FOURIER TRANSFORMS AND THEIR PROPERTIES
|
|
|
- Ari Sasmita
- 10 tahun lalu
- Tontonan:
Transkripsi
1 SIFAT-SIFAT TRANSFORMASI FOURIER DI L 1 (R) DAN L 2 (R) FOURIER TRANSFORMS AND THEIR PROPERTIES IN L 1 (R) AND L 2 (R) Rusdin, Mawardi Bahri, Loeky Haryanto Bagian Matematika Terapan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin. Alamat Korespondensi: Rusdin, S.Si Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Makassar, HP: [email protected]
2 ABSTRAK Uraian utama tesis ini adalah definisi transformasi Fourier dan sifat-sifat transformasi Fourier di L (R). Sifat-sifat yang dibahas seperti sifat utama yang sangat penting dalam pembahasan transformasi Fourier yaitu sifat penjumlahan, sifat linear, pergeseran, modulasi, skala, konjugat, kontinuitas, dan sifat terbatas. Selanjutnya dibahas konvolusi untuk transformasi Fourier, invers transformasi Fourier dan turunan pada transformasi Fourier. Selanjutnya transformasi Fourier diperluas di L (R). sifat-sifat transformasi Fourier di L (R) dibahas lebih lanjut seperti linearitas, modulasi dan konvolusi. Kata kunci : Transformasi Fourier, Konvolusi, invers, modulasi, turunan. ABSTRACT The main description of this thesis is the definition of the Fourier transform and their properties in L (R). The basic properties such as addition, linearity, translation, modulation, scaling,conjugation, continuously and boundary properties are presented. Next, the fundamental properties for Fourier transform such as convolution, inverse for Fourier transform and it derivative are also established. Finally, the Fourier transform in L (R) are extended to L (R). Properties of the Fourier transform are generalized in L (R) such as linearity, modulation and convolution. Keywords: Fourier transform, convolution, inverse, modulation, derivative.
3 PENDAHULUAN Trasformasi matematis digunakan terhadap suatu sinyal untuk mengetahui informasi lain yang terkandung dalam sinyal tersebut yang tidak dapat terbaca pada sinyal aslinya. Ada banyak metode yang digunakan untuk melakukan transformasi. Salah satu transformasi yang paling banyak digunakan adalah transformasi Fourier, yaitu pemetaan fungsi-fungsi yang bernilai riil atau kompleks ke fungsi-fungsi yang bernilai kompleks. Transformasi ini telah umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi. Transformasi Fourier (TF) dikenal sebagai alat yang handal untuk menganalisis sinyal termasuk untuk pengolahan gambar. Performasi frekuensi suatu sinyal fungsi dapat dipelajari karena TF melakukan transformasi dari domain atau kawasan waktu ke domain frekuensi. TF memerankan suatu bagian yang sangat penting dalam teori beberapa cabang ilmu sains dan teknologi. Transformasi berarti mengubah sesuatu, transformasi Fourier merupakan alat matematik yang sangat penting untuk pengolahan sinyal, meliputi analisis sinyal, pengolahan sinyal, serta menguraikan sinyal (domain waktu) menjadi komponenkomponenen sinusoida (domain frekuensi). Penelitian sebelumnya dilakukan oleh Brandwood (2003) dan Debnath (2005) yang menguraikan beberapa sifat-sifat transformasi Fourier. Secara sederhananya transformasi Fourier dipergunakan untuk mengubah dari kawasan waktu menjadi kawasan frekuensi. Pengubahan itu dimaksudkan untuk mempermudah analisis yang dilakukan. Dalam bidang pengolahan sinyal maka pengubahan tersebut dapat dilakukan terhadap sinyal maupun terhadap sistemnya. Transformasi Fourier sinyal akan menghasilkan spektrum sinyal. Sedangkan transformasi Fourier terhadap sistem akan menghasilkan tanggapan frekuensi sistem. Dalam tulisan ini diperkenalkan Transformasi Fourier (TF) secara detail. Akan diselidiki dan dibuktikan sifat-sifat fundamentalnya di L (R). Selanjutnya akan diselidiki sifat-sifat transformasi Fourier di L (R). Penelitian ini bertujuan merumuskan definisi transformasi fourier di L (R) dan sifat-sifatnya
4 membuktikan sifat-sifat transformasi Fourier di L (R), memperluas definisi transformasi Fourier di L (R) ke L (R) beserta sifat-sifatnya. Penelitian ini dilakukan dengan metode kajian pustaka yang akan menghasilkan pembuktian sifat-sifat transformasi Fourier secara detail. BAHAN DAN METODE Penelitian yang dilakukan adalah penelitian kepustakaan dengan mengumpulkan dan mempelajari beberapa referensi berupa jurnal, makalah ilmiah, buku elektronik dan halaman web di internet tentang Transformasi Fourier, buku yang berkaitan dan hal-hal yang terkait dengannya. Penelitian dilakukan di kampus Universitas Hasanuddin. HASIL Tabel 1 memuat sifat-sifat transformasi Fourier di L (R). Sifat-sifat ini kemudian diselidiki dan dibuktikan. Mulai dari sifat penjumlahan, linearitas, translasi, modulasi, turunan, konvolusi, skala dan invers. Kemudian akan disajikan sifat-sifat transformasi Fourier di L (R). PEMBAHASAN Penelitian ini membahas sifat-sifat transformasi Fourier L (R) dan kemudian membuktikan sifat-sifat tersebut dengan detail. Selanjutnya diperluas ke sifat-sifat transformasi Fourier di L (R). Transformasi Fourier di L 1 (R) Sebuah fungsi f: R R, f L (R) jika f dt <, yaitu jika f terintegral R lebesgue. Jadi L (R) = f f dt <. Misalkan f adalah sebuah fungsi yang R terintegral secaralebesgue pada R. Karena e kontinu dan terbatas, perkalian f(t)e terintegral secara lokal untuk setiap ωε R. Jelas bahwa e = 1 untuk setiap ω dan t pada R. Dengan memberikan integral
5 Ini memberikan f(t)e dt, ω L R. (1) f(t)e dt f(t) dt = f <. (2) Ini berarti bahwa (1) ada (eksis) untuk setiap ω R. Definisi berikut berdasarkan Brandwood (2003) dan Debnath (2005) Definisi 1. (Transformasi Fourier dalam L (R)) Misalkan f L (R). Transformasi Fourier f(t) dilambangkan dengan f(ω) dan didefinisikan oleh f(ω) = F{f(t)}(ω) = f(t)e dt. (3) Secara fisis, persamaan (3) menunjukkan pergerakan osilasi f pada frekuensi ω, dan f(ω) disebut spektrum frekuensi sinyal atau waveform f(t). Berdasarkan hal tersebut f(t) dianggap sebagai sinyal dalam domain waktu dan f(ω) sebagai sinyal dalam domain frekuensi. Bentuk transformasi yang umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi adalah dengan transformasi Fourier. Transformasi Fourier suatu sinyal atau fungsi f(t) didefinisikan oleh (3). Sinyal f(t) dapat direkonstruksi dengan rumus balikan Fourier f(t) = f (ω) e dω. (4) Sifat-sifat dasar Transformasi Fourier Beberapa sifat transformasi Fourier dikumpulkan dalam teorema berikut yang selanjutnya disajikan dalam tabel. Teorema 1. (Sifat Penjumlahan). Jika f(t) dan g(t) L (R), maka berlaku F{f(t)(ω) + g(t)}(ω) = F{f(t)}(ω) + F{g(t)}(ω). (5)
6 Bukti. Dari persamaan (3) diperoleh F{f(t) + g(t)}(ω) = [f(t) + g(t)]e dt. = f(t)e dt + g(t)e dt = f(ω) + g(ω) = F{f(t)}(ω) + F{g(t)}(ω). Teorema 2. (Sifat linear). Jika f(t) dan g(t) L (R) dan α, β adalah dua konstanta kompleks, maka F{αf(t)(ω) + βg(t)}(ω) = αf{f(t)}(ω) + βf{g(t)}(ω). (6) Bukti : Dari definisi transformasi Fourier diperoleh F{αf(t)(ω) + βg(t)}(ω) = (αf(t) + βg(t)) e dt = αf(t) e dt + βg(t) e dt = α f(t) e dt + β = αf(ω) + βg(ω) Teorema 3. (Sifat pergeseran atau translasi) = αf{f(t)} + βf{g(t)}. Misalkan f(t) adalah fungsi yang digeser oleh t ε R, yaitu f (t) = f(t t ), maka diperoleh teorema 4. (Sifat modulasi) g(t) e dt f (ω) = e f(ω). (7)
7 Diberikan fungsi f L (R) dan ω R, misal h(x) = e f(x) maka F{h}(ω) = F{f}(ω ω ). (8) Bukti: Diketahui h(x) = e f(x),maka berdasarkan definisi Transformasi Fourier diperoleh F{h}(ω) = h(x) e dx = e f(x) e dx = f(x) e e dx = f(x) e ( ) dx. Berdasarkan definisi Transformasi Fourier, diperoleh = F{f}(ω ω ). Teorema 5. (Sifat scaling) Diberikan fungsi f, a R, a 0, dan misal (x) = f(ax) maka F{ }(ω) = F{f}. (9) Teorema 6 (konjugasi) Misalkan f L (R) dan untuk setiap ω ε R maka Ff (ω) = F{f} ( ω) (11) Ff (ω) = F{f} ( ω. ) Invers Transformasi Fourier Jika transformasi Fourier dimaksudkan untuk mengubah fungsi berdomain waktu menjadi fungsi berdomain frekuensi, maka sebaliknya invers dari Transformasi Fourier akan mengubah fungsi berdomain frekuensi menjadi fungsi berdomain waktu. Berikut ini akan didefinisikan bentuk dari invers Transformasi Fourier disertai dengan bunyi sebuah teorema yang berkaitan dengannya. Namun
8 khusus teorema ini tidak akan dibuktikan melainkan hanya dituliskan saja bunyi teorema tersebut. Definisi 2 Invers Untuk suatu fungsi g dimana Fourier dari g untuk setiap x R didefinisikan oleh Teorema 6 Jika f L 1 (R) dan F 1 {g}(x) = 1 g(ω) dx <, maka invers Transformasi 2 f(x) dx < maka g(ω)e dω. (12) F 1 F{f}(x) = f(x). (13) Definisi 3 (Invers Transformasi Fourier ) Misalkan fungsi g L (R), maka invers dari TF g didefinisikan untuk setiap bilangan real x, sebagai F ı [F{g}](x) = 1 2 g(ω)e dω. Konvolusi Salah satu operasi matematis penting yang perlu dipahami dalam mempelajari pengolahan citra digital adalah operasi konvolusi. Ini dikarenakan konvolusi merupakan operasi yang mendasar dalam pengolahan citra. Tanda menyatakan operator konvolusi, dan peubah (variabel) y adalah peubah bantu (dummy variabel) (lebih jelasnya lihat pada definisi konvolusi). Definisi 4 Diberikan dua fungsi f dan g (terdefinisi dan terintegralkan pada R), maka konvolusi dari f dan g dinyatakan oleh f g dan didefinisikan sebagai (f g)(x) = f(y)g(x y) dy, untuk x R (14) Sifat-Sifat Konvolusi Setelah didefinisikan, operasi konvolusi ternyata memiliki beberapa sifatsifat. Diantaranya adalah bersifat komutatif, linearity, shifting dan konvolusi dengan dirac δ. Pembahasan selanjutnya akan dijelaskan mengenai pembuktian dari sifat-sifat tersebut.
9 Teorema 7 Komutatif Untuk fungsi f dan g berlaku Bukti : (f g)(x) = (g f)(x). (15) Untuk setiap x R dan dari definisi konvolusi pada Persamaan (10) diketahui (f g)(x) = f(y)g(x y) dy. Misal s = x y maka y = x s dan dy = ds. Karena nilai x fixed, sehingga saat y = maka s = dan saat y = maka s = sehingga diperoleh (f g)(x) = f(x s)g(s)( ds) dan menurut definisi konvolusi diperoleh Teorema 8 Linearitas = g(s) f(x s) ds = (g f)(x). (a) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku f (αg + βg ) = α(f g ) + β(f g ); (16) (b) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku Teorema 9 Shifting (αg + βg ) f = α(g f) + β(g f). (17) Untuk suatu fungsi f, dan a R, serta misal f adalah fungsi yang ditranslasikan yang didefinisikan oleh maka untuk fungsi g yang sesuai berlaku f (x) = f(x a) (a) (g f )(x) = (g f) (x) (18) (b) (g f)(x) = (g f) (x). (19)
10 Transformasi Fourier di L 2 (R) 2 L Pada bagian ini akan diperkenalkan perluasan Transformasi Fourier di Suatu fungsi beserta sifat-sifatnya. Sebagaimana telah dijelaskan di awal bahwa f R R dikatakan dapat diintegralkan pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R) atau dapat ditulis L (R) = f f dt <, maka dengan cara yang sama, suatu R fungsi f R R dikatakan dapat diintegralkan kuadrat pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R), dengan f adalah fungsi yang terintegral Lebesgue pada R, maka L (R) = f f(t) dt <, yang selanjutnya akan disebut fungsi yang terintegral R kuadrat (square integrable functions). Terdapat banyak fungsi dalam fisika dan engineering, termasuk amplitudo gelombang dalam mekanika klasik dan quantum adalah terintegral kuadrat. Ruang L (R), yang dilengkapi hasil kali dalam f, g = f(t)g(t) dt merupakan ruang Hilbert. Karena L (R) bukan himpunan bagian dari L (R), maka definisi transformasi Fourier tidak otomatis berlaku di L (R). Namun demikian, dengan menggunakan fakta bahwa L (R) L (R) padat di L (R), transformasi Fourier dari fungsi fεl (R) dapat didefinisikan sebagai limit dari suatu barisan f (dalam norm di L (R)), dengan f εl (R) L (R) dan f f(n ) dalam norm di L (R). KESIMPULAN Berdasarkan hasil dan pembahasan, diperoleh rumusan dan definisi serta sifat-sifat transformasi Fourier di L (R) dan L (R)seperti ditunjukkan di tabel 1. DAFTAR PUSTAKA Asmar, Nakhle Partial differential equations with Fourier series. second ed.. Pearson Prentice Hall: New Jersey. Brandwood, David Fourier Transform in Radar and Signal Processing..Arthec House. Boston.
11 B. Mawardi, E.Hitzer Windowed Fourier Transform of two Dimensional.Quaternionic Signals. Journal of Applied Mathematics and Computation,..Vol.216, pp Debnath, Lokenath Wavelet Transforms and their Applications...Birkhauser. Boston. Debnath, Lokenath dan Mikusisnski, Piotr Hilbert Spaces with.applications. Elsevier. USA. Folland, Gerald B Real Analysis: Modern Techniques and Their.Applications. John Willey & Sons. New York. Folland, Gerald B. dan Sitaram, Alladi The Uncertainty Principle : A.Mathematical Survey. The Journal of Fourier Analysis and Applications,.Volume 3, pp Folland, Gerald B Fourier Analysis and Its Applications. The Wadsworth.& Brooks. USA. Sonka, M., Hlavac Image Processing, Analysis, and Machine Vision. Thomson Learning. United State of America. Lampiran Tabel 1. Sifat-sifat transformasi Fourier Sifat f(t) f(ω) Penjumlahan f(t) + g(t) f(ω) + g(ω) Sifat linier αf(t) + βg(t) αf(ω) + βg(ω) Dualitas f(t) f( ω) Konvolusi (f g)(t) f(ω)g(ω) Perkalian f(t)g(t) (f g) (ω) translasi f(t t ) e f(ω) modulasi Turunan Skala konjugasi e f(t) f(ω ω ) df(t) dt f(αt) f( t) iωf(ω) 1 α f ω α f(ω)
12
TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM
TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM Resnawati, Mawardi Bahri, Jeffry Kusuma Bagian Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin
TRANSFORMASI FOURIER QUATERNION
JIMT Vol. 10 No. 1 Juni 2013 (Hal. 83 88 ) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X TANSFOMASI FOUIE QUATENION esnawati Program Studi Matematika Jurusan Matematika FMIPA Universitas Tadulako
TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA. MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar
TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA DAN MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar Email : [email protected] Pada tulisan ini, kita membahas sifat-sifat
Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni
Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni Sukardi, Mawardi Bahri, dan Naimah Aris Jurusan Matematika Fakultas Matematika dan Ilmu
TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN. RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM
TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM Nani Sukartini Sangkala, Mawardi Bahri, Amir Kamal Amir Jurusan Matematika, Fakultas MIPA, Universitas
0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks
0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,
TRANSFORMASI FOURIER DAN TRANSFORMASI FOURIER QUATERNION
TANSFOMASI FOUIE DAN TANSFOMASI FOUIE QUATENION Muh. Irwan i Muhammad idwan ii i Prodi Matematika, UIN Alauddin, [email protected] ii Prodi Matematika, UIN Alauddin, [email protected]
TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma
TRANSFORMASI LAPLACE Matematika Lanjut 2 Definisi: Transformasi Laplace adalah transformasi dari suatu fungsi waktu f(t), t menjadi fungsi frekuensi F(s). Transformasi dilakukan dengan operasi perkalian
10. Transformasi Fourier
10. Transformasi Fourier Dalam beberapa bab ke depan, kita akan membahas transformasi Fourier, sifatsifatnya, dan aplikasinya. Seperti halnya pada pembahasan deret Fourier, pendekatan yang diambil dalam
FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.
FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur
METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI
METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal
BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian
Transformasi Fourier 3.4 Transformasi Fourier
Transformasi Fourier Ibnu Pradipta, 07/252949/TK/33237 Firman Nanda, 07/257710/TK/33529 Jurusan Teknik Elektro & Teknologi Informasi FT UGM, Yogyakarta 3.4 Transformasi Fourier Untuk membandingkan gambaran
SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT SEMESTER / SKS : III / 2
SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT041225 SEMESTER / SKS : III / 2 Pertemuan Ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah Fakultas/Jurusan : Pengolahan Sinyal Digital / DSP (Digital Signal Processing) : Ilmu Komputer / Teknik Komputer D Minggu 1 Pendahuluan Ruang
Penggunaan Bilangan Kompleks dalam Pemrosesan Signal
Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Stefanus Agus Haryono (13514097) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah Kode / SKS Program Studi Fakultas : Pengolahan Sinyal Digital : IT012256 / 3 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi Sub Khusus (TIK) 1 Pendahuluan Ruang lingkup Mata Kuliah
Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB
Transformasi Laplace BDA, RYN Referensi Desjardins S J, Vaillancourt R, 11, Ordinary Differential Equations Laplace Transforms and Numerical Methods for Engineers, University of Ottawa, anada. Poularikas
SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT / 3 SKS / LOKAL
SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT041325 / 3 SKS / LOKAL Pertemuan ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA
Karakteristik Operator Positif Pada Ruang Hilbert
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom
Konvergensi Barisan dan Teorema Titik Tetap
JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,
12. Teorema Inversi Fourier dan Transformasi Fourier di L 2 (R)
1. Teorema Inversi Fourier dan Transformasi Fourier di L (R) 1.1 Teorema Inversi Fourier Dari hasil hitung-hitungan kasar di awal bagian ke-10, kita ingin membuktikan bahwa, dalam kondisi tertentu, kita
Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert
Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah
SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010
TAHUN PERTEMUAN : 1 : 100 MENIT Mahasiswa dapat menjelaskan dan Memahami tentang dasardasar Sinyal dan sistem Definisi sinyal dan sistem Ssinyal waktu kontinu dan diskrit Tipe sinyal khusus: eksonential,
Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel
Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)
13. Aplikasi Transformasi Fourier
13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C
METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT
METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika
PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT
PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
SATUAN ACARA PERKULIAHAN
Topik Bahasan : Konsep sinyal dan sistm Tujuan Pembelajaran Umum : Mahasiswa dapat memaparkan tentang konsep dasar sinyal dan sistem, dasar-dasar sinyal dan sistem. Jumlah : 1 (satu) kali dan memahami
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan
Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.
Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan
FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1
FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281
7. Transformasi Fourier
Pengantar Analisis Fourier dan eori Aproksimasi 33 7. ransformasi Fourier Pada bab sebelumnya kita telah melihat bahwa setiap fungsi f L 1 ([0, 1] L ([0, 1] dapat dinyatakan sebagai deret Fourier f(x =
Kelengkapan Ruang l pada Ruang Norm-n
Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n
Transformasi Laplace
TKS 43 Matematika II Transformasi Laplace (Laplace Transform) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Pengertian Transformasi Transformasi adalah teknik atau formula
Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua
II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai
RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ
RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: [email protected] ABSTRAK. Diberikan ruang
PENGANTAR ANALISIS FUNGSIONAL
PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat
APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER
APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER Leo Willyanto Santoso 1, Resmana Lim 2, Rony Sulistio 3 1, 3 Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra
BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.
ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE
ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE Muhamad Sofwan & Dadang Gunawan Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia ABSTRAK Teknik watermarking dibagi menjadi dua, yaitu
Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks
Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks (On the othogonal trajectories and conformal mapping of complex variable functions) Kus Prihantoso Krisnawan dan Atmini Dhoruri Jurusan
Digital Audio Watermarking dengan Fast Fourier Transform
Digital Audio Watermarking dengan Fast Fourier Transform Otniel 13508108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,
Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =
FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)
INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung
QUATERNION AND IT S PROPERTIES ABSTRAK
QUATERNION AND IT S PROPERTIES Muh. Irwan Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM Info: Jurnal MSA Vol. 3 No. 1 Edisi: Januari Juni 015 Artikel No.: 3 Halaman: 16-0 ISSN: 355-083X Prodi
KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI
BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya
1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang
RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA
A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215
Arie Wijaya, Yuni Yulida, Faisal
Vol.9 No.1 (215) Hal. 12-19 HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya, Yuni Yulida, Faisal PS Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. A. Yani Km. 36
KEKONVERGENAN LEMAH PADA RUANG HILBERT
KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: [email protected] ABSTRAK.
JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN
JURNAL FOURIER Aril 7, Vol. 6, No., -6 ISSN 5-763X; E-ISSN 54-539 Kaitan Antara Ruang W m, () Sobolev dan Ruang L () Lebesgue Piit Pratii Rahayu Program Studi Matematika Fakultas Sains dan Teknologi, UIN
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER
MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier
Konvolusi dan Transformasi Fourier
Bab 5 Konvolusi dan Transformasi Fourier B ab ini berisi konsep matematis yang melandasi teori pengolahan citra. Dua operasi matematis penting yang perlu dipahami dalam mempelajari pengolahan citra dijital
SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 52 60 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT DESI RAHMADANI Program Studi
Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian
Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia [email protected],
Kata kunci: Fourier, Wavelet, Citra
TRANSFORMASI FOURIER DAN TRANSFORMASI WAVELET PADA CITRA Oleh : Krisnawati Abstrak Tranformasi wavelet merupakan perbaikan dari transformasi Fourier. Transformasi Fourier hanya dapat menangkap informasi
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA
Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas
Keterbatasan Operator Riesz di Ruang Morrey
J. Math. and Its Appl. ISSN: 829-605X Vol. 3, No., May 2006, 27 40 Keterbatasan Operator Riesz di Ruang Morrey Gani Gunawan, Hendra Gunawan Departemen Matematika FMIPA ITB Abstrak Dengan menggunakan transformasi
JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54
Rekonstruksi Citra pada Super Resolusi menggunakan Projection onto Convex Sets (Image Reconstruction in Super Resolution using Projection onto Convex Sets) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT
Page 1 of 33 REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT SUZYANNA NRP.1208 201 002 July 13, 2010 ABSTRAK Page 2 of 33 Konsep frame di ruang hasil kali dalam dapat dipandang
3. Analisis Spektral 3.1 Analisis Fourier
3. Analisis Spektral 3.1 Analisis Fourier Hampir semua sinyal Geofisika dapat dinyatakan sebagai suatu dekomposisi sinyal ke dalam fungsi sinus dan cosinus dengan frekuensi yang berbeda-beda (juga disebut
TOPOLOGI RUANG LINEAR
TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: [email protected] Abstrak Tulisan ini bertujuan
TUJUAN INSTRUKSIONAL KHUSUS
PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep
Teorema Dasar Aljabar Mochamad Rofik ( )
Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program
1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak
Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang
SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL
EK.353 PENGOLAHAN SINYAL DIGITAL Dosen: Ir. Arjuni BP, MT : Sinyal dan Pemrosesan Sinyal Tujuan pembelajaran umum : Para mahasiswa mengetahui tipe-tipe sinyal, pemrosesan dan aplikasinya Jumlah pertemuan
17. Transformasi Wavelet Kontinu dan Frame
17. Transformasi Wavelet Kontinu dan Frame Pada 16 kita mempelajari basis ortonormal {e 2πimx g(x n)} dengan g = χ [,1). Transformasi f f(x)g(x n)e 2πimx dx, m, n Z, dikenal sebagai transformasi Fourier
DERET FOURIER DAN APLIKASINYA DALAM FISIKA
Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER
(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP
(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP Judul Mata Kuliah : Rangkaian Listrik III Nomer Kode / SKS : Diskripsi singkat : Metode transformasi untuk pemecahan persamaan diferensial menawarkan
*Tambahan Grafik Fungsi Kuadrat
*Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)
METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.
METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial
ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS
ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam
BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab
BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai
FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA
FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA Skripsi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika diajukan oleh Slamet Mugiyono 05610038 Kepada PROGRAM STUDI
Fourier Analysis & Its Applications in PDEs - Part II
Fourier Analysis & Its Applications in PDEs Hendra Gunawan http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA WIDE 2010 5-6 August
RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES
RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES Iin Karmila Putri Karsa Amir Kamal Amir Loeky Haryanto Jurusan Matematika
TRANSFORMASI LINIER PADA RUANG BANACH
TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM [email protected] ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni
Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61
Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung
REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA
REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding
MATEMATIKA INFORMATIKA 2 FUNGSI
MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN
METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL
METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar
Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal
Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit
BAB I DERIVATIF (TURUNAN)
BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian
KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK
JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 1-6 1 KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK Fikri Firdaus, Sunarsini, Sadjidon Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam,
ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK
ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK Kharisma Yusea Kristaksa ) Hanna Arini Parhusip ), dan Bambang Susanto 3) ) Mahasiswa Program Studi Matematika ) 3) Dosen Program Studi Matematika
BAB I PENDAHULUAN ( )
BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan
Pendahuluan. Dua operasi matematis penting dalam pengolahan citra :
KONVOLUSI Budi S Pendahuluan Dua operasi matematis penting dalam pengolahan citra : Operasi Konvolusi (Spatial Filter/Discret Convolution Filter) Transformasi Fourier Teori Konvolusi Konvolusi 2 buah fungsi
