DE DF. = maka tentukan nilai x + 1!

Ukuran: px
Mulai penontonan dengan halaman:

Download "DE DF. = maka tentukan nilai x + 1!"

Transkripsi

1 50. d egiig dikehui 5 m, 6 m dn m. Tiik erlek pd ii ehingg pnjng m. ri iik diu gri egk luru di E dn diu euh gri lgi dri egk luru di iik F. Tenukn E : F! E T F 5 L L.... F 6E F E F 9 5. il log, log dn mk enukn nili! log log ( ) ( ) ( ) log ( ) log 5 5. d egiig XYZ dikehui in 5 dn in z 0. Tenukn nili n 5 0! in 5 n 5 in z 0 n z 0 n n (80 ( z)) n n n n n n n n( z) n n z n n z ( n ). 5. ikehui o ( ) dn o ( ). Tenukn nili in! 5 o o in ( ) in ( ) ( ) in ( ) o in 5 o 9 0 ( ( ) ( ) ) o ( ) o ( ) in ( ) in ( ) in iu kn melkukn endngn pinli ke gwng uffon. elung memu gol dlm ekli endngn dlh /5. Jik dilkukn 5 kli endngn pinli, enukn pelung memu ig nol!

2 elung ig gol Tenukn domin dri fungi f ( ) 5 i) ii) ( ) ( ) ( ) ( ) ( ) ( ) 0 0, ri (I) dn (ii) didp : f : u u d 56. Tenukn dri d o o d d in o in o d o ( in ) d 57. Tenukn nili mkimum fungi f ( ) o in in o 0 o o f ( ) in 0 f ( ) o 7 7o in 0 f ( ) f 5o in 9 ( 5) 9 m 58. Tenukn lim 0 in in 6 in0 in in in8 lim ( in 6 in ) ( in8 in0) 0 in in lim in o oin 0 in (in in ) lim in ( o o) 0 in lim 0 in in ( in8in 6)

3 lim 0 in in8in 6 in in in Tenukn lim n n ( ) n n n n lim ( ) ( )n n n n lim ( ) ( n n) n ( ) lim lim n ( ) ( ) 60. Seuh keruu egk np l dilekkn erlik, ke dlm keruu dimukkn euh ol ng erdimeer 6 m ehingg emu gin ol muk ke dlm keruu. Tenukn inggi keruu gr mempuni volume erkeil! R F 8 E - 8 Segiig F engun dengn egiig E F E R 8 R R 8 R 6 V π R π.. 6π 6 6 ( 6). V ' 0 6π 0 ( 6) R

4 0 8 Iilh lingkrn-lingkrn koong pd inng ji di mping dengn ilngn edemikin ehingg ilngn-ilngn pd eip gri mempuni jumlh ng m! 7 0 f d e 8 Jumlh eip ri u 08 9 u 8df 7fe u d e de 9 -e-e 9 u e 6 d 6-8df 9 8f 9 u f 6 Sol mempuni nk jwn. il dimilkn mk 9 dn f 5 6. Tenukn emu pngn ilngn ul ng eliih kudrn 9! ( ) ( ) 9 ngn nili ( ) dn ( ) ng mungkin dlh pngn fkor genp dri ikehui egiig dengn ii-ii, dn ming-ming meninggung lingkrn ng pun O. Jik 0, enukn O! R 0 S O

5 T 6. Mil R, S dn T dlh iik-iik inggung TS 80 RS 80 TS RS Kren S dn T gri inggung mk O merupkn gri gi egiupun S dn R ng merupkn gri gi RS OS OS ( TS RS ).0 0 O 80 ( OS OS ) ST. Q u uh lingkrn L dn L ming-ming erjri-jri r dn r. Kedu lingkrn erpoongn di iik dn Q. Gri inggung L dn L di iik memenuk udu ikuiku. Gri ng mellui pu lingkrn-lingkrn iu memoong kedu lingkrn di,, dn. Jik m dn n mk unjukkn hw mn r. r M N M r, N r M N M MN N Q m r n r mn mn ( MN N) r ( MN r ) r ( r MN r ) ( r MN r ) ( r r ) MN r ( r r r r ) ( r r ) r r MN r MN 65. E

6 Hiung lu derh ng dirir! L L E L E E 66. ( L L ) ( L L ) (...) (..6..) E. 5 H 6 Segiig iku-iku di dn 5. Gri inggi H memgi dlm egmen H dn H dengn H 6. Tenukn lu egiig!. 5 H 6 ( 6) 5 ( 6) ri () dn ( ) Suiui () ke 9 ( 6) ( 5) ( 9)...()...() () : 5 5 idk memenuhi L ( 9 6 ) ()...() N M Segiig iku-iku di. Gri er M egk luru gri er N. njng ii. Tenukn pnjng N! Mil dn. Kren N dn gri er, mk :

7 : N : M N M () () 5 9 : : N N 9 N M N M 9...()...() ( ) ( ) N N N 68. ri egiig dikehui hw gri inggi. ukikn hw unuk eip iik pd kn erlku G H E F d ii-ii,, dn dri peregi pnjng ng pnjng iin dn dipilih iik-iik E, F, G dn H edemikin hingg E E, F F, G G dn H H. Tenukn lu derh ng dii oleh gri G, H, E dn F! G Mil ET H T F α α β E nα n β. Mk H E. erri egiemp ng dirir erup peregi. Mil pnjng iin.

8 E E Lu derh ng dirir ipilih iik di dlm egiig ehingg pil dirik gri-gri lew ejjr dengn ii-ii, mk hiln egiig-egiig ng lun, 9 dn 9. Hiung lu egiig!. U T 9 V S Q R Mil pnjng Q 7 dn R 7, mk T, TS, UV dn U L.7.7.inα 9 inα L QR...in α Jik dikehui jri-jri lingkrn er dlh R un dn jri-jri lingkrn keil dlh r un (kedu lingkrn idk epu). Tunjukkn hw R ( ) R

9 r L L R in in R L in R ri () dn () r R L L r R ( ) r...() r r ( )...() 7. Jik dn dlh li uur-li uur euh lingkrn ng erpoongn di iik di dlm lingkrn, mk ukikn hw.. (eorem li uur)! ' ' ~ ' ' ' '. '. ' ' ' 7. Jik dn dlh li uur-li uur euh lingkrn ng erpoongn di iik di lur lingkrn, mk ukikn.. (eorem Sen)! ' ' ' ' ' '. ' ' ~ '. '

10 7. Jik euh iik di lur lingkrn, gri inggung dri iik meninggung lingkrn di iik T dn gri mellui memoong lingkrn di dn, mk ukikn. (T) (eorem Sen-Tngen) α T O α Mil ' T α mk : OT α, OT 90 α T α T ' T T ~ ' T. ' ( T ) 75. R S O Q T Jik T 6 m, SQ,5 m dn OS egk luru RT mk enukn pnjng TQ! QR SQ.,5 5 m TQ. TR T TQ.( TQ 5) TQ ( ) 6 ( TQ 9) ( TQ ) Seuh iik erlek di lur lingkrn ng erpu di iik M. ri iik dirik gri ng memoong lingkrn di iik dn. (iik erlek dinr dn ). iu gri M ehingg memoong lingkrn di iik, ern meninggung lingkrn dn iik E erlek pd gri. Jik pnjng E m, m dn 6 m. ukikn hw M, dn E erpoongn di euh iik! 6 R E R M. E ( 6) 6 M E R.... M E 6 R erri M, dn E erpoongn di uu iik.

11 77. E E F F Seuh lingkrn memoong ii-ii egiig pd gin dlm iu di dn, di E dn E er di F dn F. Jik, E dn F konkuren, unjukkn hw, E dn F jug konkuren! Memukikn, E dn F konkuren m rin dengn memukikn F ' ' E '.. F ' ' E ' F E ' F '. F E '. E E F '. ' E. E ' F. F '. ', E dn F F E.. F E F E.. E F E ' F ' '.. F ' ' E ' F ' ' E '.. E ' F ' ' konkuren, mk : F E F ' ' ' E ' F ' ' E '.. F ' ' E ' 78. Lu derh ng dirir dlh. Tunjukkn hw lu peregi pnjng jug dlh! q p p

12 p q π p π. () p lu lingkrn ( ) π q π. () q lu lingkrn ( ) () () : p q π π ( ) ( ) π π Lu lingkrn Lu peregi ( ) π Lu peregi π Lu peregi ( ) 79. Q T Lingkrn er merupkn lingkrn lur egiig m ii. Lingkrn keil meninggung ii dn di iik dn Q dn meninggung lingkrn er di T. Jik m, enukn pnjng Q! Q T R T S Mil R jri-jri lingkrn lur, mk : R R in in 60 R T n 60 Q R 8 RT T RT 8 RT RT Q RT m

13 i dlm lingkrn ng erjri-jri 5 m, digmr ig lingkrn ling eringgungn ng erjri-jri 0 m, 5 m dn m. Tenukn! ( 5 ) ( 5) 0 ( ) ( 5) oα 5...() ( 0 ) ( 5) 5 ( ) ( 5) oα 5...() Suiui () ke ( 5) () : oα 5.5oα 8. ukikn pd egiig iku-iku dengn ii iku-iku dn er ii miring erlku R Q S Lu Lu S Lu QRS. ( ) 8. Jik pnjng ii-ii, dn pd egiig dlh,, dn. L ukikn hw lu derh egiig dlh ( ) ( ) ( )

14 ( ) ke Suiui dn ri : () ()...() : () ()...()...() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) L L. 8. Segiig iku-iku di. Tiik dn Q erlek pd edemikin ehingg ergi menjdi ig gin ng m. ukikn hw Q Q Q

15 Q Q Q Q 9 ( ) ( ) 9 ri (), () dn Q 5. o...() () :....().. Qo.....() Q Q 9 9 ( 5 ) 8. β z α γ ukikn hw jumlh lu ujur ngkr ng di lur m dengn ig kli jumlh lu ujur ngkr ng di dlm!

16 oα o β oγ o o β ( 80 β ) oα o β oγ o oα ( 80 α ) z o oγ ( 80 γ ) z z ( ) 85. Jik euh gri rnverl memoong ii-ii, dn dri egiig di iikiik, E dn F, mk ukikn.. (Teorem Menelo) E F E F E F ~ E E. E FE ~ F F F E () ()...() F....() F E E F... F E E F.. E F n : - Trnverl ii : emrng gri luru ng memoong ii-ii u perpnjngn ii euh egiig - Trnverl udu : emrng gri luru ng mellui iik udu euh egiig

17 86. Seuh gri rnverl memoong ii-ii,,, dri egi emp di, Q, Q R S R dn S. ukikn hw... Q R S R Q S Q Menuru eoreme Menelo pd egiig erlku :.. Q...() S R S R d egiig erlku :... S R S R...() Suiui () ke () : Q S R Q S R..... Q S R Q S R 87. Jik iik-iik, E, F erlek pd ii-ii, dn dri egiig edemikin ehingg gri-gri, E, F dlh konkuren mellui iik, mk ukikn hw E F.. E F E F d egiig E erlku : F E.....() F E d egiig E erlku : E......() E E E Suiui () ke () : F E E F..... F E E F Jdi jik iik-iik, E, F erlek pd ii-ii, dn edemikin ehingg E F.. mk gri-gri, E dn F konkuren. E F 88. ukikn hw keig gri gi uu egiig konkuren! S

18 T Mil gri-gri gin, Q dn R. T ~ S T S L L. T. S engn r ng m kn didp : Sehingg : Q R.... Q R erri, Q dn R konkuren Q Q dn R R 89. ikehui lingkrn dlm egiig meninggung ii-ii, dn di, E dn F.ukikn hw, E dn F konkuren! E F E F, F, E F F E F.... E F E F F E F.. E F Jdi, E dn F konkuren. E 90. d lingkrn, ukikn udu keliling udu pu ng menghdp uur ng m! O O O 80 O O O O O 80 O O O 60

19 9. 5 O X 50 Tenukn! ( ) ikehui egiig, dlh gri inggi dn E dimeer lingkrn lur. ukikn hw..e O E E E E 90. ~ E. E 9. Seengh lingkrn er erjri-jri 0 m. u uh eengh lingkrn di dlm erjri-jri 0 m. Lingkrn keil meninggung lingkrn-lingkrn linn. Tenukn pnjng jri-jri lingkrn keil! R R 0 - R 0 ( 0 R) ( 0 R) 0 R 0 9.

20 Q R Tig lingkrn dengn pu, Q dn R jri-jrin eruru-uru m, m dn k m. Keig lingkrn eringgungn. Tenukn k! Q F -k -k E R d R R d ERQ RE d QF ( k ) ( k ) ( k ) ( k ) 6k R k RE k k FQ 5 R FQ RE k k k k Tujuh uh pip dengn dimeer m diuun eperi gmr dn diik dengn li. Tenukn pnjng li! l l m 60 π R.π. π m 6 60 njng li 6l 6 6. m 6. π m ( π ) m

21 96. lm gmr di wh, udu θ π. Tunjukkn hw kedu derh ng dirir mempuni lu ng m! E θ Mil jri-jri lingkrn er dlh R. Lu I Lu juring E Lu egiig E 90 π ( R) ( R) ( R) π R R.. () Lu II Lu juring Lu juring E Lu egiig E π 90. π R. π ( R) ( R) ( R) π R R () 6 8 π 60 Jdi Lu I Lu II 97. I II Seip ii dri egiig merupkn dimeer dri ming-ming eengh lingkrn. ukikn hw lu derh ng dirir m dengn lu egiig! 90 Mil lu emereng dn Lu derh ng dirir Lu I Lu II { } { π ( ) } π ( ) ( ) π ( ) π ( ) π ( ) ( ) 8 Lu egiig dlh peregi dengn ii m. uur lingkrn dengn pu,, dn erlih eperi pd gmr di wh ini. Tenukn lu derh ng dirir! Segiig dlh egiig m ii. Lu juring lu emereng Lu juring lu emereng

22 0. π. 60 π π ( L. juring L. ). π....in 60 Lu Lu ( ) ( ) ( ) π π m 99. ukikn ( M GM HM ) ( ) 0...( ) ermn () digi mk : () ri () dn () didp : ( M GM HM ) Ser lengkp dp diuli :... n n n.... n n... n 00. Unuk p, q, r > 0 dn pqr, ukikn hw 9 p q r p q r 9 p q r p q r p q r

23

24

25

26

27

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Yogyakarta 2011

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Yogyakarta 2011 Progrm Sudi M Kulih Pokok hsn : Memik : Geomeri : Kesengunn isusun oleh r. li Mhmudi FKULTS MTEMTIK N ILMU PENGETHUN LM UNIVERSITS NEGERI YOGYKRT Yogykr 0 Lemr Kegin Mhsisw Geomeri Lemr Kegin Mhsisw M

Lebih terperinci

Volume Bangun Ruang. 1. Balok. Perhatikan gambar di atas. 1. Bangun apa saja yang ada di atas meja? 2. Termasuk bangun apa benda yang dibawa Tini?

Volume Bangun Ruang. 1. Balok. Perhatikan gambar di atas. 1. Bangun apa saja yang ada di atas meja? 2. Termasuk bangun apa benda yang dibawa Tini? Volume Bngun Rung Bend-bend di mej ini merupkn bngun rung. Kleng uu ini berbenuk p, y? Tono Tini Di kel V kmu elh mempeljri beberp jeni bngun rung. Blok Kubu Prim Lim Tbung Kerucu Tin Em... p, y? Perhikn

Lebih terperinci

Eyus Sudihartinih Tugas MK Geometri

Eyus Sudihartinih Tugas MK Geometri Eyus Sudihrinih Tugs MK Geomeri Posul Prlel Euclid Mellui suu iik A yng idk erlek pd gris m, erdp pling nyk su gris yng kn mellui A dn prlel erhdp m Konvers Teorem Sudu Dlm Berseerngn Jik erdp du gris

Lebih terperinci

a. Buktikan 16 Jawab : Jika a, b, c dan d adalah bilangan-bilangan real positif, tunjukkan bahwa d c x adalah a, b dan c.

a. Buktikan 16 Jawab : Jika a, b, c dan d adalah bilangan-bilangan real positif, tunjukkan bahwa d c x adalah a, b dan c. Jik,,, > ukik Jw : Jik,, lh ilg-ilg rel oiif, ujukk hw Jw : Dikehui kr-kr erm lh, Teuk ili Jw : Dikehui kr-kr erm memeuk ri rimeik eg e Teuk ili,! Jw : Mil kr-kr erm :,,, Mk,,, Dikehui meruk u kr erm Tujukk

Lebih terperinci

D C S. Q Jawab : D C S Luas yang diarsir = Luas PXBY = 5 x 5 = 25 cm A X B

D C S. Q Jawab : D C S Luas yang diarsir = Luas PXBY = 5 x 5 = 25 cm A X B ujurgkr D d QRS erukur m iu 0 0 cm dlh pu ujurgkr D erp lu derh g dirir pd gmr di wh ii? D S R Q D S u g dirir u XY cm Y R X Q Tig ilg eruru g merupk uku-uku ri rimeik jumlh Jik ilg keig dimh mk diperoleh

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Matematika EBTANAS Tahun 1987

Matematika EBTANAS Tahun 1987 Memik EBTANAS Thun 987 EBT-SMA-87-0 Himpunn penyelesin dri persmn : x + = x unuk x R dlh {, } {, } {, } {, } {, } EBT-SMA-87-0 Di bwh ini dlh gmbrpenmpng sebuh pip. Jik jri jri pip cm dn AB = 0 cm (AB

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudno Sudihm Anlii Rngkin Liik Di Kwn Sudno Sudihm, Anlii Rngkin Liik BAB 7 Siem Dn Pemn Rung Su Pemn ung u e pce euion u epeeni ung kedn e pce epenion meupkn u lenif unuk menkn iem dlm enuk pemn difeenil.

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

MODUL VIII FISIKA MODERN Transformasi Lorentz

MODUL VIII FISIKA MODERN Transformasi Lorentz MODUL VIII FISIKA MODERN Trnsformsi Loren Tujun Insruksionl Umum : Agr mhsisw dp memhmi mengeni Trnsformsi Loren Tujun Insruksionl Khusus : Dp menjelskn enng kedu posul Einsein Dp menjelskn enng perbedn

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal:

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal: Solusi Pengyn Mtemtik disi 5 pril Pekn Ke-3, 00 Nomor Sol: -50. Pd segitig siku-siku di dibut gris bert dn F. Pnjng = dn F = 9. Pnjng sisi miringny dlh.. 6 5. 6 3. 6. 5 5. 6 Solusi: [] Menurut Teorem Pythgors:

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik

Lebih terperinci

INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing.

INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing. INTEGRAL TAK-WAJAR A. Tk Terhingg Seip ilngn sli merupkn ilngn erhingg dn dp menykn sesuu yng nykny erhingg. Arisoeles menykn hw ilngn sli n dp ernili seesr-esrny epi ep erhingg dn idk kn pernh sm dengn

Lebih terperinci

SISTEM DINAMIK TUGAS 4. Oleh RIRIN SISPIYATI ( ) Program Studi Matematika

SISTEM DINAMIK TUGAS 4. Oleh RIRIN SISPIYATI ( ) Program Studi Matematika SISTEM DINAMIK TUGAS 4 Oleh RIRIN SISPIYATI 6 Progrm Sudi Memik INSTITUT TEKNOLOGI BANDUNG 9 - Consider he equion Wih rel prmeer Find he riil poins nd hrerize hese poins Skeh he flow in he phse-plne nd

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0. MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 00 Bidng Memik Wku : 90 Meni DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci

Yohanes Private Matematika ,

Yohanes Private Matematika , Yohnes Privte Mtemtik 3 081519611185, 08119605588 Irisn keruut: Lingkrn Prol Elis Hierol LINGKARAN Bentuk umum : 2 + 2 = r 2 ust: (0, 0) ; jri-jri = r ( ) 2 + ( ) 2 = r 2 ust: (, ) ; jri-jri = r r r 2

Lebih terperinci

GEOMETRI BIDANG DATAR

GEOMETRI BIDANG DATAR GEOMETRI ING TR. Unsur-Unsur idng tr idng dtr merupkn jek yng sering kit jumpi di lingkungn sekitr, is lingkungn rumh, seklh, tmn, keun dn lin-lin. i dlm lingkungn terseut terdpt ermm-mm end/jek dengn

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep

Lebih terperinci

Suku ke-n akan menjadi 0 bila n =.. Jawab : 3. Jika k + 1, k 1, k 5 membentuk barisan geometri, maka tentukan harga k! Jawab :

Suku ke-n akan menjadi 0 bila n =.. Jawab : 3. Jika k + 1, k 1, k 5 membentuk barisan geometri, maka tentukan harga k! Jawab : BARIAN DAN DERET Dikehui i,,77, uku ke- k mejdi il = Jw : 7 Teuk jumlh emu ilg-ilg ul di d yg hi digi Jw : 9 9 9 9 9 7 9 Jik k +, k, k memeuk i geomei, mk euk hg k! Jw : k k k k k Jik uku em dee geomei

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Pket Pilihlh jwn ng pling tept!. Dierikn premis-premis erikut! Premis : Jik vektor dn sling tegk lurus, mk esr sudut ntr vektor dn dlh 9 o. Premis : Jik esr

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

ISOTOMIK KONJUGAT DARI TITIK GERGONNE DAN TITIK NAGEL. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

ISOTOMIK KONJUGAT DARI TITIK GERGONNE DAN TITIK NAGEL. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia ISOTOMIK KONJUGAT DARI TITIK GERGONNE DAN TITIK NAGEL Mrth Sri P 1* M Ntir 2 Hriti 2 1 Mhiw Progrm S1 Mtemtik 2 Doen Jurun Mtemtik Fkult Mtemtik dn Ilmu Pengethun Alm Univerit Riu Kmpu Bin Wid 2829 Indonei

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

MATEMATIKA DIMENSI TIGA & RUANG

MATEMATIKA DIMENSI TIGA & RUANG SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu

Lebih terperinci

Hendra Gunawan. 1 November 2013

Hendra Gunawan. 1 November 2013 MA0 MATEMATIKA A Henr Gunwn Semeser I, 0/04 November 0 Lihn (Kulih yng Llu). Hiung inegrl enu/k enu beriku:. +.. cos( + ).. ( ). 4. 0 / 4 cos 0 4 5. (.. ) /0/0 (c) Henr Gunwn Ssrn Kulih Hri Ini 4.4. Teorem

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

Matematika Dasar VOLUME BENDA PUTAR

Matematika Dasar VOLUME BENDA PUTAR OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil

Lebih terperinci

SIMAK UI DIMENSI TIGA

SIMAK UI DIMENSI TIGA IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

DIMENSI TIGA 1. SIMAK UI

DIMENSI TIGA 1. SIMAK UI IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = 8 cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 8 8 80.. 8. 8 00 0 8 cos 8 0 8 cos 8 8 cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

BAB 4 PERBANDINGAN, PROPORSI, DAN SKALA

BAB 4 PERBANDINGAN, PROPORSI, DAN SKALA BAB PERBANDINGAN, PROPORSI, DAN SKALA A. Perndingn. Perndingn dn Pechn Perndingn tu rsio ntr dn ditulis : dlh pechn, dengn syrt 0. Jdi, Jik k 0, mk :, dengn 0. Apil 0, mk : :. : k: k :. k k Menyederhnkn

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

Tahun. : halaman. Berikut. Tertulis 1 Baris ke 12. Hal. No 1. 2 Baris ke 4, maka. untuk a < 0. tertulis a > 0. 5 Baris ke 10 a.

Tahun. : halaman. Berikut. Tertulis 1 Baris ke 12. Hal. No 1. 2 Baris ke 4, maka. untuk a < 0. tertulis a > 0. 5 Baris ke 10 a. Cttn Kecil Untuk MMC Judul : MMC (Metode Menghitung Cept), Teknik cept dn unik dlm mengerjkn sol mtemtik untuk tingkt SMA. Penulis : It Puspit. Penerbit : PT NIR JAYA Bndung. Thun : 0. Tebl : 8 + 5 hlmn.

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

Hendra Gunawan. 2 April 2014

Hendra Gunawan. 2 April 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 2 April 2014 Kulih ng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

SOAL LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA

SOAL LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA SOAL LATIHAN UJIAN NASIONAL 0 SMA NEGERI 8 JAKARTA. Dierikn premis-premis segi erikut: Premis : Jik urh hujn tinggi dn irigsi uruk, mk tnmn pdi memusuk Premis : Tnmn pdi tidk memusuk tu petni menderit

Lebih terperinci

BAB III TRANSFORMASI LINEAR

BAB III TRANSFORMASI LINEAR Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri

Lebih terperinci

Struktur Data & Algoritme (Data Structures & Algorithms) Ide Algoritma Ford-Fulkerson. Motivation. 1-Source, 1-Target Problem.

Struktur Data & Algoritme (Data Structures & Algorithms) Ide Algoritma Ford-Fulkerson. Motivation. 1-Source, 1-Target Problem. rukur D & Algorime (D ruure & Algorihm) Mximum Flow uryn eiwn eiwn@.ui..i Fkul Ilmu Kompuer Univeri Inonei emeer Genp 2/2 Verion. Inernl Ue Only oure, rge Prolem Flow nework Grph Verek p ymmeril iree grph

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015 PAKET SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS. Sit: p q ~ p q Mthmn tidk eljr tu di dpt mengerjkn sol UN mtemtik dn lulus UN setr dengn perntn Jik Mthmn eljr mk di dpt mengerjkn sol UN mtemtik dn

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika olusi engyn Mtemti Edisi Met en Ke-, 007 Nomo ol: -0. Lus pesegi pnjng dlh 007 m. Titi E dn F dlh titi tengh di dn, sedngn G dn H dlh titi pd dn sedemiin sehingg G = G dn H = H. eph lus EGFH? F 006 006

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA

SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL SMA NEGERI 8 JAKARTA. Dierikn premis-premis segi erikut: Premis : Jik curh hujn tinggi dn irigsi uruk, mk tnmn pdi memusuk Premis : Tnmn pdi tidk memusuk tu petni

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

Hendra Gunawan. 15 November 2013

Hendra Gunawan. 15 November 2013 MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn

Lebih terperinci

Latihan 2. Ruang Vektor. Bagian 1

Latihan 2. Ruang Vektor. Bagian 1 Ltihn. Rung Vektor Bgin. Andikn H = {,,,,, }. Opersi penjumlhn pd H dlh opersi penjumlhn modulo. Apkh H merupkh grup? Grup elin?. Dengn opersi penjumlhn modulo 8, selidiki pkh himpunn G merupkn Grup? Grup

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGAL TENTU A. Lus Derh Bing t 1. Mislkn erh = x, y x, y f x. Lus? y = f(x) x Lngkh-lngkh: 1. Iris menji n gin ri lus stu uh irisn ihmpiri oleh lus persegi pnjng engn tinggi f(x). ls (ler) x

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli

Lebih terperinci