Bab V Model Dengan Faktor Denda Bagi Para Perokok

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab V Model Dengan Faktor Denda Bagi Para Perokok"

Transkripsi

1 Bab V Model Dengan Faktor Denda Bagi Para Perokok V.1 Pembentukan Model Model ketiga ini merupakan pengembangan dari model kedua yaitu dengan memasukkan faktor yang dapat menekan laju pertambahan jumlah perokok. Salah satu asumsi yang diharapkan dapat menekan laju pertambahan jumlah perokok adalah setiap perokok yang merokok di tempat umum akan diberikan sangsi atau denda sehingga dengan adanya sangsi atau denda tersebut diharapkan keinginan mereka untuk merokok dapat sedikit tertahan atau hilang sama sekali setelah diberikan denda. Diagram skematik untuk model ketiga ini dapat kita lihat dalam Gambar V.1 berikut. Gambar V.1: Diagram skematik model kecanduan rokok dengan faktor denda bagi para perokok. Asumsi lain yang diberikan adalah denda tersebut memberikan efek yang baik (penalty effect). Efek baik tersebut berupa keengganan seseorang yang potensial untuk merokok khususnya jika mereka berada di tempat umum, sehingga

2 36 jumlah orang yang berpotensi menjadi perokok (perokok berat) dapat dikurangi. Dari diagram dalam Gambar V.1 diperoleh persamaan untuk model ketiga yaitu d P m dτ d S m dτ d R m dτ d P f dτ d S f dτ d R f dτ = µn m β m Pm Sm N m µ P m gp P m, (5.1) = β m Pm Sm N m (1 p) α m Sm + γ m Rm µ S m, (5.2) = α m Sm γ m Rm µ R m, (5.3) = µn f β f Pf Sm N m µ P f gp P f, (5.4) = β f Pf Sm N m (1 p) α f Sf + γ f R µ Sf, (5.5) = α f Sf γ f Rf µ R f, (5.6) dengan p = kr dimana k adalah proporsi orang yang didenda dan r adalah efektifitas dari denda, sehingga 0 < p < 1. Parameter g menyatakan efek baik (penalty effect) yang muncul akibat adanya denda bagi para perokok per satuan waktu, g > 0. Diasumsikan pula bahwa rata-rata banyaknya perokok pria dan wanita yang dikenai denda karena merokok adalah sama (p m = p f = p). Misalkan P m = P m Nm, S m = S m Nm, R m = R m N m, P f = P f N f, S f = S f N f, R f = R f N f t = µτ, maka akan diperoleh sistem persamaan yang tidak bergantung pada dimensi (dimensionless) sebagai berikut dan dp m ds m dr m dp f ds f dr f = 1 β m P m S m P m gpp m, (5.7) = β m P m S m (1 p) α m S m + γ m R m S m, (5.8) = α m S m γ m R m R m, (5.9) = 1 β f P f S m P f gpp f, (5.10) = β f P f S m (1 p) α f S f + γ f R f S f, (5.11) = α f S f γ f R f R f. (5.12)

3 37 V.2 Analisis Kualitatif Seperti pada model sebelumnya, dengan membuat persamaan (5.7)-(5.9) sama dengan nol diperoleh titik tetap sistem untuk model ketiga ini, yaitu ( ) 1 (Pm, Sm, Rm) =, 0, 0, 0, (5.13) 1 + gp yang merupakan titik tetap tak endemik dan (P m, S m, R m ) dengan R P m = α m + γ m + 1 β m γ m (1 p) + β m (1 p), Sm = (γ m + 1)(1 p) α m + γ m gp, (5.14) β m m = α mβ m (1 p)(γ m + 1) α m (α m + γ m + 1)(1 + pg), β m γ m (α m + γ m + 2) + β m (α m + 1) yang merupakan titik tetap endemik sistem. Kestabilan kedua titik tetap tersebut dapat ditentukan melalui besar kecilnya nilai R 0 sistem seperti yang telah kita lakukan pada model-model sebelumnya. Pada model ketiga ini, nilai R 0 tidak ditentukan melalui nilai karakteristik matriks Jacobi sistem yang diperoleh melalui linearisasi sistem di sekitar titik tetap tersebut, tetapi kita akan mencoba menggunakan pendekatan lain yaitu dengan menggunakan pendekatan operator the next generation. Berikut penentuan nilai R 0 dengan menggunakan operator the next generation. Tinjau persamaan (5.7)-(5.9) dan (5.13). Misalkan dp m dr m ds m Jika g(p m, S m, R m ) = 0 maka diperoleh persamaan Dengan mensubtitusi P m = 1 1+gp = f(p m, S m, R m ), (5.15) = g(p m, S m, R m ), (5.16) = h(p m, S m, R m ). (5.17) R m = α ms m γ m + 1. (5.18) dan persamaan (5.18) ke persamaan (5.17) kemudian menurunkannya terhadap S m maka diperoleh nilai A dimana A := β m(1 p) (1 + gp) α m + γ mα m 1. (5.19) (γ m + 1)

4 38 Selanjutnya A dapat dibentuk sebagai A = M D dengan memilih M = β m (1+gp) dan D = M A = β mp(γ m +1)+(α m +γ m +1)(1+gp) (γ m +1)(1+gp) dengan M merupakan rata-rata kontak yang terjadi pada subpopulasi potensial dan D merupakan periode terjadinya kontak, sehingga diperoleh nilai R 0 = MD 1 = β m (γ m + 1) pβ m (γ m + 1) + (α m + γ m + 1)(1 + gp). (5.20) Nilai R 0 tersebut akan menentukan stabil atau tidaknya kedua titik tetap sistem. Jika R 0 < 1 maka titik tetap tak endemik (P m, S m, R m) akan stabil asimtotik secara lokal dan jika R 0 > 1 maka titik tetap endemik (P m, S m, R m ) akan stabil asimtotik secara lokal. Pada model ketiga ini, besar kecilnya nilai R 0 bergantung pada beberapa parameter. Tinjau kembali nilai R 0 yang telah diperoleh pada persamaan (5.20). Untuk nilai R 0 = 1, yang merupakan titik bifurkasi sistem (turning point), diperoleh β m = 1 + gp 1 p ( 1 + α ) m. (5.21) γ m + 1 Dari persamaan di atas dapat dilihat bahwa jika kita menganggap parameter lain tetap maka hubungan antara parameter β m dengan α m akan berbentuk linier. Semakin besar nilai α m maka nilai β m juga akan semakin besar. Ini dapat dilihat dalam Gambar V.2 berikut. Gambar V.2: Grafik β m terhadap α m, dengan nilai R 0 = 1. Nilai R 0 akan kecil dari 1 jika dan hanya jika 0 < β m < 1+gp, untuk setiap 1 p α m, γ m, g, p > 0. Sama halnya dengan parameter g, hubungan antara g dengan β m berbentuk linier. Ini dapat dilihat dalam Gambar V.3 berikut.

5 39 Gambar V.3: Grafik β m terhadap α m, dengan nilai R 0 = 1. Semakin besar nilai g maka nilai β m juga akan semakin besar. Tetapi jika nilai 0 < β m < α m+γ m +1 (1 p)(γ m+1), untuk setiap α m, γ m, g, p > 0 maka nilai R 0 akan selalu kecil dari 1. Hal yang berbeda terjadi antara parameter γ m dengan β m. Gambar V.4: Grafik β m terhadap γ m, dengan nilai R 0 = 1. Dari Gambar V.4 dapat dilihat bahwa jika nilai γ m besar maka β m akan konvergen ke 1+gp 1 p. Tetapi jika nilai γ m kecil maka β m akan konvergen ke 1+gp 1 p (1+α m). Jika 0 < β m < 1+gp 1 p maka R 0 < 1 untuk setiap α m, γ m, g, p > 0. Ini sesuai dengan analisis untuk Gambar V.2. Jika 1+gp 1 p < β m < 1+gp 1 p (1 + α m), maka terdapat suatu nilai γ m tertentu, misalkan γ mc, sedemikian sehingga mengakibatkan nilai R 0 < 1. Tetapi jika nilai β m > 1+gp 1 p (1 + α m) maka R 0 akan selalu besar dari 1, untuk setiap nilai α m, γ m, g, p > 0. Selanjutnya kita akan tinjau hubungan antara parameter β m dengan p. Jika p = 0 maka analisis besar kecil nilai R 0 akan sama dengan analisis pada model kedua. Tetapi jika p 0, 0 < p < 1, maka dengan menganggap semua parameter lainnya tetap diperoleh grafik β m terhadap p seperti dalam Gambar V.5 berikut

6 40 Gambar V.5: Grafik β m terhadap p, dengan nilai R 0 = 1. Dari Gambar V.5 dapat dilihat bahwa jika 0 < β m < 1 + α m γ m +1 maka R 0 akan selalu kecil dari 1, untuk setiap nilai α m, γ m, g > 0, 0 < p < 1. Tetapi jika nilai β m > 1+ α m γ m+1 nilai R 0 kecil dari 1. maka diperlukan nilai p yang cukup besar untuk membuat Jadi semakin besar nilai β m maka nilai p juga harus semakin besar. Dari keseluruhan analisis di atas diperoleh beberapa syarat yang membatasi parameter β m agar nilai R 0 < 1, α m, γ m, g, p > 0, yaitu 0 < β m < 1+gp 1 p (lihat Gambar V.2 dan V.4). 0 < β m < α m+γ m 1 (1 p)(γ m +1) (lihat Gambar V.3). 0 < β m < 1 + α m γ m +1 (lihat Gambar V.5). Jika salah satu syarat di atas dipenuhi maka nilai R 0 akan selalu kecil dari 1 sehingga untuk waktu yang stationer kondisi endemik tidak akan terjadi. V.3 Analisis Kuantitatif Misalkan rata-rata banyaknya pria dan wanita perokok yang di denda adalah sebesar 50% (p = 0.5) dengan penalty effect ( g) sebesar 0.05 per tahun maka diperoleh nilai g = 0.9 (µ = 0.055). Dengan menggunakan parameter pada model sebelumnya diperoleh nilai R 0 = yang berarti endemik tidak akan terjadi untuk waktu yang stationer. Grafik solusi model ketiga dengan faktor denda dan penalty effect tersebut dapat dilihat dalam Gambar V.6 berikut.

7 41 R Pm t Sm t Rm t Pf t Sf t Rf t t Gambar V.6: Grafik dengan nilai awal P m = 6, S m = 0.51, R m = 3, P f = 8, S f = 1, R f = 0.11 dan nilai parameter α m = 1.145, α f = 1.072, β m = 3.018, β f = 2.072, γ m = 0.90, γ f = 0.90, p = 0.5, g = 0.90, R 0 = Dari Gambar V.6 dapat dilihat bahwa dengan diberlakukannya denda atau sangsi kepada para perokok maka laju perubahan jumlah perokok menurun dengan cepat tanpa harus menurunkan besarnya kontak. Penalty effect juga memberikan pengaruh dalam mengurangi jumlah orang yang berpotensi menjadi perokok. Pada subpopulasi pria potensial, laju perubahan solusinya naik menuju ke titik tetap tak endemik Pm = 1. Hal yang berbeda terjadi pada 1+gp subpopulasi wanita potensial. Pada saat awal, laju perubahannya menurun dan kemudian naik pada saat t tertentu menuju ke titik tetap tak endemik yang sama. Hal ini kemungkinan disebabkan karena pada subpopulasi wanita juga diberlakukan denda yang memberikan efek baik untuk mengurangi wanita yang berpotensi untuk menjadi perokok aktif. V.4 Perbandingan Model Pada bagian ini kita akan membandingkan ketiga model dan melihat perubahan apa saja yang terjadi dari model pertama ke model kedua dan ketiga. Pada model pertama diperoleh hasil bahwa jumlah perokok dapat kita kurangi dengan cara menurunkan besarnya β m yaitu rata-rata banyaknya kontak antara pria dan wanita potensial dengan pria perokok. Jika nilai β m cukup besar maka endemik dapat dihindari dengan cara menaikkan nilai α m yaitu rata-rata banyaknya perokok yang berhenti merokok. Selanjutnya model awal

8 42 tersebut kita kembangkan pada model kedua dengan menambahkan asumsi bahwa orang yang berhenti merokok suatu saat dapat kembali menjadi perokok tanpa melalui interaksi dengan pria perokok. Hasil yang diperoleh adalah jumlah perokok bertambah sehingga jumlah perokok pada model kedua ini jauh lebih besar jika dibandingkan pada model pertama. Hal ini tentu saja diakibatkan karena adanya penambahan jumlah perokok dari kelas recover. Salah satu kontrol yang dapat dilakukan adalah dengan cara menurunkan besarnya kontak (β m ) seperti pada model pertama. Parameter lain yang dapat dikontrol adalah γ m yaitu rata-rata banyaknya perokok recover yang kembali menjadi perokok. Tetapi hal ini tidak cukup membantu karena jumlah perokok pada kedua populasi tetap bertambah (lihat Gambar V.7).Pada subpopulasi pria, besar pertambahan jumlah perokok sekitar 7.5% dari model sebelumnya dan subpopulasi wanita bertambah sekitar 10% dari model sebelumnya (lihat Gambar V.8) t t (a) (b) Gambar V.7: Grafik perbandingan antara model pertama (biru-merah) dan model kedua (hitam) untuk populasi pria (a) dan populasi wanita (b) Pm t Sm t Rm t Pf t Sf t Rf t t Gambar V.8: Grafik perubahan jumlah populasi model pertama ke model kedua.

9 43 Walaupun jumlah pertambahan tersebut cukup kecil tetapi hal ini tidak diharapkan untuk terjadi karena kita menginginkan jumlah perokok berkurang. Untuk memecahkan masalah tersebut, pada model ketiga dilakukan pengembangan model dengan menambahkan asumsi yang diharapkan dapat menekan pertambahan jumlah perokok yaitu dengan memasukkan faktor denda bagi perokok dan mengasumsikan bahwa denda tersebut mempunyai efek baik untuk mengurangi jumlah orang yang berpotensi untuk menjadi perokok. Hasil yang diperoleh adalah jumlah perokok berkurang walaupun ada penambahan jumlah perokok dari kelas recover t t (a) (b) Gambar V.9: Grafik perbandingan antara model kedua (biru-merah) dan model ketiga (hitam) untuk populasi pria (a) dan populasi wanita (b) Pm t Sm t Rm t Pf t Sf t Rf t t Gambar V.10: Grafik perubahan jumlah populasi akibat denda dan penalty effect. Dari Gambar V.9 dan V.10 di atas dapat dilihat bahwa jumlah pria perokok berkurang walaupun besar penurunan subpopulasi pria perokok cukup kecil jika dibandingkan dengan subpopulasi wanita perokok. Begitupula dengan jumlah populasi potensial, keduanya juga berkurang yang tentu saja ini diakibatkan karena adanya penalty effect dari denda. Secara umum, perbandingan

10 44 ketiga model dapat dilihat dalam grafik solusi berikut dengan nilai t yang diperbesar. Grafik solusi yang diberikan hanya subpopulasi potensial dan perokok karena dalam hal ini kita ingin melihat perubahan yang terjadi pada kedua subpopulasi tersebut t t (a) (b) Gambar V.11: Grafik perbandingan model pertama (biru), model kedua (merah) dan model ketiga (hitam) untuk subpopulasi pria potensial (a) dan subpopulasi pria perokok (b) dengan nilai parameter α m = 1.145, α f = 1.072, β m = 3.018, β f = 2.072, γ m = 0.9, γ f = 0.9, p = 0.5, g = t t (a) Gambar V.12: Grafik perbandingan model pertama (biru), model kedua (merah) dan model ketiga (hitam) untuk subpopulasi wanita potensial (a) dan subpopulasi wanita perokok (b) dengan nilai parameter α m = 1.145, α f = 1.072, β m = 3.018, β f = 2.072, γ m = 0.9, γ f = 0.9, p = 0.5, g = 0.9. (b) Dari Gambar V.11 dan V.12 dapat dilihat bahwa kedua populasi (pria dan wanita) mengalami kondisi yang sama untuk waktu yang stationer dimana

11 45 subpopulasi potensial akan naik dan subpopulasi perokok terus menurun. Hal yang menarik terjadi pada model ketiga yaitu terdapat suatu t tertentu sedemikian sehingga subpopulasi perokok akan hilang dari sistem. Sedangkan untuk model pertama dan kedua dari gambar tersebut dapat dilihat bahwa subpopulasi perokok akan selalu ada untuk waktu yang stationer. Perlu diketahui bahwa parameter yang dipilih dalam Gambar V.11 dan V.12 memberikan kondisi yang endemik untuk model pertama dan kedua, dan kondisi yang tak endemik untuk model ketiga. Selanjutnya, kita akan melihat hasil simulasi ketiga model untuk kondisi yang endemik yaitu berupa persentase perubahan jumlah perokok dari kondisi awal, dengan nilai β m yang berbeda. Simulasi yang diberikan hanya meninjau subpopulasi pria perokok karena keberadaan subpopulasi inilah yang dapat mengakibatkan pertambahan jumlah perokok dan terjadinya endemik dalam suatu populasi. Nilai parameter yang dipergunakan dalam simulasi ini adalah α m = 1.145, α f = 1.072, β f = 2.072, γ m = 0.90, γ f = 0.90, p = 0.05, g = 0.90 dengan S m (0) = 0.35 yaitu banyaknya pria perokok pada awal tahun adalah sekitar 35% dari total populasi. Gambar V.13: Grafik persentase perubahan jumlah perokok dengan nilai β m yang berbeda, untuk model I, II dan III. Dari Gambar V.13 di atas dapat dilihat bahwa pada model I dan II, untuk nilai β m < βm persentase perubahan S m bernilai negatif artinya untuk kondisi yang endemik dan untuk waktu yang cukup besar, jumlah subpopulasi pria perokok akan berkurang dari jumlah populasi awal. Sebaliknya untuk nilai β m > βm

12 46 persentase perubahan S m bernilai positif yang berarti bahwa pada kondisi yang endemik jumlah subpopulasi pria perokok akan bertambah dari populasi awal. Misalkan untuk nilai β m = 5, pada model I banyaknya subpopulasi pria perokok pada kondisi setimbang akan mengalami penurunan sebesar 4% dari jumlah populasi awal sedangkan pada model II banyaknya subpopulasi pria perokok pada kondisi setimbang akan mengalami kenaikan sebesar 1% dari jumlah populasi awal. Hal yang menarik terjadi pada model III yaitu tidak terdapat βm dan nilai persentase perubahan S m selalu negatif untuk semua nilai β m yang diberikan. Ini berarti untuk kondisi yang endemik dan untuk waktu yang cukup besar, jumlah subpopulasi pria perokok akan selalu berkurang dari jumlah populasi awal. Ini disebabkan karena adanya parameter p (denda bagi perokok) dan g (penalty effect) yang diasumsikan dapat menekan laju pertambahan jumlah pria perokok. Jumlah tersebut kemungkinan dapat bertambah jika nilai β m kita perbesar lagi. Dari hasil simulasi di atas dapat kita lihat bahwa pada model ketiga, dengan menggunakan parameter yang telah kita pilih, laju pertambahan jumlah perokok berhasil kita tekan. Jika nilai parameternya berubah kemungkinan lain dapat saja terjadi. Akan tetapi pemilihan nilai parameter secara umum dapat dilakukan dengan mengacu pada grafik daerah endemik yang telah diberikan sebelumnya pada masing-masing model.

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

MODEL DINAMIK STRATEGI PENCEGAHAN PERTAMBAHAN JUMLAH PEROKOK TESIS. KASBAWATI NIM : Program Studi Matematika

MODEL DINAMIK STRATEGI PENCEGAHAN PERTAMBAHAN JUMLAH PEROKOK TESIS. KASBAWATI NIM : Program Studi Matematika MODEL DINAMIK STRATEGI PENCEGAHAN PERTAMBAHAN JUMLAH PEROKOK TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh KASBAWATI NIM : 20105012 Program

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5 III PEMBAHASAN 3.1 Perumusan Model Model yang akan dibahas dalam karya ilmiah ini adalah model SIDRS (Susceptible Infected Dormant Removed Susceptible) dari penularan penyakit malaria dalam suatu populasi.

Lebih terperinci

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis model dan kontrol optimal penyebaran polio dengan vaksinasi. Dari model matematika penyebaran polio tersebut akan ditentukan titik setimbang dan kemudian

Lebih terperinci

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala BAB III PEMBAHASAN A. Permasalahan Nyata Flu Burung (Avian Influenza) Avian Influenza atau yang lebih dikenal dengan flu burung adalah suatu penyakit menular yang disebabkan oleh virus influenza tipe A.

Lebih terperinci

BAB IV ANALISIS MODEL 2

BAB IV ANALISIS MODEL 2 BAB V AAL MODEL BAB V AAL MODEL Pada bab ini akan dibahas titik-titik kesetimbangan Model tanpa delay dan dengan delay. Model yang akan dibahas adalah Model Persamaan 3.5 3.8. elain itu, pada bab ini juga

Lebih terperinci

BAB IV PENGEMBANGAN MODEL KAPLAN

BAB IV PENGEMBANGAN MODEL KAPLAN BAB IV PENGEMBANGAN MODEL KAPLAN Pada bab ini akan dibahas model yang dikembangkan dari model Kaplan. Terdapat beberapa asumsi Kaplan yang akan dimodifikasi. Selain itu, pada bab ini juga diberikan analisis

Lebih terperinci

Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba

Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba Vol. 7 No. 3-22 Juli 2 Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba Kasbawati Syamsuddin Toaha Abstrak Salah satu epidemi yang sedang mengancam

Lebih terperinci

Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda

Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda Mohammad Soleh 1, Ifnur Haniva 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan

Lebih terperinci

Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan

Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan Situasi filariasis dalam kehidupan nyata telah dijelaskan di Bab I dan II Selanjunya, penyederhanaan masalah untuk memudahkan pembentukan

Lebih terperinci

BAB III MODEL KAPLAN. 3.1 Model Kaplan

BAB III MODEL KAPLAN. 3.1 Model Kaplan BAB III MODEL KAPLAN Pada bab ini akan dipaparkan model Kaplan secara terperinci sebelum memodifikasinya menjadi model yang lebih realistis pada bab selanjutnya. Kaplan memberikan suatu model deterministik

Lebih terperinci

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,

Lebih terperinci

Model Matematika Pencegahan Pertambahan Jumlah Perokok dengan Penerapan Denda

Model Matematika Pencegahan Pertambahan Jumlah Perokok dengan Penerapan Denda Model Matematika Pencegahan Pertambahan Jumlah Perokok dengan Penerapan Denda Fitri Yessi Jami 1, Muhammad Subhan 2, Riry Sriningsih 3 1 Student of Mathematics Department State University of Padang, Indonesia

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak monoton, titik ekuilibrium, pelinieran, analisa kestabilan titik ekuilibriumnya dengan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika

Lebih terperinci

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia BAB IV Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia Bab ini menjelaskan model penyebaran virus Dengue dalam tubuh manusia, atau dikenal sebagai model internal. Bagian

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti

Lebih terperinci

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu,

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu, Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS I. Murwanti 1, R. Ratianingsih 1 dan A.I. Jaya 1 1 Jurusan Matematika FMIPA Universitas Tadulako, Jalan Sukarno-Hatta

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas

Lebih terperinci

MEMBANGUN MODEL PENYEBARAN PERILAKU MEROKOK BERDASARKAN FAKTOR BIOLOGIS DAN FAKTOR LINGKUNGAN SOSIAL

MEMBANGUN MODEL PENYEBARAN PERILAKU MEROKOK BERDASARKAN FAKTOR BIOLOGIS DAN FAKTOR LINGKUNGAN SOSIAL JIMT Vol. 13 No. 2 Desember 2016 (Hal 35-47) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X MEMBANGUN MODEL PENYEBARAN PERILAKU MEROKOK BERDASARKAN FAKTOR BIOLOGIS DAN FAKTOR LINGKUNGAN SOSIAL Govan

Lebih terperinci

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut :

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut : BAB V ANALISA HASIL 5.1. Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type Berdasarkan hasil pengolahan data, maka dapat dibandingkan seluruh ukuran kesalahan peramalan atas metode peramalan yang

Lebih terperinci

Analisis Kestabilan Linear dan Simulasi

Analisis Kestabilan Linear dan Simulasi Bab 4 Analisis Kestabilan Linear dan Simulasi Pada Bab ini kita akan membahas mengenai ketidakstabilan dari lapisan kondensat. Analisis kestabilan linier kita gunakan untuk melihat kondisi serta parameterparameter

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

BAB III PEMBAHASAN. genetik (genom) yang mengandung salah satu asam nukleat yaitu asam

BAB III PEMBAHASAN. genetik (genom) yang mengandung salah satu asam nukleat yaitu asam BAB III PEMBAHASAN A. Formulasi Model Matematika Secara umum virus merupakan partikel yang tersusun atas elemen genetik (genom) yang mengandung salah satu asam nukleat yaitu asam deoksiribonukleat (DNA)

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,

Lebih terperinci

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN Oleh: Labibah Rochmatika (12 09 100 088) Dosen Pembimbing: Drs. M. Setijo Winarko M.Si Drs. Lukman

Lebih terperinci

Kesimpulan serta Masalah yang masih Terbuka

Kesimpulan serta Masalah yang masih Terbuka BAB VI Kesimpulan serta Masalah yang masih Terbuka VI.1 Kesimpulan Secara umum model yang dihasilkan dapat menunjukkan adanya endemik di suatu daerah untuk nilai parameter tertentu. Hal ini dapat dilihat

Lebih terperinci

MODEL PELATIHAN ULANG (RETRAINING) PEKERJA PADA SUATU PERUSAHAAN BERDASARKAN PENILAIAN REKAN KERJA

MODEL PELATIHAN ULANG (RETRAINING) PEKERJA PADA SUATU PERUSAHAAN BERDASARKAN PENILAIAN REKAN KERJA ISSN: 288-687X 13 ODEL PELATIHAN ULANG (RETRAINING) PEERJA PADA SUATU PERUSAHAAN BERDASARAN PENILAIAN REAN ERJA Dwi Lestari Jurusan Pendidikan atematika FIPA Universitas Negeri Yogyakarta E-mail: dwilestari@uny.ac.id

Lebih terperinci

Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA

Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA Dian Permana Putri 1, Herri Sulaiman 2 FKIP, Pendidikan Matematika, Universitas

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL ILMIYATI SARI 1, HENGKI TASMAN 2 1 Pusat Studi Komputasi Matematika, Universitas Gunadarma, ilmiyati@staff.gunadarma.ac.id

Lebih terperinci

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang)

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) Melita Haryati 1, Kartono 2, Sunarsih 3 1,2,3 Jurusan Matematika

Lebih terperinci

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika

Lebih terperinci

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN

Lebih terperinci

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI Mohammad soleh 1, Leni Darlina 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam

Lebih terperinci

Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember

Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 346 Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember (Analysis of SIR Model with

Lebih terperinci

Jurnal String Vol. 2 No. 1 Agustus 2017 p-issn: e-issn:

Jurnal String Vol. 2 No. 1 Agustus 2017 p-issn: e-issn: MODEL MAEMAIKA KANKER PARU PARU AKIBA PENGARUH SISA ASAP ROKOK DAN PENCEGAHANNYA Roni Al Maududi Program Studi Informatika, Universitas Indraprasta PGRI E-Mail: ronialmaududi@gmail.com Abstrak Kanker paru

Lebih terperinci

APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS. 10 Makassar, kode Pos 90245

APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS. 10 Makassar, kode Pos 90245 APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS MODEL Septiangga Van Nyek Perdana Putra 1), Kasbawati 2), Syamsuddin Toaha 3) 1) Mahasiswa Jurusan Matematika,

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL

MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL T - 5 Debby Agustine Jurusan Matematika, Universitas Negeri Jakarta, Indonesia debbyagustine@gmail.com Abstrak Diabetes merupakan salah

Lebih terperinci

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi 1 Firdha Dwishafarina Zainal, Setijo Winarko, dan Lukman Hanafi Jurusan Matematika, Fakultas MIPA, Institut Teknologi

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL PENYEBARAN HIV/AIDS DI KOTA PALU

ANALISIS KESTABILAN PADA MODEL PENYEBARAN HIV/AIDS DI KOTA PALU JIMT Vol. 1 No. 1 Juni 213 (Hal. 74 82) Jurnal Ilmiah Matematika dan Terapan ISSN : 245 766X ANALISIS KESTABILAN PADA MODEL PENYEBARAN HIV/AIDS DI KOTA PALU R. Setiawaty 1, R. Ratianingsih 2, A. I. Jaya

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

III MODEL MATEMATIKA S I R. δ δ δ

III MODEL MATEMATIKA S I R. δ δ δ 9 III MODEL MATEMATIKA 3.1 Model SIRS Model dasar yang digunakan untuk menggambarkan penyebaran pengguna narkoba adalah model SIRS. Model ini dikemukakan oleh Kermac dan McKendric (1927) sebagai model

Lebih terperinci

MODEL NON LINEAR PENYAKIT DIABETES. Aminah Ekawati 1 dan Lina Aryati 2 ABSTRAK ABSTRACT

MODEL NON LINEAR PENYAKIT DIABETES. Aminah Ekawati 1 dan Lina Aryati 2 ABSTRAK ABSTRACT MODEL NON LINEAR PENYAKIT DIABETES Aminah Ekawati 1 dan Lina Aryati 2 1 Kopertis Wilayah XI 2 Program Studi Matematika FMIPA UGM ABSTRAK Model matematika penyakit diabetes yang dibentuk berupa persamaan

Lebih terperinci

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua BAB IV PENUTUP A. Kesimpulan Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua predator diperoleh kesimpulan sebagai berikut. 1. Diperoleh model predator-prey dengan dua predator

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 4. Penentuan Titik Tetap I HAIL DAN PEMBAHAAN Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah terhadap waktu (solusi konstan). Titik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 50 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN AIDA BETARIA Program

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

T - 1 PEMODELAN MATEMATIKA UNTUK MENSIMULASIKAN EFEK POPULASI KARANTINA TERHADAP PENYEBARAN PENYAKIT HIV/AIDS DI PAPUA

T - 1 PEMODELAN MATEMATIKA UNTUK MENSIMULASIKAN EFEK POPULASI KARANTINA TERHADAP PENYEBARAN PENYAKIT HIV/AIDS DI PAPUA T - 1 PEMODELAN MATEMATIKA UNTUK MENSIMULASIKAN EFEK POPULASI KARANTINA TERHADAP PENYEBARAN PENYAKIT HIV/AIDS DI PAPUA Abraham 1, Mahmudi 2 1 Program Studi Matematika FMIPA Universitas Cenderawasih 2 Program

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

ANALISIS KESTABILAN BEBAS PENYAKIT MODEL EPIDEMI CVPD (CITRUS VEIN PHLOEM DEGENERATION) PADA TANAMAN JERUK DENGAN FUNGSI RESPON HOLLING TIPE II

ANALISIS KESTABILAN BEBAS PENYAKIT MODEL EPIDEMI CVPD (CITRUS VEIN PHLOEM DEGENERATION) PADA TANAMAN JERUK DENGAN FUNGSI RESPON HOLLING TIPE II M-18 ANALISIS KESTABILAN BEBAS PENYAKIT MODEL EPIDEMI CVPD (CITRUS VEIN PHLOEM DEGENERATION) PADA TANAMAN JERUK DENGAN FUNGSI RESPON HOLLING TIPE II Tesa Nur Padilah 1), Najmudin Fauji 2) 1) Universitas

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

Analisa Kualitatif pada Model Penyakit Parasitosis

Analisa Kualitatif pada Model Penyakit Parasitosis Analisa Kualitatif pada Model Penyakit Parasitosis Nara Riatul Kasanah dan Sri Suprapti H Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS) Jl.

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sekilas Mengenai Tuberkulosis 2.1.1 Pengertian dan Sejarah Tuberkulosis Tuberkulosis TB adalah penyakit menular yang disebabkan oleh bakteri Mycobacterium Tuberculosis. Bakteri

Lebih terperinci

Bab 4. Analisis Hasil Simulasi

Bab 4. Analisis Hasil Simulasi Bab 4 Analisis Hasil Simulasi Pada bab ini, akan dilakukan analisis terhadap hasil simulasi skema numerik Lax-Wendroff dua langkah. Selain itu hasil simulasi juga akan divalidasi dengan menggunakan data

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian

Lebih terperinci

BAB IV HASIL YANG DIPEROLEH

BAB IV HASIL YANG DIPEROLEH BAB IV : HASIL YANG DIPEROLEH 25 BAB IV HASIL YANG DIPEROLEH Model yang telah diturunkan pada bab 3, selanjutnya akan dianalisis dengan menggunakan MATLAB 7.0 untuk mendapatkan hasil numerik. 4.1 Simulasi

Lebih terperinci

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR Disusun sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI TIPE A Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor Ujian dan data lainnya pada Lembar Jawab Komputer

Lebih terperinci

T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic

T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic Oleh : Ali Kusnanto, Hikmah Rahmah, Endar H. Nugrahani Departemen Matematika FMIPA-IPB Email : alikusnanto@yahoo.com Abstrak

Lebih terperinci

FOURIER April 2013, Vol. 2, No. 1, MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI. RR Laila Ma rifatun 1, Sugiyanto 2

FOURIER April 2013, Vol. 2, No. 1, MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI. RR Laila Ma rifatun 1, Sugiyanto 2 FOURIER April 2013, Vol. 2, No. 1, 13 23 MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI RR Laila Ma rifatun 1, Sugiyanto 2 1, 2 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

Analisa Kestabilan dan Penyelesaian Numerik Model Dinamik SIRC pada Penyebaran. Virus Influenza

Analisa Kestabilan dan Penyelesaian Numerik Model Dinamik SIRC pada Penyebaran. Virus Influenza JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 Analisa Kestabilan dan Penyelesaian Numerik Model Dinamik SIRC pada Penyebaran Virus Influenza Ika Novitasari, M. Setijo Winarko dan Lukman Hanafi

Lebih terperinci

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS ABSTRAK Penyakit Tuberkulosis (TB) merupakan salah satu penyakit menular tertua yang menyerang manusia. Badan kesehatan dunia (WHO) menyatakan bahwa sepertiga

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 2 (2015), hal 101 110 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Dwi Haryanto, Nilamsari Kusumastuti,

Lebih terperinci

ANALISIS KESTABILAN MODEL MATEMATIKA IMMUNOTERAPI BCG PADA KANKER KANDUNG KEMIH

ANALISIS KESTABILAN MODEL MATEMATIKA IMMUNOTERAPI BCG PADA KANKER KANDUNG KEMIH LIKHITAPRAJNA Jurnal Ilmiah Volume 19 Nomor 2 September 217 p-issn: 141-8771 e-issn: 258-4812 2 ANALISIS KESTABILAN MODEL MATEMATIKA IMMUNOTERAPI BCG PADA KANKER KANDUNG KEMIH Liza Tridiana Mahardhika

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI STABILITY ANALYSIS OF THE HEPATITIS B VIRUS TRANSMISSION MODELS ARE AFFECTED BY MIGRATION Oleh : Firdha Dwishafarina

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENULARAN PENYAKIT GONORE

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENULARAN PENYAKIT GONORE Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 47-56. PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENULARAN PENYAKIT GONORE Tri Wahyuni, Bayu Prihandono, Nilamsari

Lebih terperinci

BAB V KESIMPULAN DAN SARAN. 5.1 Kesimpulan Berdasarkan hasil analisis model epidemik beserta simulasinya, diperoleh kesimpulan sebagai berikut:

BAB V KESIMPULAN DAN SARAN. 5.1 Kesimpulan Berdasarkan hasil analisis model epidemik beserta simulasinya, diperoleh kesimpulan sebagai berikut: BAB V KESIMPULAN DAN SARAN Pada bab ini disimpulkan hasil analisa model epidemik bertipe SIA dengan transmisi vertikal, dan penyakit menyebar melalui transfer transpacental (bersifat turun temurun) dengan

Lebih terperinci

Esai Kesehatan. Disusun Oleh: Prihantini /2015

Esai Kesehatan. Disusun Oleh: Prihantini /2015 Esai Kesehatan Analisis Model Pencegahan Penyebaran Penyakit Antraks di Indonesia Melalui Vaksin AVA sebagai Upaya Mewujudkan Pemerataan Kesehatan Menuju Indonesia Emas 2045 Disusun Oleh: Prihantini 15305141044/2015

Lebih terperinci

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN OLEH : TASLIMA NRP : 1209201728 DOSEN PEMBIMBING 1. SUBCHAN, M.Sc, Ph.d 2. Dr. ERNA APRILIANI, M.Sc ABSTRAK Salah

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

DINAMIKA PROBLEMA PENYAKIT MALARIA

DINAMIKA PROBLEMA PENYAKIT MALARIA Vol. 02, No. 04 (2014), pp. 361 371. DINAMIKA PROBLEMA PENYAKIT MALARIA Junliade Sinaga Abstrak Penelitian ini bertujuan untuk menganalisis sistem dinamik penyakit malaria, menentukan titik kesetimbangan

Lebih terperinci

HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR...

HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR... DAFTAR ISI Halaman HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR... i DAFTAR ISI... iii DAFTAR GAMBAR... vi DAFTAR TABEL... vii DAFTAR LAMPIRAN... ix BAB I PENDAHULUAN

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa

Lebih terperinci

DATA DAN METODE Sumber Data

DATA DAN METODE Sumber Data 14 DATA DAN METODE Sumber Data Data yang digunakan dalam penelitian ini adalah data hasil simulasi dan data dari paket Mclust ver 3.4.8. Data simulasi dibuat dalam dua jumlah amatan yaitu 50 dan 150. Tujuan

Lebih terperinci

KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS. Dian Permana Putri, 2 Herri Sulaiman 1,2

KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS. Dian Permana Putri, 2 Herri Sulaiman 1,2 KAJIAN PEMODELAN MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI UNGGAS 1 Dian Permana Putri, Herri Sulaiman 1, FKIP, Pendidikan Matematika, Universitas Swadaya Gunung Jati

Lebih terperinci

BAB III METODOLOGI. Lama waktu penelitian yang dilakukan yaitu selama kwartal term ajaran baru

BAB III METODOLOGI. Lama waktu penelitian yang dilakukan yaitu selama kwartal term ajaran baru BAB III METODOLOGI 3.1 Metoda Penelitian 3.1.1 Waktu dan Tempat Penelitian Lama waktu penelitian yang dilakukan yaitu selama kwartal term ajaran baru yang dimulai pada awal bulan september 2002. Selama

Lebih terperinci