SISTEM KENDALI OTOMATIS Transformasi Laplace

Ukuran: px
Mulai penontonan dengan halaman:

Download "SISTEM KENDALI OTOMATIS Transformasi Laplace"

Transkripsi

1 SISTEM KENDALI OTOMATIS Trnformi Lplc

2 Opn Loop/Clod Loop Sytm Input/ Dird output Controllr Control ignl Actutor Actuting ignl Plnt Plnt output Input/ Dird output + - Error ignl Controllr Control ignl Actutor Actuting ignl Plnt Plnt output Snor

3 Itilh-itilh dlm SKO Plnt : Sutu prltn tu objk fiik yng ditur/dikndlikn Pro : Opri yng dikndlikn Sitm : Gbungn komponn yng bkrjm untuk mncpi tu tujun Gnggun : Sutu inyl (intrnl/ktrnl) yng mmpunyi pngruh mrugikn output itm

4 Itilh-itilh dlm SKO Input (Dird Output) : Output yng diinginkn Error : Sliih ntr input dn output yng trjdi pd t itu Sinyl kontrol : Sinyl dri kontrollr

5 Modl Mtmtik Rncngn dri itm kndli mmbutuhkn rumu modl mtmtik dri itm. Mngp hru dngn modl mtmtik? Agr kit dpt mrncng dn mngnlii itm kndli. Milny: Bgimn hubungn ntr input dn output. Bgimn mmprdiki/mnggmbrkn prilku dinmik dri itm kndli trbut.

6 Trnformi Lplc Mngubh fungi dri itm fii (domin wktu) k fungi vribl komplk (domin ) Mnydrhnkn prmn mtmti yng mngndung opri turunn/diffrnil tu intgrl mnjdi prmn yng brii prklin tu pmbgin bi Dpt mngubh fungi umum (fungi inuoid, inuoid trdm, fungi kponnil) mnjdi fungi-fungi ljbr vribl komplk Mtod ini mmungkinkn untuk mrml kinrj itm mnggunkn grfi tnp hru mnylikn prmn diffrnil Komponn trnin dn tdy tt diprolh cr rntk

7 Pnylin Mnggunkn Trnformi Lplc Scr drhn produr dr pmchn mnggunkn mtod trnformi Lplc dlh: Prmn difrnil yng brd dlm kwn wktu (t), ditrnformikn k kwn vribl komplk() dngn trnformi Lplc. Untuk mmprmudh pro trnformi dpt digunkn tbl trnformi lplc. Prmn yng diprolh dlm kwn trbut dlh prmn ljbr dri vribl yng mrupkn oprtor Lplc. Pnylin yng diprolh kmudin ditrnformi-blikkn k dlm kwn wktu. Hil trnformi blik ini mnghilkn pnylin prmn dlm kwn wktu.

8 x(t) Lplc Trnform X() Tim Domin Tim Domin Circuit Circuit L L -Domin Circuit j Complx Frquncy Typ of -Domin Circuit Y() With nd Without Initil Condition y(t) Invr Lplc Trnform

9 Dfinii Trnformi Lplc t L[ f ( t)] F( ) f ( t) dt dngn: f(t) = fungi wktu t, dngn f(t)= untuk t< = vribl komplk

10 Ltihn Hitung Trnformi Lplc Unit Stp u(t) t

11

12 Hitung Trnformi Lplc Unit Rmp f(t) t f ( t) At untuk t

13

14 Hitung Trnformi Lplc dri f t = t

15

16 Hitung Trnformi Lplc dri fungi inu

17

18 ( (b f(t) n t t in(t) F()=L[f(t)] (t) u(t) t co(t) h(t) ch(t) / n!/ /( ) /( /( /( /( / (n) bt in(t) /[( b) ] co(t) ( b) /[( b) bt bt bt t ) /(b ) t ) /(b ) ) ) /( )( ) ) b) /( )( b) ] b b

19 F () L[f (t)] () L[f (t)] F SIFAT LINIERITAS L[c c c.l[f.f ().f (t) c (t)] c c.f.f () c,c (t)].l[f (t)] Contn t

20 SIFAT TRANSLASI ) Jik F()=L[f(t)] L[ t f (t)] F( ) L[ t f (t)] [ t f (t)] t dt f (t) ()t dt F( ) Contoh L[Co(t)] 4 t L[ Co(t)] ( ) 4 5

21 Trnli [tim] f(t) g(t) b) Jik g(t) = f(t-) for t> = for t< L[g(t)] L[g(t)] f (t F() )] t dt f (u) (u) du Contoh 3 3! 6 L[t ] g(t) (t ), t g(t), t L[g(t)] f (u) 6 4 u du t

22 Prubhn kl wktu L[f (.t)] F( ) L[f (.t)] f (.t)] t dt f (u) u du F( ) Contoh L[Sin (t)] L[Sin (3t)]

23 TEOREMA DIFERENSIASI Trnformi Lplc dri turunn fungi f(t) dibrikn bgi df ( t) L dt df ( t) dt Intgri bgin dmi bgin mmbrikn df ( t) L dt df(t) L dt t dt t f ( t) f ( t f() ) L f(t) Trnformi Lplc ngt brgun krn mngubh prmn difrnil mnjdi prmn ljbr drhn. t dt

24 Turunn Prtm [Drivtiv firt ordr] L[f' (t)] L[f '(t)] t df L[ dt f(t)dt ] L[f (t)].f() f ( t f(t) ) t f(t)dt F() f( ) f(t) L[f '(t)].f() f ( ) f ( ) t 4

25 Turunn ord tinggi (Drivtiv of highr ordr) L[f '(t)] L[f"(t)] L[ (n) f (t)] df L[ ] L[f (t)] dt L[f (t)].f() n F() n f ().F() f (.f ( n ) ) f '() () (n) f ()... f () (n) L[f (t)] Jik dicontinuity pd n F() n i ni f ( (i).f () ) f ( ) L[f '(t)].f() f () [f ( ) f ( )] 5

26 Contoh Turunn L[Sin ( t)] d[in( t)] Co( t) dt L[Co( t)] L[Sin( t)] L[Co( t)] d[sin ( t)] Co( t) dt Sin( ) ( ) d[co( t)] d[co( t)] Sin ( t) Sin ( t) dt dt Co( ) L[Sin ( t)] L[Co( t)] ( ) 6

27 INTEGRASI t g (t) f (u)du] F() L[f (t)] g(t) f (t) L[g(t)] L[g(t)] g( ) F() L[ t f (u)du] F()

28 Prklin dngn fktor t df() d ' F () d d [ t f (t)dt Libnitz rul df() d [ t f (t)dt] t [ tf(t)]dt L[tf(t)] L[tf(t)] F () ' Rumu umum L[t n f (t)] ( ) n d n d F() n

29 Pmbgin dngn fktor t f (t) g(t) f (t) tg(t) t G() L[f (t)] dl[g(t)] F(u)du d dg() d F(u)du F() LimG() f (t) L[ ] t F(u)du

30 f (t kt) f (t) FUNGSI PERIODIK t, k L[f (t)] L[f (t)] L[f (t)] L[f (t)] F() F() n F() F() nt T T T t t n t f (t)dt f (t)dt T T T f (t)dt nt [ T T t t (ut) T T f (t)dt f (t)dt] 3T T t f (u T)du u f (u)du L[f (t)] f (t)dt... T T T (ut) u F() f (u T)du... f (u)du... T f (t) t T dt

31 Fungi priodik Sinu & Coinu t) jsin ( t) Co( t j dt dt t)] jl[sin ( t)] L[Co( ] L[ )t ( j t t j t j T T )t j ( t j dt ] [ L ] [ j ] [ j j dt T T T j T )t ( j T )t ( j t j j ) j )( j ( j j ] L[

32 Sift Trnformi Lplc

33 Trnformi Lplc Invr Dikthui: F()=L[f(t)] Bgimn mncri f(t) dri F()? f(t) L [F()] ) Mtod Tbl F() f (t) t

34 n i p t i n n i p... p p A() B() F() n i p t i t p n t p t p i n... f(t) b) Ekpni frki dngn kr-kr brbd Hrg k (ridu pd pol =-p k ) dpt diprolh dngn: k p k k n n k k k k p k k ) p ( p... ) p ( p... ) p ( p ) p ( A() B() Smu uku urin mnjdi nol, kculi k. Jdi ridu k diprolh: p k k k ) p ( A() B()

35 Contoh Sol Crilh trnformi Lplc blik dri 3 F() Jwb: ( )( Trnformi Lplc blik dri: ) L F() p ( -pt )( ) ( ) ( 3 3 ( ) ( )( ) 3 ( ) ( )( ) )

36 ) ( L ) ( L F() L untuk t F() L t t

37 Contoh Sol 3) )( )( ( 4 F() 3) ( 7 ) 4( 3 ) 6( F() t t t (t) f

38 . Dfinii input dri itm kndli otomti yng pling tpt dlh. Mukn dri itm yng mmpngruhi pro b. Output yng diinginkn c. Prngkt yng digunkn untuk mmukkn dt kdlm itm d. Sliih ntr mukn dn klurn

39 . Dfinii input dri itm kndli otomti yng pling tpt dlh. Mukn dri itm yng mmpngruhi pro b. Output yng diinginkn c. Prngkt yng digunkn untuk mmukkn dt kdlm itm d. Sliih ntr mukn dn klurn

40 A B C D. Dri gmbr dit, inyl kontrol ditunjukkn olh bgin:. A b. B c. C d. D

41 A B C D. Dri gmbr dit, inyl kontrol ditunjukkn olh bgin:. A b. B c. C d. D

42 3. Mnkh brikut ini yng mrupkn kgunn dri trnformi lplc (pilih lbih dri tu):. Mngubh prmn dlm domin wktu k vribl komplk (S) b. Mnydrhnkn prmn mtmti yng brii turunn/difrnil mnjdi prmn yng brii prklin dn pmbgin bi c. Mngubh prmn dlm domin wktu k domin frkuni d. Mngubh fungi umum (inuoid, kponnil, dll) k dlm vrbl komplk

43 3. Mnkh brikut ini yng mrupkn kgunn dri trnformi lplc (pilih lbih dri tu):. Mngubh prmn dlm domin wktu k vribl komplk (S) b. Mnydrhnkn prmn mtmti yng brii turunn/difrnil mnjdi prmn yng brii prklin dn pmbgin bi c. Mngubh prmn dlm domin wktu k domin frkuni d. Mngubh fungi umum (inuoid, kponnil, dll) k dlm vrbl komplk

44 4. Fungi yng mmpunyi knggotn dngn nili untuk t< dn nili untuk t, dlh. Unit tp b. Unit rmp c. Ekponnil d. Unit tunggl

45 4. Fungi yng mmpunyi knggotn dngn nili untuk t< dn nili untuk t, dlh. Unit tp b. Unit rmp c. Ekponnil d. Unit tunggl

46 5. Trnformi lplc dri unit tp dlh. S b. S c. / d. /

47 5. Trnformi lplc dri unit tp dlh. S b. S c. / d. /

48 Tug. Tntukn trnformi lplc dri. f t = t 3 t b. f t = t c. f t = t in(3t) d. f t = t. Tntukn invr trnformi lplc dri. G = (+)(+) b. F = + ( ++) c. F =

49 TERIMA KASIH

SISTEM KENDALI KLASIK

SISTEM KENDALI KLASIK SISTEM KENDALI KLASIK Pmodln Mmik Anlii Digrm Bod, Nyqui, Nichol Sp & Impul Rpon Gin / Ph Mrgin Roo Locu Diin Simuli SISTEM KONTROL LOOP TERTUTUP PLANT PEMBANGKIT DAYA UAP SISTEM KENDALI GENERATOR KOMPONEN

Lebih terperinci

SISTEM KENDALI OTOMATIS Transformasi Laplace

SISTEM KENDALI OTOMATIS Transformasi Laplace SISTEM KENDALI OTOMATIS Trormi Lplc Op Loop/Clod Loop Sym Ipu/ Dird oupu Corollr Corol igl Acuor Acuig igl Pl Pl oupu Ipu/ Dird oupu + - Error igl Corollr Corol igl Acuor Acuig igl Pl Pl oupu Sor Iilh-iilh

Lebih terperinci

CATATAN KULIAH Pertemuan XIV: Analisis Dinamik dan Integral (2) Oleh karena bukan angka, maka integral di atas didefinisikan sebagai:

CATATAN KULIAH Pertemuan XIV: Analisis Dinamik dan Integral (2) Oleh karena bukan angka, maka integral di atas didefinisikan sebagai: CATATAN KULIAH Prtmun XIV: Anlisis Dinmik dn Intgrl (2) A. Intgrl Tk Wjr (Impropr Intgrl) Intgrsi dngn Limit Tk Hingg Bntuk intgrl tk wjr jnis ini s: f ) ( d dn f ( ) Olh krn ukn ngk, mk intgrl di ts didfinisikn

Lebih terperinci

Nilai Awal. dan Syarat Batas. Mik Salmina, M.Mat

Nilai Awal. dan Syarat Batas. Mik Salmina, M.Mat Mik Slmin, M.M Nili Awl dn Syr B Mik Slmin, M.M Nili Awl Dn Syr B Pnuli Edior Din Covr your Ukurn Buku Jumlh hlmn : Mik Slmin, M.M : Ully Muzkir, MT : Mufijr, ST : Mufijr, ST : A5 : 4 Ck, Mr 7 Dirbikn

Lebih terperinci

BAB 2 FUNGSI. 2.1 Fungsi dan Grafiknya. Diktat Kuliah TK 301 Matematika Definisi Fungsi

BAB 2 FUNGSI. 2.1 Fungsi dan Grafiknya. Diktat Kuliah TK 301 Matematika Definisi Fungsi Diktt Kulih TK Mtmtik BAB FUNGSI Fungsi dn Grikn Dinisi Fungsi Fungsi didinisikn sbgi turn ng mmtkn stip unsur himpunn A pd sbuh unsur himpunn B Himpunn A disbut drh sl (domin) dn himpunn B disbut drh

Lebih terperinci

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1 Mngnl IIR Filtr Olh: Tri Budi Sntoso L Sinyl, EEPIS-ITS ITS /23/26 Konsp Dsr Infinit Impus Rspons IIR dlm hl ini ngn diphmi sgi sutu kondisi rspons impuls dri - ~ dn rkhir smpi ~ Lih tpt diphmi sgi sutu

Lebih terperinci

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (, EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp

Lebih terperinci

BAB VII TRANSFORMASI LAPLACE

BAB VII TRANSFORMASI LAPLACE BAB VII TRANSFORMASI APACE Tujun Pmbljrn Slh mmpljr bb n, dhrpkn mhw mmlk kmmpun unuk mmbu bnuk-bnuk Trnform plc dr brbg jn fung. Dmkn jug dngn nvr Trnform plc yng dbuny. Slnjuny dhrpkn gr mhw mmpu mrubh

Lebih terperinci

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat 3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh Intitut Teknologi Sepuluh Nopemer Sury Anli Ketiln Routh Pengntr Mteri Contoh Sol Ringkn Ltihn Aemen Pengntr Mteri Contoh Sol Konep Stil Proedur Ketiln Routh Ringkn Ltihn Aemen Pengntr Pengntr Mteri Contoh

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

SIFAT-SIFAT LOGARITMA

SIFAT-SIFAT LOGARITMA K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

SUKUBANYAK (POLINOMIAL)

SUKUBANYAK (POLINOMIAL) SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift

Lebih terperinci

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU BAB VI ANDOM VAIATE DISTIBUSI KONTINU Dlm mlkukn simulsi komputr, hrus dpt dilkukn pnrikn rndom numr dri dn mllui progrm komputr. Pnrikn rndom numr mllui komputr ini sngt rgntung pd fungsi tu distriusi

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

Sistem pengukuran. Bab III SISTEM PENGUKURAN. III.1. Karakteristik Statis. Karakteristik instrument pengukuran. Akurasi (ketelitian)

Sistem pengukuran. Bab III SISTEM PENGUKURAN. III.1. Karakteristik Statis. Karakteristik instrument pengukuran. Akurasi (ketelitian) Sistem pengukurn Bb III SISTEM PENGUKURAN III.1. Krkteristik Sttis III.2. Krkteristik Dinmis III.3. Prinsip Dsr Pengukurn Sistem pengukurn merupkn bgin pertm dlm sutu sistem pengendlin Jik input sistem

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

Perancangan Dan Analisa Performansi Tanggapan Tegangan Sistem Kendali Automatic Voltage Regulator

Perancangan Dan Analisa Performansi Tanggapan Tegangan Sistem Kendali Automatic Voltage Regulator Prncngn Dn Anli Prformni Tnggn Tgngn Sim Kndli Auomic olg Rgulor (AR) Dlm Domin Wku Dngn Pndkn Tnggn Frkuni Hru Dibyo Lkono 1, Mzu 1, Firilin 1, Wyu Difrdho 2 1 Jurun Tknik Elkro, Fkul Tknik Univri Andl

Lebih terperinci

5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham

5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham Drulic www.drulic.com 5. Prmn Difrnil Ord Du Sudrno Sudirhm 5.. Prmn Difrnil Linir Ord Du Scr umum rmn difrnil linir ord du rnuk d d c f 5. d d Pd rmn difrnil ord u ki lh mlih hw olui ol rdiri dri du komonn

Lebih terperinci

Matematika X Semester 1 SMAN 1 Bone-Bone

Matematika X Semester 1 SMAN 1 Bone-Bone http://meetbied.wordpress.com Mtemtik X Semester SMAN Bone-Bone Hsil yng pling berhrg dri semu jenis pendidikn dlh kemmpun untuk membut diri kit melkukn sesutu yng hrus kit lkukn, pd st hl itu hrus dilkukn,

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

Transformasi Laplace

Transformasi Laplace Drulic www.drulic.com Trnormi Llc Sudryno Sudirhm Knyn gjl lm dlh ungi wu,. Prhiungn-rhiungn mngni gjl ini n ng dirmudh ji gjl lm ini dinyn dlm uh lin yng un wu. Pruhn rnyn uu ungi wu,, dlm uh lin i u

Lebih terperinci

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia METDE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA V Sitompul * Smsudhuh TP Nbb Mhsisw JurusMtmtik Dos JurusMtmtik FkultsMtmtikdIlmuPthuAlmUivrsits Riu KmpusBiwidPkbru 89 Idosi *vroik@hoooid ABSTRACT This ppr

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudrno Sudirhm nlii Rngkin Lirik Di wn Wku Sudrno Sudirhm, nlii Rngkin Lirik ( 3 nlii Trnin di wn Wku Rngkin Ord -Du Dngn mmlri nlii rnin im ord k-du ki kn mmu mnurunkn rmn rngkin ng mrukn rngkin ord kdu.

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C A. endhulun. Seperti telh dikethui hw diferensil memhs tentng tingkt peruhn sehuungn dengn peruhn kecil dlm vrile es fungsi ersngkutn. Dengn diferensil dpt dikethui kedudukn-kedudukn khusus dri fungsi

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma

TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma TRANSFORMASI LAPLACE Matematika Lanjut 2 Definisi: Transformasi Laplace adalah transformasi dari suatu fungsi waktu f(t), t menjadi fungsi frekuensi F(s). Transformasi dilakukan dengan operasi perkalian

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

Analisa Kestabilan Sistem. Dr. Fatchul Arifin, MT.

Analisa Kestabilan Sistem. Dr. Fatchul Arifin, MT. Anli Ketiln Sitem Dr Ftchul Arifin, MT ftchul@unycid Pole - Zero Untuk mempermudh nli repon utu item digunkn Pole - Zero Pole : Nili vriel Lplce yng menyekn nili trnfer function tk hingg Akr permn dri

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA SOL N SOLUSI MTMTIK I UJIN NSIONL 0 0 IMNSI TI. UN 0 ikethui kubus. dengn pnjng rusuk cm. Jrk titik dn gris dlh.... cm. cm. cm. cm. cm Solusi: [] 9 Jdi, jrk titik dn gris dlh cm.. UN 0 Kubus. memiliki

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. INTEGRAL Instruktur : Ferry Whyu Wibowo, S.Si., M.Cs. . Integrl tk tentu b. Integrl tertentu Contoh : Tentukn turunn berikut ini. y b. y. y d. y y y d. - y y. y y b. y y. Jwb: F() F () ---------- C ---

Lebih terperinci

Model Matematika Rantai Makanan Tiga Spesies

Model Matematika Rantai Makanan Tiga Spesies Modl Mtmtik Rnti Mknn Tig Spsis Yongki Sukm #1, Mdi Rosh *2, Arnllis *3 # Studnt of Mthmtics Dprtmnt Stt Univrsity of Pdng, Indonsi * Lcturrs of Mthmtics Dprtmnt Stt Univrsity of Pdng, Indonsi 1 yongkisukm@rocktmil.com

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

KONVEKSI DIFUSI PERMANEN SATU DIMENSI

KONVEKSI DIFUSI PERMANEN SATU DIMENSI Istirto Jurusn Tknik Sipil dn Lingkungn FT UGM http://istirto.stff.ugm.c.id mil: istirto@ugm.c.id KONVKSI DIFUSI PRMANN SATU DIMNSI Diskritissi Prsmn Konvksi Difusi Prmnn Stu Dimnsi dngn Mtod Volum Hingg

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO . Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Ms Silm UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9 ALJABAR. HBS (Hogere Burger School) NI dn AMS (Algemeene Middelbre

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

BASIC PENGENALAN SISTEM KONTROL

BASIC PENGENALAN SISTEM KONTROL BSIC PENGENLN SISTEM KONTROL PENGENLN SISTEM-SISTEM KONTROL Sitem Kontrol Terbuka/Open-Loop INPUT CONTROLLER PLNT / PROCESS OUTPUT - output tidak diukur maupun di feedback-kan - bergantung pada kalibrai

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

BAB VI TRANSFORMASI LAPLACE

BAB VI TRANSFORMASI LAPLACE BAB VI TRANSFORMASI LAPLACE Kompeteni Mahaiwa mampu. Menentukan nilai tranformai Laplace untuk fungi-fungi yang ederhana. Menggunakan ifat-ifat tranformai untuk menentukan nilai tranformai Laplace untuk

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

4. INTEGRAL FUNGSI KOMPLEKS

4. INTEGRAL FUNGSI KOMPLEKS Intgrl Fungs Komplks 4 INTEGRAL FUNGSI KOMPLEKS Sprt hlny dlm fungs rl, dlm fungs komplks jug dknl stlh ntgrl fungs komplks srt sft-sftny Sft knltkn sutu fungs dlm sutu lntsn trtutup pntng dlm prhtungn

Lebih terperinci