FOURIER TRANSFORMS AND THEIR PROPERTIES

Ukuran: px
Mulai penontonan dengan halaman:

Download "FOURIER TRANSFORMS AND THEIR PROPERTIES"

Transkripsi

1 SIFAT-SIFAT TRANSFORMASI FOURIER DI L 1 (R) DAN L 2 (R) FOURIER TRANSFORMS AND THEIR PROPERTIES IN L 1 (R) AND L 2 (R) Rusdin, Mawardi Bahri, Loeky Haryanto Bagian Matematika Terapan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin. Alamat Korespondensi: Rusdin, S.Si Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Makassar, HP: S.sirusdin@yahoo.com

2 ABSTRAK Uraian utama tesis ini adalah definisi transformasi Fourier dan sifat-sifat transformasi Fourier di L (R). Sifat-sifat yang dibahas seperti sifat utama yang sangat penting dalam pembahasan transformasi Fourier yaitu sifat penjumlahan, sifat linear, pergeseran, modulasi, skala, konjugat, kontinuitas, dan sifat terbatas. Selanjutnya dibahas konvolusi untuk transformasi Fourier, invers transformasi Fourier dan turunan pada transformasi Fourier. Selanjutnya transformasi Fourier diperluas di L (R). sifat-sifat transformasi Fourier di L (R) dibahas lebih lanjut seperti linearitas, modulasi dan konvolusi. Kata kunci : Transformasi Fourier, Konvolusi, invers, modulasi, turunan. ABSTRACT The main description of this thesis is the definition of the Fourier transform and their properties in L (R). The basic properties such as addition, linearity, translation, modulation, scaling,conjugation, continuously and boundary properties are presented. Next, the fundamental properties for Fourier transform such as convolution, inverse for Fourier transform and it derivative are also established. Finally, the Fourier transform in L (R) are extended to L (R). Properties of the Fourier transform are generalized in L (R) such as linearity, modulation and convolution. Keywords: Fourier transform, convolution, inverse, modulation, derivative.

3 PENDAHULUAN Trasformasi matematis digunakan terhadap suatu sinyal untuk mengetahui informasi lain yang terkandung dalam sinyal tersebut yang tidak dapat terbaca pada sinyal aslinya. Ada banyak metode yang digunakan untuk melakukan transformasi. Salah satu transformasi yang paling banyak digunakan adalah transformasi Fourier, yaitu pemetaan fungsi-fungsi yang bernilai riil atau kompleks ke fungsi-fungsi yang bernilai kompleks. Transformasi ini telah umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi. Transformasi Fourier (TF) dikenal sebagai alat yang handal untuk menganalisis sinyal termasuk untuk pengolahan gambar. Performasi frekuensi suatu sinyal fungsi dapat dipelajari karena TF melakukan transformasi dari domain atau kawasan waktu ke domain frekuensi. TF memerankan suatu bagian yang sangat penting dalam teori beberapa cabang ilmu sains dan teknologi. Transformasi berarti mengubah sesuatu, transformasi Fourier merupakan alat matematik yang sangat penting untuk pengolahan sinyal, meliputi analisis sinyal, pengolahan sinyal, serta menguraikan sinyal (domain waktu) menjadi komponenkomponenen sinusoida (domain frekuensi). Penelitian sebelumnya dilakukan oleh Brandwood (2003) dan Debnath (2005) yang menguraikan beberapa sifat-sifat transformasi Fourier. Secara sederhananya transformasi Fourier dipergunakan untuk mengubah dari kawasan waktu menjadi kawasan frekuensi. Pengubahan itu dimaksudkan untuk mempermudah analisis yang dilakukan. Dalam bidang pengolahan sinyal maka pengubahan tersebut dapat dilakukan terhadap sinyal maupun terhadap sistemnya. Transformasi Fourier sinyal akan menghasilkan spektrum sinyal. Sedangkan transformasi Fourier terhadap sistem akan menghasilkan tanggapan frekuensi sistem. Dalam tulisan ini diperkenalkan Transformasi Fourier (TF) secara detail. Akan diselidiki dan dibuktikan sifat-sifat fundamentalnya di L (R). Selanjutnya akan diselidiki sifat-sifat transformasi Fourier di L (R). Penelitian ini bertujuan merumuskan definisi transformasi fourier di L (R) dan sifat-sifatnya

4 membuktikan sifat-sifat transformasi Fourier di L (R), memperluas definisi transformasi Fourier di L (R) ke L (R) beserta sifat-sifatnya. Penelitian ini dilakukan dengan metode kajian pustaka yang akan menghasilkan pembuktian sifat-sifat transformasi Fourier secara detail. BAHAN DAN METODE Penelitian yang dilakukan adalah penelitian kepustakaan dengan mengumpulkan dan mempelajari beberapa referensi berupa jurnal, makalah ilmiah, buku elektronik dan halaman web di internet tentang Transformasi Fourier, buku yang berkaitan dan hal-hal yang terkait dengannya. Penelitian dilakukan di kampus Universitas Hasanuddin. HASIL Tabel 1 memuat sifat-sifat transformasi Fourier di L (R). Sifat-sifat ini kemudian diselidiki dan dibuktikan. Mulai dari sifat penjumlahan, linearitas, translasi, modulasi, turunan, konvolusi, skala dan invers. Kemudian akan disajikan sifat-sifat transformasi Fourier di L (R). PEMBAHASAN Penelitian ini membahas sifat-sifat transformasi Fourier L (R) dan kemudian membuktikan sifat-sifat tersebut dengan detail. Selanjutnya diperluas ke sifat-sifat transformasi Fourier di L (R). Transformasi Fourier di L 1 (R) Sebuah fungsi f: R R, f L (R) jika f dt <, yaitu jika f terintegral R lebesgue. Jadi L (R) = f f dt <. Misalkan f adalah sebuah fungsi yang R terintegral secaralebesgue pada R. Karena e kontinu dan terbatas, perkalian f(t)e terintegral secara lokal untuk setiap ωε R. Jelas bahwa e = 1 untuk setiap ω dan t pada R. Dengan memberikan integral

5 Ini memberikan f(t)e dt, ω L R. (1) f(t)e dt f(t) dt = f <. (2) Ini berarti bahwa (1) ada (eksis) untuk setiap ω R. Definisi berikut berdasarkan Brandwood (2003) dan Debnath (2005) Definisi 1. (Transformasi Fourier dalam L (R)) Misalkan f L (R). Transformasi Fourier f(t) dilambangkan dengan f(ω) dan didefinisikan oleh f(ω) = F{f(t)}(ω) = f(t)e dt. (3) Secara fisis, persamaan (3) menunjukkan pergerakan osilasi f pada frekuensi ω, dan f(ω) disebut spektrum frekuensi sinyal atau waveform f(t). Berdasarkan hal tersebut f(t) dianggap sebagai sinyal dalam domain waktu dan f(ω) sebagai sinyal dalam domain frekuensi. Bentuk transformasi yang umum digunakan untuk merubah sinyal dari domain waktu ke domain frekuensi adalah dengan transformasi Fourier. Transformasi Fourier suatu sinyal atau fungsi f(t) didefinisikan oleh (3). Sinyal f(t) dapat direkonstruksi dengan rumus balikan Fourier f(t) = f (ω) e dω. (4) Sifat-sifat dasar Transformasi Fourier Beberapa sifat transformasi Fourier dikumpulkan dalam teorema berikut yang selanjutnya disajikan dalam tabel. Teorema 1. (Sifat Penjumlahan). Jika f(t) dan g(t) L (R), maka berlaku F{f(t)(ω) + g(t)}(ω) = F{f(t)}(ω) + F{g(t)}(ω). (5)

6 Bukti. Dari persamaan (3) diperoleh F{f(t) + g(t)}(ω) = [f(t) + g(t)]e dt. = f(t)e dt + g(t)e dt = f(ω) + g(ω) = F{f(t)}(ω) + F{g(t)}(ω). Teorema 2. (Sifat linear). Jika f(t) dan g(t) L (R) dan α, β adalah dua konstanta kompleks, maka F{αf(t)(ω) + βg(t)}(ω) = αf{f(t)}(ω) + βf{g(t)}(ω). (6) Bukti : Dari definisi transformasi Fourier diperoleh F{αf(t)(ω) + βg(t)}(ω) = (αf(t) + βg(t)) e dt = αf(t) e dt + βg(t) e dt = α f(t) e dt + β = αf(ω) + βg(ω) Teorema 3. (Sifat pergeseran atau translasi) = αf{f(t)} + βf{g(t)}. Misalkan f(t) adalah fungsi yang digeser oleh t ε R, yaitu f (t) = f(t t ), maka diperoleh teorema 4. (Sifat modulasi) g(t) e dt f (ω) = e f(ω). (7)

7 Diberikan fungsi f L (R) dan ω R, misal h(x) = e f(x) maka F{h}(ω) = F{f}(ω ω ). (8) Bukti: Diketahui h(x) = e f(x),maka berdasarkan definisi Transformasi Fourier diperoleh F{h}(ω) = h(x) e dx = e f(x) e dx = f(x) e e dx = f(x) e ( ) dx. Berdasarkan definisi Transformasi Fourier, diperoleh = F{f}(ω ω ). Teorema 5. (Sifat scaling) Diberikan fungsi f, a R, a 0, dan misal (x) = f(ax) maka F{ }(ω) = F{f}. (9) Teorema 6 (konjugasi) Misalkan f L (R) dan untuk setiap ω ε R maka Ff (ω) = F{f} ( ω) (11) Ff (ω) = F{f} ( ω. ) Invers Transformasi Fourier Jika transformasi Fourier dimaksudkan untuk mengubah fungsi berdomain waktu menjadi fungsi berdomain frekuensi, maka sebaliknya invers dari Transformasi Fourier akan mengubah fungsi berdomain frekuensi menjadi fungsi berdomain waktu. Berikut ini akan didefinisikan bentuk dari invers Transformasi Fourier disertai dengan bunyi sebuah teorema yang berkaitan dengannya. Namun

8 khusus teorema ini tidak akan dibuktikan melainkan hanya dituliskan saja bunyi teorema tersebut. Definisi 2 Invers Untuk suatu fungsi g dimana Fourier dari g untuk setiap x R didefinisikan oleh Teorema 6 Jika f L 1 (R) dan F 1 {g}(x) = 1 g(ω) dx <, maka invers Transformasi 2 f(x) dx < maka g(ω)e dω. (12) F 1 F{f}(x) = f(x). (13) Definisi 3 (Invers Transformasi Fourier ) Misalkan fungsi g L (R), maka invers dari TF g didefinisikan untuk setiap bilangan real x, sebagai F ı [F{g}](x) = 1 2 g(ω)e dω. Konvolusi Salah satu operasi matematis penting yang perlu dipahami dalam mempelajari pengolahan citra digital adalah operasi konvolusi. Ini dikarenakan konvolusi merupakan operasi yang mendasar dalam pengolahan citra. Tanda menyatakan operator konvolusi, dan peubah (variabel) y adalah peubah bantu (dummy variabel) (lebih jelasnya lihat pada definisi konvolusi). Definisi 4 Diberikan dua fungsi f dan g (terdefinisi dan terintegralkan pada R), maka konvolusi dari f dan g dinyatakan oleh f g dan didefinisikan sebagai (f g)(x) = f(y)g(x y) dy, untuk x R (14) Sifat-Sifat Konvolusi Setelah didefinisikan, operasi konvolusi ternyata memiliki beberapa sifatsifat. Diantaranya adalah bersifat komutatif, linearity, shifting dan konvolusi dengan dirac δ. Pembahasan selanjutnya akan dijelaskan mengenai pembuktian dari sifat-sifat tersebut.

9 Teorema 7 Komutatif Untuk fungsi f dan g berlaku Bukti : (f g)(x) = (g f)(x). (15) Untuk setiap x R dan dari definisi konvolusi pada Persamaan (10) diketahui (f g)(x) = f(y)g(x y) dy. Misal s = x y maka y = x s dan dy = ds. Karena nilai x fixed, sehingga saat y = maka s = dan saat y = maka s = sehingga diperoleh (f g)(x) = f(x s)g(s)( ds) dan menurut definisi konvolusi diperoleh Teorema 8 Linearitas = g(s) f(x s) ds = (g f)(x). (a) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku f (αg + βg ) = α(f g ) + β(f g ); (16) (b) Untuk fungsi f, g 1 dan g 2, serta untuk skalar α, β R berlaku Teorema 9 Shifting (αg + βg ) f = α(g f) + β(g f). (17) Untuk suatu fungsi f, dan a R, serta misal f adalah fungsi yang ditranslasikan yang didefinisikan oleh maka untuk fungsi g yang sesuai berlaku f (x) = f(x a) (a) (g f )(x) = (g f) (x) (18) (b) (g f)(x) = (g f) (x). (19)

10 Transformasi Fourier di L 2 (R) 2 L Pada bagian ini akan diperkenalkan perluasan Transformasi Fourier di Suatu fungsi beserta sifat-sifatnya. Sebagaimana telah dijelaskan di awal bahwa f R R dikatakan dapat diintegralkan pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R) atau dapat ditulis L (R) = f f dt <, maka dengan cara yang sama, suatu R fungsi f R R dikatakan dapat diintegralkan kuadrat pada R jika f(t) dt <. Fungsi yang seperti itu dinamakan sebagai L (R), dengan f adalah fungsi yang terintegral Lebesgue pada R, maka L (R) = f f(t) dt <, yang selanjutnya akan disebut fungsi yang terintegral R kuadrat (square integrable functions). Terdapat banyak fungsi dalam fisika dan engineering, termasuk amplitudo gelombang dalam mekanika klasik dan quantum adalah terintegral kuadrat. Ruang L (R), yang dilengkapi hasil kali dalam f, g = f(t)g(t) dt merupakan ruang Hilbert. Karena L (R) bukan himpunan bagian dari L (R), maka definisi transformasi Fourier tidak otomatis berlaku di L (R). Namun demikian, dengan menggunakan fakta bahwa L (R) L (R) padat di L (R), transformasi Fourier dari fungsi fεl (R) dapat didefinisikan sebagai limit dari suatu barisan f (dalam norm di L (R)), dengan f εl (R) L (R) dan f f(n ) dalam norm di L (R). KESIMPULAN Berdasarkan hasil dan pembahasan, diperoleh rumusan dan definisi serta sifat-sifat transformasi Fourier di L (R) dan L (R)seperti ditunjukkan di tabel 1. DAFTAR PUSTAKA Asmar, Nakhle Partial differential equations with Fourier series. second ed.. Pearson Prentice Hall: New Jersey. Brandwood, David Fourier Transform in Radar and Signal Processing..Arthec House. Boston.

11 B. Mawardi, E.Hitzer Windowed Fourier Transform of two Dimensional.Quaternionic Signals. Journal of Applied Mathematics and Computation,..Vol.216, pp Debnath, Lokenath Wavelet Transforms and their Applications...Birkhauser. Boston. Debnath, Lokenath dan Mikusisnski, Piotr Hilbert Spaces with.applications. Elsevier. USA. Folland, Gerald B Real Analysis: Modern Techniques and Their.Applications. John Willey & Sons. New York. Folland, Gerald B. dan Sitaram, Alladi The Uncertainty Principle : A.Mathematical Survey. The Journal of Fourier Analysis and Applications,.Volume 3, pp Folland, Gerald B Fourier Analysis and Its Applications. The Wadsworth.& Brooks. USA. Sonka, M., Hlavac Image Processing, Analysis, and Machine Vision. Thomson Learning. United State of America. Lampiran Tabel 1. Sifat-sifat transformasi Fourier Sifat f(t) f(ω) Penjumlahan f(t) + g(t) f(ω) + g(ω) Sifat linier αf(t) + βg(t) αf(ω) + βg(ω) Dualitas f(t) f( ω) Konvolusi (f g)(t) f(ω)g(ω) Perkalian f(t)g(t) (f g) (ω) translasi f(t t ) e f(ω) modulasi Turunan Skala konjugasi e f(t) f(ω ω ) df(t) dt f(αt) f( t) iωf(ω) 1 α f ω α f(ω)

12

TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM

TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM TRANSFORMASI KANONIKAL LINEAR QUATERNION QUATERNION LINEAR CANONICAL TRANSFORM Resnawati, Mawardi Bahri, Jeffry Kusuma Bagian Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin

Lebih terperinci

TRANSFORMASI FOURIER QUATERNION

TRANSFORMASI FOURIER QUATERNION JIMT Vol. 10 No. 1 Juni 2013 (Hal. 83 88 ) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X TANSFOMASI FOUIE QUATENION esnawati Program Studi Matematika Jurusan Matematika FMIPA Universitas Tadulako

Lebih terperinci

TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA. MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar

TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA. MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar TRANSFORMASI FOURIER QUATERNION DUA SISI DENGAN KERNEL SIFAT-SIFATNYA DAN MUH. NUR Jurusan Matematika, Universitas Hasanuddin, Makassar Email : nur_math@yahoo.com Pada tulisan ini, kita membahas sifat-sifat

Lebih terperinci

Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni

Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni Transformasi Fourier Quaternion yang Didasarkan pada Bidang Ortogonal Split dengan Satu atau Dua Quaternion Murni Sukardi, Mawardi Bahri, dan Naimah Aris Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN. RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM

TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN. RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM TRANSFORMASI FOURIER FRAKSIONAL QUATERNION SISI KANAN RIGHT SIDE of FRACTIONAL QUATERNION FOURIER TRANSFORM Nani Sukartini Sangkala, Mawardi Bahri, Amir Kamal Amir Jurusan Matematika, Fakultas MIPA, Universitas

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

TRANSFORMASI FOURIER DAN TRANSFORMASI FOURIER QUATERNION

TRANSFORMASI FOURIER DAN TRANSFORMASI FOURIER QUATERNION TANSFOMASI FOUIE DAN TANSFOMASI FOUIE QUATENION Muh. Irwan i Muhammad idwan ii i Prodi Matematika, UIN Alauddin, muhirwan@uin-alauddin.ac.id ii Prodi Matematika, UIN Alauddin, muhammadridwan@uin-alauddin.ac.id

Lebih terperinci

TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma

TRANSFORMASI LAPLACE. Matematika Lanjut 2. Achmad Fahrurozi-Universitas Gunadarma TRANSFORMASI LAPLACE Matematika Lanjut 2 Definisi: Transformasi Laplace adalah transformasi dari suatu fungsi waktu f(t), t menjadi fungsi frekuensi F(s). Transformasi dilakukan dengan operasi perkalian

Lebih terperinci

10. Transformasi Fourier

10. Transformasi Fourier 10. Transformasi Fourier Dalam beberapa bab ke depan, kita akan membahas transformasi Fourier, sifatsifatnya, dan aplikasinya. Seperti halnya pada pembahasan deret Fourier, pendekatan yang diambil dalam

Lebih terperinci

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B.

FUNGSI. Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI Fungsi atau Pemetaan dari A ke B adalah relasi dari himpunan A ke himpunan B, dengan setiap x Є A dipasangkan tepat dengan satu y Є B. FUNGSI KOMPOSISI Daerah asal alami f : A B adalah semua unsur

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

Transformasi Fourier 3.4 Transformasi Fourier

Transformasi Fourier 3.4 Transformasi Fourier Transformasi Fourier Ibnu Pradipta, 07/252949/TK/33237 Firman Nanda, 07/257710/TK/33529 Jurusan Teknik Elektro & Teknologi Informasi FT UGM, Yogyakarta 3.4 Transformasi Fourier Untuk membandingkan gambaran

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT SEMESTER / SKS : III / 2

SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT SEMESTER / SKS : III / 2 SATUAN ACARA PERKULIAHAN MATA KULIAH / KODE : TEORI DAN ANALISA SISTEM LINIER / IT041225 SEMESTER / SKS : III / 2 Pertemuan Ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah Fakultas/Jurusan : Pengolahan Sinyal Digital / DSP (Digital Signal Processing) : Ilmu Komputer / Teknik Komputer D Minggu 1 Pendahuluan Ruang

Lebih terperinci

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Stefanus Agus Haryono (13514097) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah Kode / SKS Program Studi Fakultas : Pengolahan Sinyal Digital : IT012256 / 3 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi Sub Khusus (TIK) 1 Pendahuluan Ruang lingkup Mata Kuliah

Lebih terperinci

Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB

Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB Transformasi Laplace BDA, RYN Referensi Desjardins S J, Vaillancourt R, 11, Ordinary Differential Equations Laplace Transforms and Numerical Methods for Engineers, University of Ottawa, anada. Poularikas

Lebih terperinci

SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT / 3 SKS / LOKAL

SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT / 3 SKS / LOKAL SATUAN ACARA PERKULIAHAN TEKNIK ELEKTRO ( IB ) MATA KULIAH / SEMESTER : ANALISIS SISTEM LINIER / 3 KODE / SKS / SIFAT : IT041325 / 3 SKS / LOKAL Pertemuan ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

12. Teorema Inversi Fourier dan Transformasi Fourier di L 2 (R)

12. Teorema Inversi Fourier dan Transformasi Fourier di L 2 (R) 1. Teorema Inversi Fourier dan Transformasi Fourier di L (R) 1.1 Teorema Inversi Fourier Dari hasil hitung-hitungan kasar di awal bagian ke-10, kita ingin membuktikan bahwa, dalam kondisi tertentu, kita

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010 TAHUN PERTEMUAN : 1 : 100 MENIT Mahasiswa dapat menjelaskan dan Memahami tentang dasardasar Sinyal dan sistem Definisi sinyal dan sistem Ssinyal waktu kontinu dan diskrit Tipe sinyal khusus: eksonential,

Lebih terperinci

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)

Lebih terperinci

13. Aplikasi Transformasi Fourier

13. Aplikasi Transformasi Fourier 13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik Bahasan : Konsep sinyal dan sistm Tujuan Pembelajaran Umum : Mahasiswa dapat memaparkan tentang konsep dasar sinyal dan sistem, dasar-dasar sinyal dan sistem. Jumlah : 1 (satu) kali dan memahami

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

7. Transformasi Fourier

7. Transformasi Fourier Pengantar Analisis Fourier dan eori Aproksimasi 33 7. ransformasi Fourier Pada bab sebelumnya kita telah melihat bahwa setiap fungsi f L 1 ([0, 1] L ([0, 1] dapat dinyatakan sebagai deret Fourier f(x =

Lebih terperinci

Kelengkapan Ruang l pada Ruang Norm-n

Kelengkapan Ruang l pada Ruang Norm-n Jurnal Matematika, Statistika,& Komputasi Vol.... No... 20... Kelengkapan Ruang l pada Ruang Norm-n Meriam, Naimah Aris 2, Muh Nur 3 Abstrak Rumusan norm-n pada l merupakan perumuman dari rumusan norm-n

Lebih terperinci

Transformasi Laplace

Transformasi Laplace TKS 43 Matematika II Transformasi Laplace (Laplace Transform) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Pengertian Transformasi Transformasi adalah teknik atau formula

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER

APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER APLIKASI SPECTRUM ANALYZER UNTUK MENGANALISA LOUDSPEAKER Leo Willyanto Santoso 1, Resmana Lim 2, Rony Sulistio 3 1, 3 Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra

Lebih terperinci

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga

BAB I PENDAHULUAN. umum ruang metrik dan memperluas pengertian klasik dari ruang Euclidean R n, sehingga BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Permulaan munculnya analisis fungsional didasari oleh permasalahan pada kurang memadainya metode analitik klasik pada fisika dan astronomi matematika.

Lebih terperinci

ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE

ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE ANALISA WATERMARKING MENGGUNAKAN TRASNFORMASI LAGUERRE Muhamad Sofwan & Dadang Gunawan Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia ABSTRAK Teknik watermarking dibagi menjadi dua, yaitu

Lebih terperinci

Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks

Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks (On the othogonal trajectories and conformal mapping of complex variable functions) Kus Prihantoso Krisnawan dan Atmini Dhoruri Jurusan

Lebih terperinci

Digital Audio Watermarking dengan Fast Fourier Transform

Digital Audio Watermarking dengan Fast Fourier Transform Digital Audio Watermarking dengan Fast Fourier Transform Otniel 13508108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

QUATERNION AND IT S PROPERTIES ABSTRAK

QUATERNION AND IT S PROPERTIES ABSTRAK QUATERNION AND IT S PROPERTIES Muh. Irwan Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM Info: Jurnal MSA Vol. 3 No. 1 Edisi: Januari Juni 015 Artikel No.: 3 Halaman: 16-0 ISSN: 355-083X Prodi

Lebih terperinci

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

Arie Wijaya, Yuni Yulida, Faisal

Arie Wijaya, Yuni Yulida, Faisal Vol.9 No.1 (215) Hal. 12-19 HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya, Yuni Yulida, Faisal PS Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. A. Yani Km. 36

Lebih terperinci

TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM

TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 01 (2014), pp. 95 104. TRANSFORMASI WAVELET DISKRIT PADA SINTETIK PEMBANGKIT SINYAL ELEKTROKARDIOGRAM Yedidia Panca, Tulus, Esther Nababan Abstrak. Transformasi

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN

JURNAL FOURIER April 2017, Vol. 6, No. 1, ISSN X; E-ISSN JURNAL FOURIER Aril 7, Vol. 6, No., -6 ISSN 5-763X; E-ISSN 54-539 Kaitan Antara Ruang W m, () Sobolev dan Ruang L () Lebesgue Piit Pratii Rahayu Program Studi Matematika Fakultas Sains dan Teknologi, UIN

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier

Lebih terperinci

Konvolusi dan Transformasi Fourier

Konvolusi dan Transformasi Fourier Bab 5 Konvolusi dan Transformasi Fourier B ab ini berisi konsep matematis yang melandasi teori pengolahan citra. Dua operasi matematis penting yang perlu dipahami dalam mempelajari pengolahan citra dijital

Lebih terperinci

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 52 60 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT DESI RAHMADANI Program Studi

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

Kata kunci: Fourier, Wavelet, Citra

Kata kunci: Fourier, Wavelet, Citra TRANSFORMASI FOURIER DAN TRANSFORMASI WAVELET PADA CITRA Oleh : Krisnawati Abstrak Tranformasi wavelet merupakan perbaikan dari transformasi Fourier. Transformasi Fourier hanya dapat menangkap informasi

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

Keterbatasan Operator Riesz di Ruang Morrey

Keterbatasan Operator Riesz di Ruang Morrey J. Math. and Its Appl. ISSN: 829-605X Vol. 3, No., May 2006, 27 40 Keterbatasan Operator Riesz di Ruang Morrey Gani Gunawan, Hendra Gunawan Departemen Matematika FMIPA ITB Abstrak Dengan menggunakan transformasi

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54 Rekonstruksi Citra pada Super Resolusi menggunakan Projection onto Convex Sets (Image Reconstruction in Super Resolution using Projection onto Convex Sets) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT

REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT Page 1 of 33 REDUNDANSI FRAME DAN PENGARUHNYA PADA DEKOMPOSISI FUNGSI DI RUANG HILBERT SUZYANNA NRP.1208 201 002 July 13, 2010 ABSTRAK Page 2 of 33 Konsep frame di ruang hasil kali dalam dapat dipandang

Lebih terperinci

3. Analisis Spektral 3.1 Analisis Fourier

3. Analisis Spektral 3.1 Analisis Fourier 3. Analisis Spektral 3.1 Analisis Fourier Hampir semua sinyal Geofisika dapat dinyatakan sebagai suatu dekomposisi sinyal ke dalam fungsi sinus dan cosinus dengan frekuensi yang berbeda-beda (juga disebut

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL

SATUAN ACARA PERKULIAHAN EK.353 PENGOLAHAN SINYAL DIGITAL EK.353 PENGOLAHAN SINYAL DIGITAL Dosen: Ir. Arjuni BP, MT : Sinyal dan Pemrosesan Sinyal Tujuan pembelajaran umum : Para mahasiswa mengetahui tipe-tipe sinyal, pemrosesan dan aplikasinya Jumlah pertemuan

Lebih terperinci

17. Transformasi Wavelet Kontinu dan Frame

17. Transformasi Wavelet Kontinu dan Frame 17. Transformasi Wavelet Kontinu dan Frame Pada 16 kita mempelajari basis ortonormal {e 2πimx g(x n)} dengan g = χ [,1). Transformasi f f(x)g(x n)e 2πimx dx, m, n Z, dikenal sebagai transformasi Fourier

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP

(GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP (GBPP) BARU JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNDIP Judul Mata Kuliah : Rangkaian Listrik III Nomer Kode / SKS : Diskripsi singkat : Metode transformasi untuk pemecahan persamaan diferensial menawarkan

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1. METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA

FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA FUNGSI GREEN PADA PERSAMAAN DIFERENSIAL BIASA Skripsi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika diajukan oleh Slamet Mugiyono 05610038 Kepada PROGRAM STUDI

Lebih terperinci

Fourier Analysis & Its Applications in PDEs - Part II

Fourier Analysis & Its Applications in PDEs - Part II Fourier Analysis & Its Applications in PDEs Hendra Gunawan http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA WIDE 2010 5-6 August

Lebih terperinci

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS CONSTANT RANK VECTOR SUBSPACE OF SOME VECTOR SPACE MATRICES Iin Karmila Putri Karsa Amir Kamal Amir Loeky Haryanto Jurusan Matematika

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

MATEMATIKA INFORMATIKA 2 FUNGSI

MATEMATIKA INFORMATIKA 2 FUNGSI MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK

KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 1-6 1 KONVERGENSI DAN KELENGKAPAN PADA RUANG QUASI METRIK Fikri Firdaus, Sunarsini, Sadjidon Jurusan Matematika, Fakultas Matematika Ilmu Pengetahuan Alam,

Lebih terperinci

ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK

ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK ANALISA SAHAM MENGGUNAKAN TRANSFORMASI FOURIER STOKASTIK Kharisma Yusea Kristaksa ) Hanna Arini Parhusip ), dan Bambang Susanto 3) ) Mahasiswa Program Studi Matematika ) 3) Dosen Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

Pendahuluan. Dua operasi matematis penting dalam pengolahan citra :

Pendahuluan. Dua operasi matematis penting dalam pengolahan citra : KONVOLUSI Budi S Pendahuluan Dua operasi matematis penting dalam pengolahan citra : Operasi Konvolusi (Spatial Filter/Discret Convolution Filter) Transformasi Fourier Teori Konvolusi Konvolusi 2 buah fungsi

Lebih terperinci