Nuclear Physics and Biophysis Research Division Institut Teknologi Bandung freddy@fi.itb.ac.id *Corresponding author ISBN xxx-x-xxxx-xxxx-x 5

Analisis Aliran Darah dalam Stenosis Arteri Menggunakan Model Fluida Casson dan Power-Law

Analisis Aliran Darah dalam Stenosis Arteri Menggunakan Model Fluida Casson dan Power-Law Jurnal ILMU DASAR, Vol.14 No.2, Juli 2013: 73-78 73 Analisis Aliran Darah dalam Stenosis Arteri Menggunakan Model Fluida Casson dan Power-Law Blood Flow Analysis in Arterial Stenosis Using Casson and Power-law

Lebih terperinci

PENGUKURAN VISKOSITAS. Review Viskositas 3/20/2013 RINI YULIANINGSIH. Newtonian. Non Newtonian Power Law

PENGUKURAN VISKOSITAS. Review Viskositas 3/20/2013 RINI YULIANINGSIH. Newtonian. Non Newtonian Power Law PENGUKURAN VISKOSITAS RINI YULIANINGSIH Review Viskositas Newtonian Non Newtonian Power Law yz = 0 + k( yz ) n Model Herschel-Bulkley ( yz ) 0.5 = ( 0 ) 0.5 + k( yz ) 0.5 Model Casson Persamaan power law

Lebih terperinci

BAB 1 PENDAHULUAN. Gambar 1.1: Aliran Darah Yang Terjadi Pada Pembuluh Darah Tanpa Penyempitan Arteri Dan Dengan Penyempitan Arteri

BAB 1 PENDAHULUAN. Gambar 1.1: Aliran Darah Yang Terjadi Pada Pembuluh Darah Tanpa Penyempitan Arteri Dan Dengan Penyempitan Arteri BAB 1 PENDAHULUAN 1.1. Latar Belakang Darah merupakan komponen penting di dalam tubuh sebagai alat transportasi untuk metabolisme tubuh. Sistem peredaran darah atau sistem kardiovaskular merupakan suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id DINAMIKA FLUIDA nurhidayah@unja.ac.id nurhidayah.staff.unja.ac.id Fluida adalah zat alir, sehingga memiliki kemampuan untuk mengalir. Ada dua jenis aliran fluida : laminar dan turbulensi Aliran laminar

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada BAB II ALIRAN FLUIDA DALAM PIPA.1 Sifat-Sifat Fluida Fluida merupakan suatu zat yang berupa cairan dan gas. Fluida memiliki beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI 127 1 17 BAB I PENDAHULUAN LATAR BELAKANG RUMUSAN MASALAH BATASAN MASALAH TUJUAN MANFAAT LATAR BELAKANG Fluida

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida KTSP & K-13 FIsika K e l a s XI FLUID STTIS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fluida statis.. Memahami sifat-sifat fluida

Lebih terperinci

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta FLUIDA DINAMIS Ada tiga persamaan dasar dalam hidraulika, yaitu persamaan kontinuitas energi dan momentum. Untuk aliran mantap dan satu dimensi persamaan energi dapat disederhanakan menjadi persamaan Bernoulli

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN : Simulasi Aliran Fluida Crude Palm Oil (CPO) dan Air Pada Pipa Horizontal Menggunakan Metode Volume Hingga Bedry Yuveno Denny 1*), Yoga Satria Putra 1), Joko Sampurno 1), Agato 2) 1) Jurusan Fisika Fakultas

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

Pemodelan Difusi Oksigen di Jaringan Tubuh dengan Konsumsi Oksigen Linier Terhadap Konsentrasi

Pemodelan Difusi Oksigen di Jaringan Tubuh dengan Konsumsi Oksigen Linier Terhadap Konsentrasi Pemodelan Difusi Oksigen di Jaringan Tubuh dengan Konsumsi Oksigen Linier Terhadap Konsentrasi Kartika Yulianti, S.Pd., M.Si. Jurusan Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Jl. Dr.

Lebih terperinci

Bab II Pemodelan. Gambar 2.1: Pembuluh Darah. (Sumber:

Bab II Pemodelan. Gambar 2.1: Pembuluh Darah. (Sumber: Bab II Pemodelan Bab ini berisi tentang penyusunan model untuk menjelaskan proses penyebaran konsentrasi oksigen di jaringan. Penyusunan model ini meliputi tinjauan fisis pembuluh kapiler, pemodelan daerah

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

9/17/ FLUIDA. Padat. Fase materi Cair. Gas

9/17/ FLUIDA. Padat. Fase materi Cair. Gas 6. FLUIDA 9/17/01 Padat Fase materi Cair Gas 1 1 Massa Jenis dan Gravitasi Khusus 9/17/01 m ρ Massa jenis, rho (kg/m 3 ) V Contoh (1): Berapa massa bola besi yang padat dengan radius 18 cm? Jawaban: m

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Astu Pudjanarsa Laborotorium Mekanika Fluida Jurusan Teknik Mesin FTI-ITS

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B36

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B36 B36 Simulasi Numerik Aliran Tiga Dimensi Melalui Rectangular Duct dengan Variasi Bukaan Damper Edo Edgar Santosa Putra dan Wawan Aries Widodo Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut!

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut! Fluida Statis Fisikastudycenter.com- Contoh Soal dan tentang Fluida Statis, Materi Fisika kelas 2 SMA. Cakupan : tekanan hidrostatis, tekanan total, penggunaan hukum Pascal, bejana berhubungan, viskositas,

Lebih terperinci

SIMULASI POLA ALIRAN OSILASI MENGGUNAKAN FLUENT 5.3R. ZUKRINA MASYITOH, ST Fakultas Teknik Universitas Sumatera Utara

SIMULASI POLA ALIRAN OSILASI MENGGUNAKAN FLUENT 5.3R. ZUKRINA MASYITOH, ST Fakultas Teknik Universitas Sumatera Utara SIMULASI POLA ALIRAN OSILASI MENGGUNAKAN FLUENT 5.3R BAB 1. PENDAHULUAN ZUKRINA MASYITOH, ST Fakultas Teknik Universitas Sumatera Utara Aliran osilasi di dalam kolom bersekat merupakan satu metoda yang

Lebih terperinci

MAKALAH KOMPUTASI NUMERIK

MAKALAH KOMPUTASI NUMERIK MAKALAH KOMPUTASI NUMERIK ANALISA ALIRAN FLUIDA DALAM PIPA SIRKULAR DAN PIPA SPIRAL UNTUK INSTALASI SALURAN AIR DI RUMAH DENGAN SOFTWARE CFD Oleh : MARIO RADITYO PRARTONO 1306481972 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM :

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM : LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI Disusun Oleh : Zeffa Aprilasani NIM : 2008430039 Fakultas Teknik Kimia Universitas Muhammadiyah Jakarta 2011 PENGOSONGAN

Lebih terperinci

ALIRAN FLUIDA DALAM PIPA TERTUTUP

ALIRAN FLUIDA DALAM PIPA TERTUTUP MAKALAH MEKANIKA FLUIDA ALIRAN FLUIDA DALAM PIPA TERTUTUP Disusun Oleh: Nama : Juventus Victor HS NPM : 3331090796 Jurusan Dosen : Teknik Mesin-Reguler B : Yusvardi Yusuf, ST.,MT JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 31 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 4.1 DESAIN PIPA PENSTOCK Desain Pipa Penstock yang akan berkaitan dengan besar debit air yang mengalir melalui Pipa Penstock. Jadi debit optimum air (Qopt)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data berupa ketinggian permukaan fluida uji (h), debit aliran dari ketinggian permukaan fluida

Lebih terperinci

STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA

STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA Studi Kasus: Pengaruh penambahan

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

Bab VI Hasil dan Analisis

Bab VI Hasil dan Analisis Bab VI Hasil dan Analisis Dalam bab ini akan disampaikan data-data hasil eksperimen yang telah dilakukan di dalam laboratorium termodinamika PRI ITB, dan juga hasil pengolahan data-data tersebut yang diberikan

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB IV PEMODELAN POMPA DAN ANALISIS

BAB IV PEMODELAN POMPA DAN ANALISIS BAB IV PEMODELAN POMPA DAN ANALISIS Berdasarkan pemodelan aliran, telah diketahui bahwa penutupan LCV sebesar 3% mengakibatkan perubahan kondisi aliran. Kondisi yang paling penting untuk dicermati adalah

Lebih terperinci

V. PENGUKURAN VISKOSITAS

V. PENGUKURAN VISKOSITAS V. PENGUKURAN VISKOSITAS PENGANTAR Viskositas merupakan ukuran ketahanan fluida terhadap tekanan maupun tegangan. Semakin rendah viskositas suatu fluida, semakin besar juga pergerakan dari fluida tersebut.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK 40 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK Diameter pipa penstock yang digunakan dalam penelitian ini adalah 130 mm, sehingga luas penampang pipa (Ap) dapat dihitung

Lebih terperinci

Klasifikasi Aliran Fluida (Fluids Flow Classification)

Klasifikasi Aliran Fluida (Fluids Flow Classification) Klasifikasi Aliran Fluida (Fluids Flow Classification) Didasarkan pada tinjauan tertentu, aliran fluida dapat diklasifikasikan dalam beberapa golongan. Dalam ulasan ini, fluida yang lebih banyak dibahas

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

IMPLEMENTASI METODE ELEMEN HINGGA DALAM PERSOALAN ALIRAN DARAH PADA PEMBULUH DARAH SKRIPSI ABNIDAR HARUN POHAN

IMPLEMENTASI METODE ELEMEN HINGGA DALAM PERSOALAN ALIRAN DARAH PADA PEMBULUH DARAH SKRIPSI ABNIDAR HARUN POHAN IMPLEMENTASI METODE ELEMEN HINGGA DALAM PERSOALAN ALIRAN DARAH PADA PEMBULUH DARAH SKRIPSI ABNIDAR HARUN POHAN 120803006 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB 5. PROPERTIS FISIK BUNYI

BAB 5. PROPERTIS FISIK BUNYI BAB 5. PROPERTIS FISIK BUNYI Definisi: Suara - gangguan yang menyebar melalui bahan elastis pada kecepatan yang merupakan karakteristik dari bahan tersebut. Suara biasanya disebabkan oleh radiasi dari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan BAB IV HASIL DAN PEMBAHASAN 4. 1 Analisis Elektrohidrodinamik Analisis elektrohidrodinamik dimulai dengan mengevaluasi medan listrik dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

FENOMENA PERPINDAHAN LANJUT

FENOMENA PERPINDAHAN LANJUT FENOMENA PERPINDAHAN LANJUT LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com DR. M. DJAENI, ST, MEng JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

Oleh: STAVINI BELIA

Oleh: STAVINI BELIA FLUIDA DINAMIS Oleh: STAVINI BELIA 14175034 TUJUAN PEMBELAJARAN 1. Siswa dapat menjelaskan prinsip kontinuitas dan prinsip bernaulli pada fluida dinamik dalam kehidupan seharihari. 2. Siswa dapat menganalisis

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm Simulasi dan Perhitungan Spin Roket... (Ahmad Jamaludin Fitroh et al.) SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 00 mm Ahmad Jamaludin Fitroh *), Saeri **) *) Peneliti Aerodinamika, LAPAN

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA BAB III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1. Pendahuluan Pemodelan yang dibangun menggunakan kode komputer digunakan untuk melakukan perhitungan matematis dengan memasukkan varibel-variabel yang

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4. PERHITUNGAN DATA Dari percobaan yang telah dilakukan dengan menggunakan pipa spiral dan pipa bulat ½ in, didapatkan data mentah berupa perbedaan tekanan manometer

Lebih terperinci

TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN. Hukum Newton - Viskositas RYN

TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN. Hukum Newton - Viskositas RYN TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN Hukum Newton - Viskositas RYN 1 ALIRAN BAHAN Fluid Model Moveable Plate A=Area cm 2 F = Force V=Velocity A=Area cm 2 Y = Distance Stationary

Lebih terperinci

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008

BAB II DASAR TEORI. Aliran hele shaw..., Azwar Effendy, FT UI, 2008 BAB II DASAR TEORI 2.1 KLASIFIKASI ALIRAN FLUIDA Secara umum fluida dikenal memiliki kecenderungan untuk bergerak atau mengalir. Sangat sulit untuk mengekang fluida agar tidak bergerak, tegangan geser

Lebih terperinci

Bab III Aliran Putar

Bab III Aliran Putar Bab III Aliran Putar Ada banyak jenis aliran fluida dalam dunia teknik, dimana komponen rotasi dari nilai rata-rata deformasi memberikan kontribusi lebih besar terhadap pola aliran yang terjadi. Memperhatikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

Analisis Kestabilan Linear dan Simulasi

Analisis Kestabilan Linear dan Simulasi Bab 4 Analisis Kestabilan Linear dan Simulasi Pada Bab ini kita akan membahas mengenai ketidakstabilan dari lapisan kondensat. Analisis kestabilan linier kita gunakan untuk melihat kondisi serta parameterparameter

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan Energy (Panas) Neraca

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT  JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com luqmanbuchori@undip.ac.id JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan

Lebih terperinci

ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN

ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN Analisis Losses Pipa Lurus Berdiameter 40 cm... (Ahmad Jamaludin Fitroh) ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN Ahmad Jamaludin Fitroh Peneliti Aerodinamika, Kedeputian

Lebih terperinci

Rheologi. Rini Yulianingsih

Rheologi. Rini Yulianingsih Rheologi Rini Yulianingsih Sifat-sifat rheologi didefinisikan sebagai sifat mekanik yang menghasilkan deformasi dan aliran bahan yang disebabkan karena adanya stress Klasifikasi Rheologi 1 ALIRAN BAHAN

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

γ adalah tegangan permukaan satuannya adalah N/m

γ adalah tegangan permukaan satuannya adalah N/m 4. Tegangan Permukaan Tegangan permukaan fluida adalah kecenderungan permukaan fluida untuk meregang sehingga permukaannya seperti ditutupi oleh selaput karena adanya gaya tarik menarik sesama molekul

Lebih terperinci

Lembar Kegiatan Siswa

Lembar Kegiatan Siswa 11 Lembar Kegiatan Siswa Indikator : 1. menggunakan viskometer dua kumparan 2. memahami konsep konsep dasar mengenai viskositas suatu fluida 3. mengitung besarnya viskositas suatu fluida melalui grafik

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair :

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair : Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak tersebut.

Lebih terperinci

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Fluida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir. Fasa zat cair dan gas termasuk ke

Lebih terperinci

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 Ahmad Jamaludin Fitroh, Saeri Peneliti Pustekwagan, LAPAN Email : ahmad_fitroh@yahoo.com ABSTRACT The simulation and calculation of boundary

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Vol. 14, No. 1, 69-76, Juli 017 Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Sri Sulasteri Abstrak Hal yang selalu menjadi perhatian dalam lapisan fluida

Lebih terperinci

Panduan Praktikum 2012

Panduan Praktikum 2012 Percobaan 4 HEAD LOSS (KEHILANGAN ENERGI PADA PIPA LURUS) A. Tujuan Percobaan: 1. Mengukur kerugian tekanan (Pv). Mengukur Head Loss (hv) B. Alat-alat yang digunakan 1. Fluid Friction Demonstrator. Stopwatch

Lebih terperinci

Bab III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan

Bab III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan Ba III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan Pada a ini, akan diahas penyearan oksigen di pemuluh kapiler dan jaringan, dimana sel-sel di jaringan diasumsikan mengkonsumsi oksigen

Lebih terperinci

KINEMATIKA. A. Teori Dasar. Besaran besaran dalam kinematika

KINEMATIKA. A. Teori Dasar. Besaran besaran dalam kinematika KINEMATIKA A. Teori Dasar Besaran besaran dalam kinematika Vektor Posisi : adalah vektor yang menyatakan posisi suatu titik dalam koordinat. Pangkalnya di titik pusat koordinat, sedangkan ujungnya pada

Lebih terperinci