Penggunaan Aturan Trapezoidal (Aturan Trapesium), dan Aturan Simpson Sebagai Hampiran Dalam Integral Tentu

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penggunaan Aturan Trapezoidal (Aturan Trapesium), dan Aturan Simpson Sebagai Hampiran Dalam Integral Tentu"

Transkripsi

1 Penggunaan Aturan Trapezoidal (Aturan Trapesium), dan Aturan Simpson Sebagai Hampiran Dalam Integral Tentu Fendi Al Fauzi 15 Desember 1 1 Pengantar Persoalan yang melibatkan integral dalam kalkulus ada kalanya tidak hanya persoalan yang mudah-mudah saja. Untuk fungsi-fungsi yang rumit adakala nya kita akan kesulitan dalam mengintegralkannya. Sebagai contoh 1 e x dx, sin(x) x dx, 1 1 cos(x)dx sangat sulit kita integralkan. Bahkan dengan menerapkan teorema Fundamental Kalkulus dasar Kedua kita mungkin akan kerepotan dengan fungsi-fungsi diatas. Padahal integral pertama sangat penting dalam bidang statistika dan integral kedua sangat penting dalam bidang optik. Akan tetapi bukan berarti integral tersebut tidak dapat kita selesaikan. Penyelesaian integral diatas adalah dengan menggunakan solusi hampiran berupa pengintegralan secara numerik. Jika yang kita bahas adalah pengintegralan secara numerik, maka hasilnya akan berupa angka. Solusi dalam pengintegralan numerik akan berupa hampiran. Namanya hampiran berarti akan ada error (galat). Namun semua kesalahan (galat) dapat kita kontrol untuk mendapatkan hasil yang mendekati nilai eksak. Aturan Trapezoidal (Aturan Trapesium) Pada kesempatan kali ini saya ingin membahas tentang aturan Trapesium. Jika pada kuliah kalkulus kita sudah menghampiri integral dengan aturan integral Rie- 1

2 mann, maka sekarang kita akan mencoba dengan aturan trapezoidal. Pada aturan ini, fungsi f(x) pada [a, b] dibagi dalam beberapa selang (n). Perhatikan gambar berikut: Kita tahu bahwa integral dari suatu fungsi adalah luas daerah pada fungsi tersebut yang dibatasi oleh selang pengintegralan. Gambar diatas menunjukkan bahwa fungsi f(x) di hampiri dengan luasan trapesium. Jadi menghitung integral fungsi f(x) dengan batas [a, b] adalah jumlah dari luas trapesium. Kita juga ketahui bahwa rumus dari luas trapesium adalah L = h (c + d). Rumus luas ini akan membantu kita untuk mencari luas pada gambar pertama. Karena a = x dan b = x n maka luas sebuah trapesium pada gambar diatas adalah A i = h (f(x i 1) + f(x i )) Untuk lebih akurat, maka kita harus memperbanyak trapesium dalam fungsi tersebut sehingga luas seluruhnya adalah A total = A 1 + A + + A n

3 Dengan A 1 = h (f(x ) + f(x 1 )) A = h (f(x 1) + f(x )). A n = h (f(x n 1) + f(x n )) Sehingga kita dapat menyimpulkan bahwa b a b a f(x)dx = A 1 + A + + A n f(x)dx = h (f(x ) + f(x 1 )) + h (f(x 1) + f(x )) + + h (f(x n 1) + f(x n )) Sehingga hasil diatas dapat kita sederhanakan menjadi b a f(x)dx h [f(x ) + f(x 1 ) + f(x ) + + f(x n 1 ) + f(x n )] h [ f(x ) + n 1 i=1 f(x i ) + f(x n ) Dengan h = b a n Sekarang kita akan menguji coba aturan ini dengan integral yang kita ketahui nilai eksaknya. 1. Dengan menggunakan aturan Trapezoidal dengan n = 8 hampirilah nilai x dx ] Penyelesaian: Karena n = 8, maka h = 8 = 1 4 =, 5 3

4 i x i f(x i ) c i c i f(x i ) 1 1,5,65,15,5,5,5 3,75,565 1,15 4 1, 1, 5 1,5 1,565 3,15 6 1,5,5 4,5 7 1,75 3,65 6,15 8, 4, 1 4 Jumlah 1,5 Jadi x dx =, 5 (1, 5) =, 15 (1, 5) =, 6875 Jika kita bandingkan dengan nilai eksaknya yaitu x dx = x3 3 = 8 3 =, Kesalahan pada aturan Trapezoidal E n dinyatakan dengan E n = (b a)3 f (c) 1n dengan c adalah suatu titik tengah diantara a dan b. Jika dibandingkan dengan nilai eksaknya maka masih terdapat perbedaan yang cukup signikan. Sehingga kita akan mencoba beralih pada aturan selanjutnya. 4

5 3 Modikasi Aturan Trapezoidal Aturan Trapezoidal diatas dapat dimodikasi sebagai berikut. b a f(x)dx T [f (b) f (a)] h 1 h [f(x ) + f(x 1 ) + f(x ) + + f(x n 1 ) + f(x n )] [f (b) f (a)] h 1 Sekarang kita akan mencoba mengaplikasikannya dalam contoh diatas. 1. Dengan menggunakan aturan Trapezoidal yang dimodikasi dengan n = 8 hampirilah nilai Penyelesaian: Karena n = 8, maka h = 8 = 1 4 =, 5 x dx i x i f(x i ) c i c i f(x i ) 1 1,5,65,15,5,5,5 3,75,565 1,15 4 1, 1, 5 1,5 1,565 3,15 6 1,5,5 4,5 7 1,75 3,65 6,15 8, 4, 1 4 Jumlah 1,5 Jadi T =, 5 (1, 5) =, 15 (1, 5) T =, 6875 Selanjutnya f (x) = x f () = dan f () = 4 maka [f (b) f (a)] h 1 = (4 )(, 5) 1 = 4(, 65) 1 =, 833 5

6 Sehingga x dx, 6875, 833, hasilnya sama dengan nilai eksak. 4 Aturan Simpson (Parabolik) Jika pada aturan Trapezoidal, kurva f(x) dihampiri dengan ruas-ruas garis. Kali ini kita akan mencoba menghampirinya dengan ruas-ruas parabola dengan partisi (pembagian) selang [a, b] menjadi n subselang dengan panjang h = (b a). Akan teta- n pi pada hampiran kali ini n haruslah bilangan genap. Kemudian kita mencocokkan ruas-ruas parabola dengan titik-titik yang ada di dekatnya. perhatikan gambar. Dengan menggunakan rumus luas sebagai berikut 6

7 maka akan menuntun kita pada sebuah hampiran yang disebut Aturan Barabolic (Parabolic Rule). Aturan ini disebut juga Aturan Simpson berdasarkan nama ahli matematikawan Inggris, Thomas Simpson ( ). b a f(x)dx h 3 [f(x ) + 4f(x 1 ) + f(x ) + + f(x n ) + 4f(x n 1 ) + f(x n )]. Dengan menggunakan aturan Parabolic dengan n = 8 hampirilah nilai x dx Penyelesaian: Karena n = 8, maka h = 8 = 1 4 =, 5 i x i f(x i ) c i c i f(x i ) 1 1,5,65 4,5,5,5,5 3,75,565 4,5 4 1, 1, 5 1,5 1, ,5 6 1,5,5 4,5 7 1,75 3,65 4 1,5 8, 4, 1 4 Jumlah 3 Jadi, 1 x dx, 5 3 (3), (3), Luar biasa. Hasilnya sama dengan nilai eksak. Kesalahan pada aturan Parabolik adalah E n = (b a)5 18n f (4) (c) 4 dengan f (4) (x) adalah turunan keempat dan c adalah suatu titik tengah diantara a dan b. 7

8 Dari kesalahan diatas dapat kita simpulkan bahwa jika turunan keempat dari fungsi f(x) bernilai maka kita akan mendapatkan nilai eksak. 5 Contoh Soal Terapan Setelah kita mempelajari kedua metode diatas maka kini saatnya kita aplikasikan dalam memecahkan masalah integral. 1. Gunakan aturan Trapezoidal dan aturan Parabolik untuk menghampiri luas daerah di pinggir danau seperti pada gambar berikut. digunakan adalah kaki (feet). Dengan satuan yang Penyelesaian : Dengan aturan trapezoidal mudah saja kita mendapatkan hampiran luas danau tersebut. A h [f(x ) + f(x 1 ) + f(x ) + + f(x n 1 ) + f(x n )] 1 [75 + (71) + (6) + (45) + (45) + (5) + (57) + (6) + 59] 5 [914] A 457 Jadi, Dengan menggunakan aturan Trapezoidal Luas Danau tersebut adalah 457 kaki Dengan aturan Parabolik kita dapatkan 8

9 A h 3 [f(x ) + 4f(x 1 ) + f(x ) + + f(x n ) + 4f(x n 1 ) + f(x n )] 1 [75 + 4(71) + (6) + 4(45) + (45) + 4(5) + (57) + 4(6) + 59] (137) 4566, Jadi, Dengan menggunakan aturan Parabolik Luas Danau tersebut adalah 4566,6667 kaki. Gunakan aturan Parabolik untuk menghampiri jumlah air yang diperlukan untuk mengisi kolam renang yang mempunyai bentuk seperti pada gambar dibawah. dengan kedalaman 6 kaki. Satuan yang digunakan adalah kaki. Penyelesaian: Dengan aturan Parabolik kita dapatkan A h 3 [f(x ) + 4f(x 1 ) + f(x ) + + f(x n ) + 4f(x n 1 ) + f(x n )] 3 [3 + 4(4) + (3) + 4(1) + (18) + 4(15) + (1) + 4(11) + (1) + 4(8) + ] Luas kolam renang tersebut adalah 465 kaki. untuk mengisi kolam tersebut adalah Jumlah air yang diperlukan V = L kolam kedalaman V = = 79 9

10 jadi, Jumlah air yang diperlukan untuk mengisi kolam tersebut adalah 79 kaki 3 Sumber : 1. Purcell, Varberg, Rigdon. 7. Calculus 9 th. Prentice Hall. 1

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Integral Integral merupakan invers atau kebalikan dari differensial. Integral terdiri dari dua macam yakni integral tentu dan integral tak tentu. Integral

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

Hendra Gunawan. 11 Oktober 2013

Hendra Gunawan. 11 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot

Lebih terperinci

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik

Lebih terperinci

Aplikasi Aljabar Lanjar pada Metode Numerik

Aplikasi Aljabar Lanjar pada Metode Numerik Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

KAIDAH SIMPSON 3/8 DAN INTEGRASI NUMERIK. Kelompok 6

KAIDAH SIMPSON 3/8 DAN INTEGRASI NUMERIK. Kelompok 6 KAIDAH SIMPSON 3/8 DAN INTEGRASI NUMERIK Kelompok 6 ANGGOTA Rian Triastuti (4101410020) Mardiyani (4101410053) Gias Atikasari (4101410060) Agil Dwijayanti (4101410074) Diah Aprilia (4101410090) Nur Khasanah

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat

GARIS BESAR PROGRAM PENGAJARAN (GBPP) Pokok Bahasan Sub Pokok Bahasan Metode Media/ Alat Mata Kuliah Kode/Bobot Deskripsi Singkat : Tujuan Instruksional Umum : : Kalkulus : TSP-102/3 SKS GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata kuliah ini membahas tentang konsep dasar matematika. Pembahasan

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Penggunaan Turunan, Integral, dan Penggunaan Integral.

Penggunaan Turunan, Integral, dan Penggunaan Integral. DESKRIPSI MATA KULIAH TK-301 Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar yang diberikan pada semester I. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 536 Oleh : Fendi Alfi Fauzi. Nilai p agar vektor 2i + pj + k dan i 2j 2k saling tegak lurus adalah... a) 6

Lebih terperinci

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik Rianto Fendy Kristanto - 13507036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

ISBN. PT SINAR BARU ALGENSINDO

ISBN. PT SINAR BARU ALGENSINDO Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Numerical Analysis of Double Integral of Trigonometric Function Using Romberg Method ABSTRAK Umumnya penyelesaian integral

Lebih terperinci

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] Zulfaneti dan Rahimullaily* Program Studi Pendidikan Matematika STKIP PGRI Sumbar Abstract: There is

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1 Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Pengantar Kalkulus Pertemuan - 1 TIU : Mahasiswa dapat memahami dasar-dasar Kalkulus TIK : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu

Lebih terperinci

Galat & Analisisnya. FTI-Universitas Yarsi

Galat & Analisisnya. FTI-Universitas Yarsi BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Puji Catur Siswipraptini 1, Rifarhan 2 Jurusan Teknik Informatika Sekolah Tinggi Teknik PLN Jakarta JL. Lingkar Luar Barat, Menara PLN,

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci

DIKTAT PRAKTIKUM METODE NUMERIK

DIKTAT PRAKTIKUM METODE NUMERIK DIKTAT PRAKTIKUM METODE NUMERIK LABORATORIUM KOMPUTER PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2014 KATA PENGANTAR Diktat ini disusun untuk pedoman dalam

Lebih terperinci

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral SILABUS Kode Mata Kuliah : IT043223 Nama Mata kuliah : KALKULUS 3 Jumlah SKS : 2 Semester : III Deskripsi Mata Kuliah : Merupakan lanjutan dari -2 yang menitikberatkan pada pemahaman dan penguasaan konsep

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

MODEL PBI UNTUK MENGEMBANGKAN PEMAHAMAN MAHASISWA DALAM MEMECAHKAN MASALAH TENTANG INTEGRAL TENTU. Usman

MODEL PBI UNTUK MENGEMBANGKAN PEMAHAMAN MAHASISWA DALAM MEMECAHKAN MASALAH TENTANG INTEGRAL TENTU. Usman MODEL PBI UNTUK MENGEMBANGKAN PEMAHAMAN MAHASISWA DALAM MEMECAHKAN MASALAH TENTANG INTEGRAL TENTU Usman Dosen Pendidikan Matematika FKIP Unsyiah Banda Aceh Abstrak Kalkulus merupakan salah satu matakuliah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

PERBANDINGAN SOLUSI NUMERIK INTEGRAL LIPAT DUA PADA FUNGSI FUZZY DENGAN METODE ROMBERG DAN SIMULASI MONTE CARLO

PERBANDINGAN SOLUSI NUMERIK INTEGRAL LIPAT DUA PADA FUNGSI FUZZY DENGAN METODE ROMBERG DAN SIMULASI MONTE CARLO PERBANDINGAN SOLUSI NUMERIK INTEGRAL LIPAT DUA PADA FUNGSI FUZZY DENGAN METODE ROMBERG DAN SIMULASI MONTE CARLO Ermawati i, Puji Rahayu ii,, Faihatus Zuhairoh iii i Dosen Jurusan Matematika FST UIN Alauddin

Lebih terperinci

UNIVERSITAS BINA NUSANTARA

UNIVERSITAS BINA NUSANTARA UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika dan Statistika Skripsi Sarjana Program Ganda Semester Genap 2005/2006 ANALISIS PERBANDINGAN METODE ROMBERG, METODE GAUSS-LEGENDRE, METODE SIMULASI

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL

PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL (COMPARISON OF GAUSS-LEGENDRE,GAUSS- LOBATTO, AND GAUSS-KRONROD ON NUMERICAL INTEGRATION

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus II Kode Mata Kuliah : TIS2213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Mata kuliah Kalkulus II mempelajari

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1 Juli 2015 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : 9 halaman Mata Kuliah : Kalkulus Kode

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

Konsep Dasar Perhitungan Numerik

Konsep Dasar Perhitungan Numerik Modul Konsep Dasar Perhitungan Numerik Drs. Mulyatno, M.Si. D PENDAHULUAN alam mata kuliah Kalkulus, Aljabar Linear, Persamaan Diferensial Biasa, dan mata kuliah lainnya, dapat Anda pelajari berbagai metode

Lebih terperinci

BAB 1 PENDAHULUAN. khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses

BAB 1 PENDAHULUAN. khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Numerik merupakan suatu cabang atau bidang ilmu matematika, khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses matematik. Proses

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 6: Masalah Integral Numerik (Minggu ke-11 dan ke-12) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho Dr.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia atas Persegi Panjang Masalah-masalah yang dipecahkan dengan menggunakan integral

Lebih terperinci

BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa

BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan matematika dalam kehidupan sangat berguna untuk meningkatkan pemahaman dan penalaran, serta untuk memecahkan suatu masalah dan menafsirkan solusi dari permasalahan

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

RPS MATA KULIAH KALKULUS 1B

RPS MATA KULIAH KALKULUS 1B RPS MATA KULIAH KALKULUS 1B CAPAIAN PEMBELAJARAN MATA KULIAH: 1. Mempunyai pengetahuan dibidang matematika, statistika, komputasi (algoritma), dan pengetahuan dasar dalam menyelesaikan permasalahan dibidang

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalukulus Dasar Kode Mata Kulih : Bobot Semester Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : 3 sks : 1(satu) : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG1A4 KALKULUS 1 Disusun oleh: Jondri, M.Si. PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada Analisa Terapan: Metode Numerik Pertemuan ke-1 Pengukuran Kesalahan (Measuring Error) 13 September 2012 Department of Civil Engineering 1 Mengapa mengukur kesalahan? 1) Untuk menentukan ketepatan (accuracy)

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN 62 BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis 3.1.1 Analisis Masalah yang Dihadapi Persamaan integral merupakan persamaan yang sering muncul dalam berbagai masalah teknik, seperti untuk mencari harga

Lebih terperinci

Sas Wahid H. Bogor, 07 Agustus 2012 PLOT FUNGSI

Sas Wahid H. Bogor, 07 Agustus 2012 PLOT FUNGSI PLOT FUNGSI A. PEMAHAMAN FUNGSI Suatu fungsi dapat didefinisikan sebagai suatu aturan yang membuat korespondensi antara dua himpunan bilangan sehingga hubungan dari dua himpunan bilangan tersebut menjadi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER Program Studi: Statistika Fakultas: Sains dan Matematika Mata Kuliah: Kalkulus I Kode: AST21-312 SKS: 3 Sem: I Dosen Pengampu: Drs. Agus Rusgiyono, M.Si., Sutrisno, S.Si,

Lebih terperinci

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204. Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math.

RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204. Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math. RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204 Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math. PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 3 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 27 Daftar

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Dalam bab ini diberikan beberapa definisi dan istilah yang digunakan dalam penelitian ini. Definisi 2.1 (Turunan) Turunan merupakan pengukuran terhadap bagaimana fungsi berubah.

Lebih terperinci

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

LUAS DAERAH, TITIK BERAT DAN MOMEN INERSIA POLAR KARDIODA DENGAN INTEGRAL NUMERIK METODE TRAPESIUM & METODE SIMPSON

LUAS DAERAH, TITIK BERAT DAN MOMEN INERSIA POLAR KARDIODA DENGAN INTEGRAL NUMERIK METODE TRAPESIUM & METODE SIMPSON LUAS DAERAH, TITIK BERAT DAN MOMEN INERSIA POLAR KARDIODA DENGAN INTEGRAL NUMERIK METODE TRAPESIUM & METODE SIMPSON Tomi Tristiono 1 1 adala Dosen Fakultas Teknik Universitas Merdeka Madiun Abstract Te

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia 2014 atas Persegi Panjang Sifat-Sifat Perhitungan pada Masalah-masalah yang dipecahkan

Lebih terperinci

Perhitungan Integral Lipat menggunakan Metode Monte Carlo

Perhitungan Integral Lipat menggunakan Metode Monte Carlo Perhitungan Integral Lipat menggunakan Metode Monte Carlo Nugroho Agus Haryono Program Studi Teknik Informatka Universitas Kristen Duta Wacana Yogyakarta Email: nugroho@ukdw.ac.id Abstrak: Perhitungan

Lebih terperinci

SILABUS DAN KONTRAK BELAJAR: MATEMATIKA DASAR. Arum Handini Primandari, M.Sc.

SILABUS DAN KONTRAK BELAJAR: MATEMATIKA DASAR. Arum Handini Primandari, M.Sc. SILABUS DAN KONTRAK BELAJAR: MATEMATIKA DASAR Arum Handini Primandari, M.Sc. SILABUS PERTEMUAN MATERI 1 Bilangan real, koordinat cartesius dan kutub 2 Fungsi 3 Limit dan kontinuitas: 1. Definisi limit

Lebih terperinci

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT

METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN ABSTRACT METODE NEWTON-COTES TERBUKA BERDASARKAN TURUNAN Nurholilah Siagian, Samsudhuha, Khozin Mu tamar Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1 Kunci Jawaban Quis (Bab,2 dan 3) tipe. Tentukan representasi deret Taylor dari f(x) = ln( + x) di sekitar a =. Tuliskan sampai turunan ke 5. Kemudian estimasilah ln(.2) dengan menggunakan deret Taylor

Lebih terperinci

Catatan Kuliah. Komputasi Geofisika. Sayahdin Alfat

Catatan Kuliah. Komputasi Geofisika. Sayahdin Alfat Catatan Kuliah Komputasi Geofisika Sayahdin Alfat 29 Desember 2017 Daftar Isi Daftar Isi 1 1 Interpolasi dan Pencocokan Kurva 3 1.1 Pengantar..................................... 3 1.2 Interpolasi Polinomial..............................

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

METODE NUMERIK. MODUL 1 Galat dalam Komputasi Numerik 1. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2008 年 09 月 21 日 ( 日 )

METODE NUMERIK. MODUL 1 Galat dalam Komputasi Numerik 1. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2008 年 09 月 21 日 ( 日 ) METODE NUMERIK MODUL Galat dalam Komputasi Numerik Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 008 年 09 月 日 ( 日 ) Galat dalam Komputasi Numerik Dalam praktek sehari-hari, misalkan

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

APLIKASI INTEGRAL DALAM MENGHITUNG BANYAK POLUTAN YANG MASUK KE DALAM EKOSISTEM

APLIKASI INTEGRAL DALAM MENGHITUNG BANYAK POLUTAN YANG MASUK KE DALAM EKOSISTEM APLIKASI INTEGRAL DALAM MENGHITUNG BANYAK POLUTAN YANG MASUK KE DALAM EKOSISTEM KALKULUS I Oleh Reyka Bella Desvandai 121810101080 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci