Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)"

Transkripsi

1 ahan jar nalisa Struktur II ulyati, ST., T Pertemuan VI,VII III. etode Defleksi Kemiringan (The Slope Deflection ethod) III.1 Uraian Umum etode Defleksi Kemiringan etode defleksi kemiringan (the slope deflection method) dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak tentu, dimana semua Sambungan dianggap kaku; yaitu sudut di sambungan antara batang dianggap tidak berubah harganya ketika beban diberikan. Jadi sambungan pada penyangga sebelah dalam balok statis tak tentu adapt dianggap sambungan kaku 180 o dan biasanya sambungan dalam kerangka dideformasikan, sambungan kakunya dianggap hanya berputar sebagai suatu keseluruhan. Dengan kata lain sudut antara garis singgung ke berbagai cabang kurva elastis yang bertemu pada sebuah sambungan tetap sama seperti sudut pada struktur yang belum terdeformasi. Pada metode defleksi kemiringan, rotasi sambungannya dianggap tidak diketahui, nantinya akan diperlihatkan bahwa untuk setiap satu batang yang dibatasi oleh dua sambungan, mlomen ujungnya adapt dinyatakan dalam suku-suku rotasi sambungan. Namun untuk memenuhi syarat keseimbangan, jumlah dari momen ujung yang dikerjakan oleh setiap sambungan pada ujung pertemuan batang-batangnya harus sama dengan nol, karena sambungan kaku yang dipertanyakan menerima jumlah dari momen ujung tersebut. Persamaan keseimbangan ini menghasilkan syarat yang perlu dipenuhi oleh rotasi sambungan, dan bila rotasi sambungan yang tidak diketahui ini didapatkan, momen-monen ujung tersebut dapat dihitung dari persamaan defleksi sambungan. Sebagai contoh sederhana untuk menganalaisa kerangka kaku dengan pembebanan sebagaimana terlihat pada Gambar 3.1. Kerangka kaku tersebut bersifat statis tak tentu berderajat enam. Oleh karena kerangkanya dicegah bergerak mendatar (horisontal) oleh tumpuan terjepit di dan dicegah bergerak tegak (vertikal) oleh alas terjepit di D dan E, dan karena III 1

2 ahan jar nalisa Struktur II ulyati, ST., T deformasi aksial pada batang-batangnya diabaikan, maka semua sambungan dari kerangka ini harus tetap pada tempat semula. (Kasus yang memungkinkan beberapa sambungan berubah posisi ketika kerangka kaku itu terdeformasi, hal ini akan dibicarakan nanti kemudian). Rotasi sambungan yang searah jarum jam θ dan θ C dianggap bernilai positif, sebagaimana diperlihatkan pada Gambar 3.1a. Diagram-diagram benda bebas semua batang diperlihatkan dalam Gambar 3.1b. Disalah satu ujung sambungan, ada tiga komponen reaksi, yaitu; tarik atau tekan langsung, geser ujung, dan momen ujung. omen ujung yang bekerja di ujung dari batang ditandai sebagai, dan di ujung dari batang sebagai. omen-momen searah jarum jam yang bekerja di ujung-ujung batang dianggap bernilai posititf, sebagaimana diperlihatkan pada Gambar 3.1b. Gambar 3.1 Kerangka Kaku Tipikal Tanpa Translasi Sambungan III

3 ahan jar nalisa Struktur II ulyati, ST., T Dengan menggunakan persamaan-persamaan defleksi kemiringan, dapat dinyatakan momen ujung dari setiap sambungan yang tidak diketahui. Diagram benda bebas dari semua sambungan terlihat pada Gambar 3.1c. atang pada sambungannya merupakan sebuah gaya dalam arah sumbu batang, sebuah gaya yang tegak lurus terhadap sumbu batang, dan sebuah momen, masing-masing berlawanan arah dengan kerja sambungan pada batang. Pada gambar 3.1c hanya momen-momennya saja yang diperlihatkan. omen-momen tersebut diperlihatkan dalam arah positif, yakni berlawanan arah jarum jam. Untuk keseimbangan, jumlah semua momen yang bekerja pada setiap sambungan harus sama dengan nol. Jadi syarat sambungan di dan di C, masing-masing adalah: 3 5 = 0. (3.1a) 4 7 = 0. (3.1b) Kedua persamaan di atas diperlukan untuk menentukan nilai-nilai θ dan θ C. Kemudian semua momen ujungnya dapat diperoleh dengan memasukkan rotasi sambungan yang diketahui ke dalam persamaan defleksi kemiringan. Dengan menggunakan prinsip statika, diagramdiagram gaya aksial, gaya geser, dan momen untuk setiap batang dapat ditentukan. Dalam menganalisa stuktur statis tak tentu harus memenuhi syarat statika maupun syarat bentuk geometri. Dengan menggunakan metoda defleksi kemiringan untuk menganalisa kerangka kaku, syaratsyarat bentuk yang diperlukan dari struktur terdeformasi yang berasal dari kekakuan sambungan, dipenuhi sekaligus dengan menghitung rotasi sambungan tunggal yang tidak diketahui pada setiap sambungan. Jadi syarat-syarat statika, yaitu agar jumlah dari momen yang bekerja pada setiap sambungan besarnya nol, digunakan untuk menjawab rotasi sambungannya. III 3

4 ahan jar nalisa Struktur II ulyati, ST., T III. Penurunan Persamaan Defleksi Kemiringan Gambar 3. Persamaan Dasar Defleksi Kemiringan Gambar 3.3 Statika dan Deformasi atang Terlentur Yang Tak Dibebani Dalam persamaan defleksi kemiringan, momen ujung yang bekerja pada ujung-ujung sebuah batang dinyatakan dalam suku-suku rotasi ujung dan pembebanan pada batang tersebut. Jadi untuk bentangan yang terlihat pada Gambar 3.a, dan perlu dinyatakan dalam suku-suku rotasi ujung θ dan θ dan pembebanan yang diberikan W 1 dan W. omen ujungnya diperlihatkan sebagai rotasi ujung melawan jarum jam dan rotasi ujung diperlihatkan sebagai searah jarum jam. Dengan pembebanan yang diberikan pada batang tersebut, diperlukan momen-momen ujung terjepit 0 dan 0 (yang keduanya terlihat searah jarum jam) untuk menahan garis-garis singgungnya tetap di ujung, terlihat pada Gambar 3.b. omenmomen ujung tambahan dan masing-masing harus sedemikian besarnya, sehingga menyebabkan rotasi θ dan θ. Jika θ dan θ merupakan rotasi ujung yang disebabkan oleh θ oleh dan θ oleh, terlihat pada Gambar 3.3b dan 3.3c, maka syarat-syarat bentuk yang diperlukan adalah: θ = - θ 1 θ... (3.a) θ = θ 1 - θ (3.b) III 4

5 ahan jar nalisa Struktur II ulyati, ST., T enurut superposisi : = 0... (3.3a) = 0... (3.3b) enurut balok konyugasi : θ θ 1 = '. L 3EI = '. L EI θ θ 1 = '. L EI = '. L 3EI. (3.4a)..... (3.4b) Dengan memasukkan persamaan 3.4 ke dalam persamaan 3., maka dieproleh : '. L '. L θ = 3EI EI '. L '. L θ = EI 3EI... (3.5a)... (3.5b) Dengan menyelesaikan persamaan 3.4 untuk memperoleh dan : ' ' I = L I = L ( θ θ ) ( θ θ ).. (3.a) (3.b) Dengan memasukkan persamaan 3. ke dalam persamaan 3.3, maka diperoleh : I = 0 L I = 0 L ( θ θ ) ( θ θ )... (3.7a) (3.7b) III 5

6 ahan jar nalisa Struktur II ulyati, ST., T Persamaan 3.7 merupakan persamaan-persamaan defleksi kemiringan untuk suatu batang yang mengalami lenturan. omen di sembarang ujung suatu batang yang mengalami lenturan sama dengan momen ujung terjepit akibat beban-beban yang bekerja pada batang tersebut ditambah dengan I/L kali jumlahg dari dua kali kemiringan diujung dekat dan kemiringan di ujung jauh. III.3 Penerapan etode Defleksi Kemiringan Pada alok Statis Tak Tentu Persamaan defleksi kemiringan dapat digunakan untuk menganalisa balok statis tak tentu sehubungan dengan beban-beban yang bekerja, dengan langkah-langkah sebagai berikut : 1. Tentukan momen-momen ujung terjepit di ujung-ujung setiap bentangan dengan menggunakan rumus-rumus untuk beban terbagi rata dan beban terpusat yang ditunjukkan pada Gambar 3.4. Gambar 3.4 omen Ujung Terjepit kibat eban erata dan eban Terpusat. Nyatakan semua ujung sebagai suatu fungsi dari momen-momen ujung terjepit dan rotasi sambungannya dengan menggunakan persamaanpersamaan defleksi kemiringan. 3. Tetapkan suatu sistem persamaan-persamaan serempak dengan menggunakan kondisi keseimbangan, jumlah momen disetiap sambungan harus sama dengan nol. 4. Selesaikan persamaan-persamaan serempak untuk memperoleh rotasirotasi sambungan yang tak diketahui. III

7 ahan jar nalisa Struktur II ulyati, ST., T 5. asukkan nilai-nilai rotasi yang sudah diketahui ke dalam persamaan defleksi kemiringan dan hitung momen ujungnya.. Tentukan semua reaksi, gambarkan diagram gaya geser dan momen. III.4 Contoh-Contoh Soal dan Pembahasan Soal 1. nalisalah balok menerus pada Gambar 3.5a dengan menggunakan metode defleksi kemiringan. Gambar diagramkan gaya geser dan momennya. Penyelesaian : 0 0 0C 0C 0CD 0DC Gambar 3.5 alok enerus Contoh Soal III.1 (1) omen ujung terjepit. alok yang ditinjau diperlihatkan pada Gambar 3.5a. Jika kemiringan di,, C, dan D sama dengan nol, balok yang ditinjau dapat dipisahkan menjadi tiga balok yang berujung jepit, yang diperlihatkan pada Gambar 3.5b, dan sebuah balok kantilever yang tidak diperlihatkan pada Gambar 3.5b. agian kantilever DE tidak III 7

8 ahan jar nalisa Struktur II ulyati, ST., T dipandang sebagai batang yang sesungguhnya, karenanya persamaan defleksi kemiringan tidak dilukiskan untuk batang tersebut. Sesuai dengan perjanjian tanda bahwa momen searah jarum jam yang bekerja diujung batang bernilai positif, momen-momen ujung terjepit adalah : ( ) 4 7 knm 0 = = 0 = 7 1 ( ) ( )( ) knm 0 = = C 0 C = knm knm 7 = ( )( 4) 0CD = 4 knm 7 = ( 4)( ) 0 DC = 3 knm () Persamaan-persamaan defleksi kemiringan : C C CD ( 3I ) ( θ θ ) = 7 EIθ EIθ = 0 ( 3I ) ( θ θ ) = 7 EIθ EIθ = 0 = = = 1 ( 10I ) ( θ θ C ) = 31 3,333EIθ 1, 7EIθC 0 C 1 ( 10I ) ( θ C θ ) = 31 3,333EIθC 1, 7EIθ 0 C ( I ) ( θ C θ D ) = 4 1,333EIθC 0, 7EIθ D 0 CD DC = ( I ) ( θ D θ C ) = 3 1,333EIθ D 0, 7EIθC 0 DC III 8

9 ahan jar nalisa Struktur II ulyati, ST., T (3) Persamaan-persamaan serempak dalam θ, θ, θ C, dan θ D. omenmomen ujung belum diketahui, maka harus memenuhi syarat sambungan : - sambungan di : = 0 - sambungan di : C = 0 - sambungan di C : C CD = 0 - sambungan di D : DC 3 = 0 Dengan memasukkan persamaan-persamaan defleksi kemiringan kedalam syarat-syarat sambungan, maka ditetapkan persamaan serempak berikut :,000EIθ 1,000EIθ = 7,0 1,000EIθ 5,333EIθ 1,7EIθ C = 40,0 1,7EIθ 4,7EIθ C 0,7EIθ D = -48,0 0,7EIθ C 1,333EIθ D = 4,0 Perhatikan bahwa jika pada ruas kiri dari keempat persamaan di atas ditarik suatu diagonal ke kanan ke bawah, maka tidak hanya koefisienkoefisien pada diagonal tersebut menonjol di dalam persamaanpersamaannya sendiri, tapi koefisien-koefisien lainnya simetris terhadap diagonal tersebut. Hal ini selalu dapat dibuktikan kebenarannya melalui sifat-sifat dasar persamaan defleksi kemiringan dan kondisi-kondisi momen ujung yang bersangkutan. Untuk mengamati gejala ini, perlulah kita susun yang tak diketahui yang bersangkutan dalam urutan θ, θ, θ C, dan θ D. di sepanjang arah horisontal, dan kondisi-kondisi momen ujung yang bersangkutan dalan urutan sambungan,, C, dan D dalam arah vertikal. III 9

10 ahan jar nalisa Struktur II ulyati, ST., T (4) Penyelesaian persamaan serempak. Persamaan-persamaan serempak dalam θ, θ, θ C, dan θ D. dapat diselesaikan dengan cara eliminasi dan substitusi, dan hasilnya adalah : EIθ = 0,0 EIθ = 71,0 EIθc = -85,3 EIθ D = 45, (5) Perhitungan omen-momen ujung. Dengan mensubstitusikan nilainilai θ, θ, θ C, dan θ D. yang sudah diperoleh di atas ke dalam persamaan-persamaan defleksi kemiringan, maka diperoleh : = -7 (0,0) (71,0) = 0 = 7 (71,0) (0,0) = 15,4 knm C = -31 3,333(71,0) 1,7(-85,3) = -15,4 knm C = 31 3,333(-85,3) 1,7(71,0) = 147,3 knm CD = -4 1,333(-85,3) 0,7(45,) = -147,3 knm DC = 3 1,333(45,) 0,7(-85,3) = 3,0 knm Perhatikan bahwa hasil-hasil momen-momen ujung telah memenuhi keempat syarat sambungan : = 0, C = 0, C CD = 0, DC 3 = 0 () Reaksi-reaksi, diagram gaya geser dan diagram momen. Hal ini telah dilakukan di dalam contoh soal II.1 dan ditunjukkan pada Gambar.7, namun perhatikanlah bahwa apabila momen yang dihitung pada langkah (5) di atas dikerjakan pada diagram benda bebas pada.7a, sebuah momen positif searah jarum jam bekerja di ujung batang tersebut dan sebuah momen negatif berlawanan arah jarum jam bekerja di ujung batang tersebut. Perjanjian tanda ini sering disebut perjanjian tanda defleksi kemiringan yang berbeda dengan perjanjian tanda pendesain. III 10

11 ahan jar nalisa Struktur II ulyati, ST., T Soal. nalisalah balok menerus pada Gambar 3.a dengan menggunakan metode defleksi kemiringan. Gambar diagramkan gaya geser dan momennya. Penyelesaian : 0 0 0C 0C 0CD 0DC Gambar 3. alok enerus dan omen Ujung Jepit Contoh Soal III. alok yang ditinjau diperlihatkan pada Gambar 3.a. Satu-satunya perbedaan antara balok ini dengan balok pada contoh sebelumnya (contoh soal III.1) adalah bahwa tumpuan di terjepit. Karenanya θ untuk balom ini bernilai nol, jadi θ = 0 dalam persamaan-persamaan defleksi kemiringan. (1) omen ujung jepit. Dalam hal ini sama dengan nilai yang telah dihitung pada contoh soal III.1. III 11

12 ahan jar nalisa Struktur II ulyati, ST., T () Persamaan-persamaan defleksi kemiringan : C C CD ( 3I ) ( θ θ ) = EIθ = 0 7 = = = = ( 3I ) ( θ θ ) = 7 Iθ 0 1 ( 10I ) ( θ θ C ) = 31 3,333EIθ 1, 7EIθC 0 C 1 ( 10I ) ( θ C θ ) = 31 3,333EIθC 1, 7EIθ 0 C ( I ) ( θ C θ D ) = 4 1,333EIθC 0, 7EIθ D 0 CD DC = ( I ) ( θ D θ C ) = 3 1,333EIθ D 0, 7EIθC 0 DC (3) Persamaan-persamaan serempak dalam. Dalam kenyataannya, ketiga persamaan simultan dalam θ, θ C, dan θ D. untuk soal ini serupa dengan persamaan kedua, ketiga, dan keempat, yaitu harus memenuhi syarat sambungan : - sambungan di : C = 0 - sambungan di C : C CD = 0 - sambungan di D : DC 3 = 0 Dengan demikian diperoleh persamaan serempak berikut : 5,333EIθ 1,7EIθ C = 40,0 1,7EIθ 4,7EIθ C 0,7EIθ D = -48,0 0,7EIθ C 1,333EIθ D = 4,0 III 1

13 ahan jar nalisa Struktur II ulyati, ST., T (4) Penyelesaian persamaan serempak. Persamaan-persamaan serempak dalam θ, θ C, dan θ D. dapat diselesaikan dengan cara eliminasi dan substitusi, dan hasilnya adalah : EIθ = 71,4 EIθc = -85,5 EIθ D = 45,3 (5) Perhitungan omen-momen ujung. Dengan mensubstitusikan nilainilai θ, θ, θ C, dan θ D. yang sudah diperoleh di atas ke dalam persamaan-persamaan defleksi kemiringan, maka diperoleh : = -7 (71,4) = - 0,3 knm = 7 (71,4) = 15,3 knm C = -31 3,333(71,4) 1,7(-85,5) = -15,3 knm C = 31 3,333(-85,5) 1,7(71,4) = 147, knm CD = -4 1,333(-85,5) 0,7(45,3) = -147, knm DC = 3 1,333(45,3) 0,7(-85,5) = 3,0 knm Perhatikan bahwa hasil-hasil momen-momen ujung telah memenuhi keempat syarat sambungan : C = 0, C CD = 0, DC 3 = 0 () Reaksi-reaksi, diagram gaya geser dan diagram momen. Hal ini telah dilakukan di dalam contoh soal II.. III.5 Soal-Soal Latihan nalisalah balok menerus di bawah ini dengan menggunakan metode defleksi kemiringan, gambar diagram gaya geser dan momen. III 13

14 ahan jar nalisa Struktur II ulyati, ST., T III 14

Metode Defleksi Kemiringan (The Slope Deflection Method)

Metode Defleksi Kemiringan (The Slope Deflection Method) etode Defleksi Kemiringan (The Slope Deflection ethod) etode defleksi kemiringan dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak-tentu tentu. Semua sambungan dianggap kaku,

Lebih terperinci

Pertemuan IX,X,XI V. Metode Defleksi Kemiringan (The Slope Deflection Method) Lanjutan

Pertemuan IX,X,XI V. Metode Defleksi Kemiringan (The Slope Deflection Method) Lanjutan ahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan IX,X,XI V. etode Defleksi Kemiringan (The Slope Deflection ethod) Lanjutan V.1 Penerapan etode Defleksi Kemiringan Pada Kerangka Kaku Statis Tak Tentu

Lebih terperinci

METODE SLOPE DEFLECTION

METODE SLOPE DEFLECTION TKS 4008 Analisis Struktur I TM. XVIII : METODE SLOPE DEFLECTION Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada 2 metode sebelumnya, yaitu :

Lebih terperinci

Persamaan Tiga Momen

Persamaan Tiga Momen Persamaan Tiga omen Persamaan tiga momen menyatakan hubungan antara momen lentur di tiga tumpuan yang berurutan pada suatu balok menerus yang memikul bebanbeban yang bekerja pada kedua bentangan yang bersebelahan,

Lebih terperinci

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,

Lebih terperinci

Pertemuan XII,XIII,XIV,XV VI. Metode Distribusi Momen (Cross) VI.1 Uraian Umum Metode Distribusi Momen

Pertemuan XII,XIII,XIV,XV VI. Metode Distribusi Momen (Cross) VI.1 Uraian Umum Metode Distribusi Momen Bahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan XII,XIII,XIV,XV VI. etode Distribusi omen (Cross) VI.1 Uraian Umum etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof.

Lebih terperinci

STRUKTUR STATIS TAK TENTU

STRUKTUR STATIS TAK TENTU . Struktur Statis Tertentu dan Struktur Statis Tak Tentu Struktur statis tertentu : Suatu struktur yang mempunyai kondisi di mana jumlah reaksi perletakannya sama dengan jumlah syarat kesetimbangan statika.

Lebih terperinci

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka

Lebih terperinci

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen Pertemuan III,IV,V II. etode Persamaan Tiga omen II. Uraian Umum etode Persamaan Tiga omen Analisa balok menerus, pendekatan yang lebih mudah adalah dengan menggunakan momen-momen lentur statis yang tak

Lebih terperinci

Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan

Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan Hampir semua kerangka kaku yang secara actual dibangun di dalam praktek k bersifat statis ti tak tentu. t Tidak seperti

Lebih terperinci

Metode Distribusi Momen

Metode Distribusi Momen etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof. Hardy Cross etode distribusi momen dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis taktentu.

Lebih terperinci

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu.1 Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan

Lebih terperinci

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD Modul ke: 02 Fakultas FTPD Program Studi Teknik Sipil STATIKA I Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT Reaksi Perletakan Struktur Statis

Lebih terperinci

Definisi Balok Statis Tak Tentu

Definisi Balok Statis Tak Tentu Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan hanya dengan menggunakan persamaan statika. Dalam

Lebih terperinci

Bab 6 Defleksi Elastik Balok

Bab 6 Defleksi Elastik Balok Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang

Lebih terperinci

5- Persamaan Tiga Momen

5- Persamaan Tiga Momen 5 Persamaan Tiga Momen Pada metoda onsistent eformation yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu.

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection ata Kuliah : Analisis Struktur Kode : TSP 0 SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 11 TIU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis

Lebih terperinci

Mekanika Rekayasa III

Mekanika Rekayasa III Mekanika Rekayasa III Metode Hardy Cross Pertama kali diperkenalkan oleh Hardy Cross (1993) dalam bukunya yang berjudul nalysis of Continuous Frames by Distributing Fixed End Moments. Sebagai penghargaan,

Lebih terperinci

3- Deformasi Struktur

3- Deformasi Struktur 3- Deformasi Struktur Deformasi adalah salah satu kontrol kestabilan suatu elemen balok terhadap kekuatannya. iasanya deformasi dinyatakan sebagai perubahan bentuk elemen struktur dalam bentuk lengkungan

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection ata Kuliah : Analisis Struktur Kode : V - 9 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 1, 1 Kemampuan Akhir ang Diharapkan ahasiswa dapat melakukan analisis

Lebih terperinci

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen TKS 4008 Analisis Struktur I TM. XXII : METODE CROSS Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Outline Metode Distribusi Momen Momen Primer (M ij ) Faktor

Lebih terperinci

Pertemuan V,VI III. Gaya Geser dan Momen Lentur

Pertemuan V,VI III. Gaya Geser dan Momen Lentur Pertemuan V,VI III. Gaya Geser dan omen entur 3.1 Tipe Pembebanan dan Reaksi Beban biasanya dikenakan pada balok dalam bentuk gaya. Apabila suatu beban bekerja pada area yang sangat kecil atau terkonsentrasi

Lebih terperinci

TUGAS MAHASISWA TENTANG

TUGAS MAHASISWA TENTANG TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik

Lebih terperinci

BAB IV DIAGRAM GAYA GESER (SHEAR FORCE DIAGRAM SFD) DAN DIAGRAM MOMEN LENTUR (BENDING MOMENT DIAGRAM BMD)

BAB IV DIAGRAM GAYA GESER (SHEAR FORCE DIAGRAM SFD) DAN DIAGRAM MOMEN LENTUR (BENDING MOMENT DIAGRAM BMD) IV IGRM GY GESER (SHER FORE IGRM SF) N IGRM MOMEN LENTUR (ENING MOMENT IGRM M) alok adalah suatu bagian struktur yang dirancang untuk menumpu beban yang diterapkan pada beberapa titik di sepanjang struktur

Lebih terperinci

MEKANIKA REKAYASA III

MEKANIKA REKAYASA III MEKANIKA REKAYASA III Dosen : Vera A. Noorhidana, S.T., M.T. Pengenalan analisa struktur statis tak tertentu. Metode Clapeyron Metode Cross Metode Slope Deflection Rangka Batang statis tak tertentu PENGENALAN

Lebih terperinci

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU MOU 3 1 MOU 3 : METO PERSMN TIG MOMEN 3.1. Judul :METO PERSMN TIG MOMEN UNTUK MENYEESIKN STRUKTUR STTIS TIK TERTENTU Tujuan Pembelajaran Umum Setelah membaca bagian ini mahasiswa akan memahami bagaimanakah

Lebih terperinci

BAB II METODE KEKAKUAN

BAB II METODE KEKAKUAN BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR KESETIMBANGAN BENDA TEGAR 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINEMATIKA = Ilmu gerak Ilmu yang mempelajari

Lebih terperinci

BAB II METODE DISTRIBUSI MOMEN

BAB II METODE DISTRIBUSI MOMEN II MTO ISTRIUSI MOMN.1 Pendahuluan Metode distribusi momen diperkenalkan pertama kali oleh Prof. Hardy ross pada yahun 1930-an yang mana merupakan sumbangan penting yang pernah diberikan dalam analisis

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen

Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen ata Kuliah : Analisis Struktur Kode : CIV - 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan etode Distribusi omen Pertemuan 14, 15 Kemampuan Akhir yang Diharapkan ahasiswa dapat melakukan analisis

Lebih terperinci

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT Jenis Jenis Beban Apabila suatu beban bekerja pada area yang sangat kecil, maka beban tersebut dapat diidealisasikan sebagai beban terpusat, yang merupakan gaya tunggal. Beban ini dinyatakan dengan intensitasnya

Lebih terperinci

BAB I STRUKTUR STATIS TAK TENTU

BAB I STRUKTUR STATIS TAK TENTU I STRUKTUR STTIS TK TENTU. Kesetimbangan Statis (Static Equilibrium) Salah satu tujuan dari analisis struktur adalah mengetahui berbagai macam reaksi yang timbul pada tumpuan dan berbagai gaya dalam (internal

Lebih terperinci

BAB II PELENGKUNG TIGA SENDI

BAB II PELENGKUNG TIGA SENDI BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya

Lebih terperinci

KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA

KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA 1 KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA A. Tujuan Instruksional Setelah selesai mengikuti kegiatan belajar ini diharapkan peserta kuliah STATIKA I dapat : 1. Menghitung reaksi, gaya melintang,

Lebih terperinci

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT MAKALAH PRESENTASI DEFORMASI LENTUR BALOK Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT Oleh : M. Rifqi Abdillah (150560609) PROGRAM STUDI SI TEKNIK SIPIL JURUSAN

Lebih terperinci

Menggambar Lendutan Portal Statis Tertentu

Menggambar Lendutan Portal Statis Tertentu Menggambar Lendutan Portal Statis Tertentu (eformasi aksial diabaikan) Gambar 1. Portal Statis Tertentu Sebuah portal statis tertentu akan melendut dan bergoyang jika dibebani seperti terlihat pada Gambar

Lebih terperinci

sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik

sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik da beberapa macam sistem struktur, mulai dari yang sederhana sampai dengan yang kompleks; sistim yang paling sederhana tersebut disebut dengan konstruksi statis tertentu. Contoh : contoh struktur sederhana

Lebih terperinci

Pertemuan I, II I. Gaya dan Konstruksi

Pertemuan I, II I. Gaya dan Konstruksi Pertemuan I, II I. Gaya dan Konstruksi I.1 Pendahuluan Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik,

Lebih terperinci

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja

Lebih terperinci

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila II. KAJIAN PUSTAKA A. Balok dan Gaya Balok (beam) adalah suatu batang struktural yang didesain untuk menahan gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila beban yang dialami pada

Lebih terperinci

Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok

Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok Hasil dan Pembahasan A. Defleksi pada Balok Metode Integrasi Ganda 1. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di bawah pengaruh gaya terpakai.

Lebih terperinci

1 M r EI. r ds. Gambar 1. ilustrasi defleksi balok

1 M r EI. r ds. Gambar 1. ilustrasi defleksi balok Defleksi balok-balok yang dibebani secara lateral Obtaiend from : Strength of Materials Part I : Elementary Theory and Problems by S. Timoshenko, D. Van Nostrand Complany Inc., 955. Persamaan diferensial

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

RENCANA PEMBELAJARAAN

RENCANA PEMBELAJARAAN RENN PEMEJRN Kode Mata Kuliah : RMK 114 Mata Kuliah : Mekanika Rekayasa IV Semester / SKS : IV / Kompetensi : Mampu Menganalisis Konstruksi Statis Tak Tentu Mata Kuliah Pendukung : Mekanika Rekayasa I,

Lebih terperinci

METODE CLAPEYRON. Pustaka: SOEMADIONO. Mekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UGM.

METODE CLAPEYRON. Pustaka: SOEMADIONO. Mekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UGM. ETODE CAPEYRON Pustaka: SOEADIONO. ekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UG. Pemakaian Dalil 3 omen Clapeyron A α a α b B Jika suatu batang datar sendi-rol diberi muatan/beban di atasnya,

Lebih terperinci

XI. BALOK ELASTIS STATIS TAK TENTU

XI. BALOK ELASTIS STATIS TAK TENTU XI. OK ESTIS STTIS TK TENTU.. alok Statis Tak Tentu Dalam semua persoalan statis tak tentu persamaan-persamaan keseimbangan statika masih tetap berlaku. ersamaan-persamaan ini adalah penting, tetapi tidak

Lebih terperinci

d x Gambar 2.1. Balok sederhana yang mengalami lentur

d x Gambar 2.1. Balok sederhana yang mengalami lentur II DEFEKSI DN ROTSI OK TERENTUR. Defleksi Semua balok yang terbebani akan mengalami deformasi (perubahan bentuk) dan terdefleksi (atau melentur) dari kedudukannya. Dalam struktur bangunan, seperti : balok

Lebih terperinci

STRUKTUR STATIS TERTENTU PORTAL DAN PELENGKUNG

STRUKTUR STATIS TERTENTU PORTAL DAN PELENGKUNG STRUKTUR STATIS TERTENTU PORTAL DAN PELENGKUNG Fakultas Teknik, Universitas Gadjah Mada Program S1 08-1 1. Portal Sederhana: Tumpuan : roll atau jepit Elemen2 : batang-batang horisontal, vertikal, miring

Lebih terperinci

IV. DEFLEKSI BALOK ELASTIS: METODE INTEGRASI GANDA

IV. DEFLEKSI BALOK ELASTIS: METODE INTEGRASI GANDA IV. DEFEKSI BAOK EASTIS: ETODE INTEGRASI GANDA.. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di baah pengaruh gaya terpakai. Defleksi Balok

Lebih terperinci

PERSAMAAN 3 MOMEN (CLAPEYRON)

PERSAMAAN 3 MOMEN (CLAPEYRON) Persamaan omen Hal dari pertemuan ke 6 PERSN OEN (LPEYRON) enganalisis Struktur Statis Tak Tentu dengan lapeyron selalu melibatkan momen pada tumpuan. erikut rumus yang diberikan: q h P h c L,, L,, α α

Lebih terperinci

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK.

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK. PENGGUNN ETOE SLOPE... (JEY WIJY, KK) PENGGUNN ETOE SLOPE EFLETION P STRUKTUR STTIS TK TENTU ENGN KEKKUN YNG TIK ERT L STU LOK. Jemy Wijaya dan Fanywati Itang Jurusan Teknik Sipil Fakultas Teknik Universitas

Lebih terperinci

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam.

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Gaya Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik, gaya dapat diartikan sebagai muatan yang bekerja

Lebih terperinci

KATA PENGANTAR. karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen

KATA PENGANTAR. karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen KATA PENGANTAR Puji syukur penulis ucapkan kepada pujaan alam Allah SWT atas rahmat, dan karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen distribusi portal 3 lantai Makalah ini

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

METODE DEFORMASI KONSISTEN

METODE DEFORMASI KONSISTEN TKS 4008 Analisis Struktur I TM. XI : METODE DEFORMASI KONSISTEN Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Metode Consistent Deformation adalah

Lebih terperinci

I. DEFORMASI TITIK SIMPUL DARI STRUKTUR RANGKA BATANG

I. DEFORMASI TITIK SIMPUL DARI STRUKTUR RANGKA BATANG Materi Mekanika Rekayasa 4 Statika : 1. Deformasi pada Konstruksi Rangka atang : - Cara nalitis : metoda unit load - Cara Grafis : - metoda welliot - metoda welliot mohr 2. Deformasi pada Konstrusi alok

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

MODUL PERKULIAHAN. Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana

MODUL PERKULIAHAN. Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana MODUL PERKULIAHAN Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana Abstract Fakultas Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Muka Kode MK Disusun Oleh 08 Kompetensi

Lebih terperinci

Bab 10 BALOK ELASTIS STATIS TAK TENTU

Bab 10 BALOK ELASTIS STATIS TAK TENTU ab 1 OK ESTIS STTIS TK TENTU Tinjauan Instruksional Khusus ahasiswa diharapkan mampu memahami dan melakukan analisis gaa-gaa pada sistem konstruksi balok elastis dimana jumlah reaksi-reaksi ang tidak diketahui

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

BAB I SLOPE DEFLECTION

BAB I SLOPE DEFLECTION Ver 3.1, thn 007 Buku Ajar KTS-35 Analisis Struktur II BAB I SLOPE DEFLECTION 1.1. Derajat Ketidaktentuan Statis dan Derajat Ketidaktentuan Kinematis Derajat ketidaktentuan statis adalah banyaknya kelebihan

Lebih terperinci

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur BAB I PENDAHULUAN I.1 Latar Belakang Masalah Struktur baja dapat dibagi atas tiga kategori umum: (a) struktur rangka (framed structure), yang elemennya bisa terdiri dari batang tarik dan tekan, kolom,

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : CIV 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan 9, 10, 11 Kemampuan Akhir yang Diharapkan Mahasiswa dapat melakukan analisis struktur

Lebih terperinci

Metode Kekakuan Langsung (Direct Stiffness Method)

Metode Kekakuan Langsung (Direct Stiffness Method) Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =

Lebih terperinci

V. DEFLEKSI BALOK ELASTIS: METODE-LUAS MOMEN

V. DEFLEKSI BALOK ELASTIS: METODE-LUAS MOMEN V. DEFEKSI BOK ESTIS: METODE-US MOMEN Defleksi alok diperoleh dengan memanfaatkan sifat diagram luas momen lentur. Cara ini cocok untuk lendutan dan putaran sudut pada suatu titik sudut saja, karena kita

Lebih terperinci

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. HUKUM-HUKUM GERAK NEWTON Beberapa Definisi dan pengertian yang berkaitan dgn hukum gerak newton

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak

Lebih terperinci

ANALISA STRUKTUR METODE MATRIKS (ASMM)

ANALISA STRUKTUR METODE MATRIKS (ASMM) ANAISA STRUKTUR METODE MATRIKS (ASMM) Endah Wahyuni, S.T., M.Sc., Ph.D Matrikulasi S Bidang Keahlian Struktur Jurusan Teknik Sipil ANAISA STRUKTUR METODE MATRIKS Analisa Struktur Metode Matriks (ASMM)

Lebih terperinci

Kuliah keempat. Ilmu Gaya. Reaksi Perletakan pada balok di atas dua tumpuan

Kuliah keempat. Ilmu Gaya. Reaksi Perletakan pada balok di atas dua tumpuan Kuliah keempat Ilmu Gaya Reaksi Perletakan pada balok di atas dua tumpuan Tujuan Kuliah Memberikan pengenalan dasar-dasar ilmu gaya dan mencari reaksi perletakan balok di atas dua tumpuan Diharapkan pada

Lebih terperinci

Sebuah benda tegar dikatakan dalam keseimbangan jika gaya gaya yang bereaksi pada benda tersebut membentuk gaya / sistem gaya ekvivalen dengan nol.

Sebuah benda tegar dikatakan dalam keseimbangan jika gaya gaya yang bereaksi pada benda tersebut membentuk gaya / sistem gaya ekvivalen dengan nol. Suatu partikel dalam keadaan keseimbangan jika resultan semua gaya yang bekerja pada partikel tersebut nol. Jika pada suatu partikel diberi 2 gaya yang sama besar, mempunyai garis gaya yang sama dan arah

Lebih terperinci

MODUL 1 STATIKA I PENGERTIAN DASAR STATIKA. Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 1 STATIKA I PENGERTIAN DASAR STATIKA. Dosen Pengasuh : Ir. Thamrin Nasution STATIKA I MODUL 1 PENGETIAN DASA STATIKA Dosen Pengasuh : Materi Pembelajaran : 1. Pengertian Dasar Statika. Gaya. Pembagian Gaya Menurut Macamnya. Gaya terpusat. Gaya terbagi rata. Gaya Momen, Torsi.

Lebih terperinci

II. GAYA GESER DAN MOMEN LENTUR

II. GAYA GESER DAN MOMEN LENTUR II. GAYA GESER DAN MOMEN LENTUR 2.1. Pengertian Balok Balok (beam) adalah suatu batang struktural yang didesain untuk menahan gaya-gaya yang bekerja dalam arah transversal terhadap sumbunya. Jadi, berdasarkan

Lebih terperinci

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR PORTAL BERGOYANG STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK DAN KOLOM

PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR PORTAL BERGOYANG STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK DAN KOLOM PENGGUNN METODE SOPE DEFETION... (JEMMY WIJY, DKK PENGGUNN METODE SOPE DEFETION PD STRUKTUR PORT ERGOYNG STTIS TK TENTU DENGN KEKKUN YNG TIDK MERT DM STU OK DN KOOM Jemy Wijaya dan Fanywati Itang Jurusan

Lebih terperinci

Bab 3 (3.1) Universitas Gadjah Mada

Bab 3 (3.1) Universitas Gadjah Mada Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui

Lebih terperinci

III. TEGANGAN DALAM BALOK

III. TEGANGAN DALAM BALOK . TEGANGAN DALA BALOK.. Pengertian Balok elentur Balok melentur adalah suatu batang yang dikenakan oleh beban-beban yang bekerja secara transversal terhadap sumbu pemanjangannya. Beban-beban ini menciptakan

Lebih terperinci

DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar

DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2. Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2.1, dengan y adalah defleksi pada jarak yang ditinjau x, adalah sudut kelengkungan

Lebih terperinci

P=Beban. Bila ujung-ujung balok tersebut tumpuan jepit maka lendutannya / 192 EI. P= Beban

P=Beban. Bila ujung-ujung balok tersebut tumpuan jepit maka lendutannya / 192 EI. P= Beban BAB I Struktur Menerus : Balok A. engertian Balok merupakan struktur elemen yang dimana memiliki dimensi b dan h yang berbeda, dimensi b lebih kecil dari dimensi h. Bagian ini akan membahas mengenai balok

Lebih terperinci

2 Mekanika Rekayasa 1

2 Mekanika Rekayasa 1 BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

Pengertian Momen Gaya (torsi)- momen gaya.

Pengertian Momen Gaya (torsi)- momen gaya. Pengertian Momen Gaya (torsi)- Dalam gerak rotasi, penyebab berputarnya benda merupakan momen gaya atau torsi. Momen gaya atau torsi sama dengan gaya pada gerak tranlasi. Momen gaya (torsi) adalah sebuah

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Rangka Batang (Truss Structures)

Rangka Batang (Truss Structures) Rangka Batang (Truss Structures) Jenis Truss Plane Truss ( 2D ) Space Truss ( 3D ) Definisi Truss Batang Atas Batang Diagonal Titik Buhul/ Joint Batang Bawah Batang Vertikal Truss : Susunan elemen linier

Lebih terperinci

Ditinjau sebuah batang AB yang berada bebas dalam bidang x-y:

Ditinjau sebuah batang AB yang berada bebas dalam bidang x-y: OK SEDERHN (SIME EM) OK SEDERHN (SIME EM) Ditinjau sebuah batang yang berada bebas dalam bidang x-y: Translasi Jika pada batang tsb dikenakan gaya (beban), maka batang menjadi tidak stabil karena mengalami

Lebih terperinci

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran:

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran: Mata Kuliah: Statika Struktur Satuan Acara engajaran: Minggu I II III IV V VI VII VIII IX X XI Materi Sistem aya meliputi Hk Newton, sifat, komposisi, komponen, resultan, keseimbangan gaya, Momen dan Torsi

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

Bab 9 DEFLEKSI ELASTIS BALOK

Bab 9 DEFLEKSI ELASTIS BALOK Bab 9 DEFLEKSI ELASTIS BALOK Tinjauan Instruksional Khusus: Mahasiswa diharapkan mampu memahami konsep dasar defleksi (lendutan) pada balok, memahami metode-metode penentuan defleksi dan dapat menerapkan

Lebih terperinci

LENDUTAN (Deflection)

LENDUTAN (Deflection) ENDUTAN (Deflection). Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat ditentukan dari sifat penampang dan beban-beban luar. Pada prinsipnya tegangan pada balok akibat beban

Lebih terperinci

Gambar solusi 28

Gambar solusi 28 Gambar solusi 27 Gambar solusi 28 Gambar solusi 29 Gambar solusi 30 Gambar solusi 31 Gambar solusi 32a Gambar solusi 32b Gambar solusi 32c Gambar solusi 40 Gambar soal no 27 Gambar soal no 28 Gambar soal

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan INTISARI Konstruksi rangka batang adalah konstruksi yang hanya menerima gaya tekan dan gaya tarik. Bentuk

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG

Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG Oleh : Ir. H. Armeyn Syam, MT FAKULTAS TEKNIK SIPIL & PERENCANAAN INSTITUT TEKNOLOGI PADANG Struktur rangka batang bidang adalah struktur yang disusun dari batang-batang yang diletakkan pada suatu bidang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan

Lebih terperinci

GAYA GESER, MOMEN LENTUR, DAN TEGANGAN

GAYA GESER, MOMEN LENTUR, DAN TEGANGAN GY GESER, MOMEN LENTUR, DN TEGNGN bstrak: Mekanika bahan merupakan ilmu yang mempelajari aturan fisika tentang perilaku-perilaku suatu bahan apabila dibebani, terutama yang berkaitan dengan masalah gaya-gaya

Lebih terperinci

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH Disusun sebagai salah satu syarat untuk lulus kuliah MS 4011 Metode Elemen Hingga Oleh Wisnu Ikbar Wiranto 13111074 Ridho

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci