E-LEARNING MATEMATIKA
|
|
|
- Erlin Muljana
- 8 tahun lalu
- Tontonan:
Transkripsi
1 MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP Penulisan Modul e Learning ini diiayai oleh dana DIPA BLU UNY TA 00 Sesuai dengan Surat Perjanjian Pelaksanaan e Learning Nomor 99a.9/H4.5/PL/00 Tanggal Juli 00 JURUSAN PENDIDIKAN TEKNIK SIPIL DAN PERENCANAAN FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA TAHUN 00
2 BAB VIII FUNGSI Fungsi merupakan huungan antara dua variael atau leih. Variael diedakan :. Variael eas yaitu variael yang esarannya dpt ditentukan semarang, mis:,, 6, 0 dll.. Variael terikat yaitu variael yang esarannya aru dapat ditentukan setelah variael easnya ditentukan leih dulu. Contoh fungsi: y = f() Dalam hal ini = variael eas y = variael terikat misal y = + 4 nilai y aru dapat ditentukan setelah ditentukan. Jika = maka y =. + 4 = 7 Jika = maka y =. + 4 = Berdasarkan huungan antara variael eas dan terikat, fungsi diedakan dua: fungsi eksplisit dan fungsi implisit. A. Fungsi Eksplisit variael eas dan terikat dapat dengan jelas diedakan. = var eas Contoh y = f() y = + 7 y = var terikat z = f(,y) misalnya z = 5 + y
3 dalam hal ini : z = var eas,y = var terikat B. Fungsi Implisit antara variael eas dengan terikat tidak dapat dengan mudah diedakan. Bentuk umum fungsi implisit: f(,y) = 0 untuk dua varieel f(,y,z) = 0 untuk tiga variael Contoh entuk f(,y) = 0 + y 0 = 0 Dalam hal terseut tidak jelas mana var. eas dan mana var. terikat. Contoh entuk f (,y,z) = 0 + y z + 4 = 0 Dalam hal ini var.,y,z tidak dapat dengan mudah diedakan seagai var. eas dan var. terikat. Untuk menyelesaikan fungsi implisit harus di tentukan dulu variael terikatnya. Fungsi-fungsi dalam matematika jumlahnya sangat anyak. Fungsi yang sering digunakan a.l.: fungsi linier, fungsi kuadrat, fungsi pangkat anyak (,4, dst), fungsi eksponensial, fungsi logaritmik, fungsi trigonometri, dll.. Fungsi Linier Fungsi dimana variael easnya paling tinggi erpangkat satu. Contoh fungsi liner: y = - + 7
4 Cara melukis fungsi y = - + adalah seagai erikut: Titik potong fungsi dengan sumu y = 0 y = = jadi titiknya A(0,) Titik potong dengan sumu y = 0 0 = -. + = Jadi titiknya B (, 0 ) Koefisien arah a = - (negatif) Jadi arahnya menurun. Y A y = - + B X. Fungsi Kuadrat adalah fungsi non linier (garis tidak lurus) yang variael easnya erpangkat dua. Fungsi kuadrat mempunyai entuk umum: y = f () dan = f (y) a. Fungsi kuadrat erentuk y = f () entuk umum dari y = f () adalah y = a + + c ciri-ciri khusus: 7
5 ) Titik potong dengan sumu y = 0 ) Titik potong dengan sumu ada kemungkinan D > 0 dua uah titik potong D = 0 satu uah titik potong D < 0 tidak erpotongan dengan sumu Cara mencari titik potong dengan sumu adalah dengan rumus ac. = - + a 4ac ) titik puncak = a ; y = ( 4a 4ac ) 4) sumu simetri = a 5) - jika a > 0 titik alik minimum - jika a < 0 titik alik maksimum Contoh: Fungsi kuadrat y = f() y = Cara melukis: ) Titik potong dengan sumu y = 0 jadi y = 6 titiknya A (0,6) ) Titik potong dengan sumu D = 4a.c = (-5) 4..6 = D > 0 jadi ada uah titik potong dengan sumu = 5 ( 5) = jadi B (,0) = 5 ( 5). 4..6) = jadi B (,0) 7
6 ) titik puncak a = 5 = y = ( 4ac ) 4a = ( ) = - 4 4) sumu simetrinya = a = Y 6 A y = B B 0 4 X - ) Fungsi kuadrat erentuk = f(y) entuk umumnya adalah = Ay + By + C dengan ciri-ciri seagai erikut:. titik potong dengan sumu y = 0. titik potong dengan sumu y = 0 0 = Ay + By + C maka ada kemungkinan D > 0 terdapat uah titik potong (rumus ABC) D = 0 terdapat uah titik potong B y = y = - a D < 0 tidak ada titik potong dengan sumu y. titik puncak = ( B 4 A 4ac ) ; y = - B a 4. sumu simetrinya y = - B a 74
7 Contoh: Gamarlah grafik fungsi = y y + ) Titik potong dengan sumu y = 0 jadi = sehingga M (,0) ) Titik potong dengan sumu y D = B 4.a.c = = D > 0 ada uah titik potong y = = N (0,) y = ) Titik puncak = N (0,) D = - 4. a y = - B a = - 4 = = 4) Sumu simetrinya - B a = = Y N N M 0 4 X 75
8 . Fungsi Pecah adalah suatu fungsi non linier (garis tidak lurus) yang variael easnya merupakan penyeut. Bentuk umum dari y = f() adalah y = a c d Dimana : a,,c,d : konstanta : variael eas y : variael terikat Ciri khusus fungsi pecah adalah adanya asimtot. Asimtot suatu garis lengkung adalah garis yang tidak dilalui / dipotong oleh garis lengkung terseut akan tetapi didekati sampai pada titik tak terhingga. Ciri-ciri fungsi pecah ) Titik potong dengan sumu y = 0 y = a.0 = c.0 d d ) Titik potong dengan sumu y = 0 0 = a c d a+ = 0 = - a ) Persamaan garis asimtot datar asimtot datar = R y = a c d ila suku kanan, masing-masing penyeut&pemilang dikalikan y = a c d ilangan diagi R hasilnya 0 76
9 maka y = c a 4) Persamaan garis asimtot tegak asimtot tegak y = R y = a c d R = a c d c + d = a ~ c + d = 0 c = -d = - c d Contoh: Lukislah grafik fungsi y = Jawa: - Titik potong dengan sumu y = 0 jadi y = P (0,) - Titik potong dengan sumu y = 0 0 = jika kedua suku (kanan & kiri) dikalikan (+) 0 = + = - =- Q (-,0) - Asimtot tegak y = R R = + = ~ + = 0 = - 77
10 - Asimtot datar = R y = c a = = Untuk menggamar grafiknya dilakukan dengan antuan tael dan y yang diseut seagai curve tracing proses. y - + ~ ~ - y - - ~ ~ 78
11 Y y = X 4. Fungsi Pangkat Banyak Untuk menyelesaikan penggamaran fungsi pangkat anyak (, 4, 5, ) digunakan antuan tael atau curve tracing proses. a) Fungsi Pangkat Tiga Bentuk umum y = f () y = a + + c + d Contoh: y = + 79
12 ) Fungsi Pangkat Empat Bentuk umum y = f () y = a c + d + e Contoh: y = Fungsi Eponensial Bentuk umum y = a `Contoh: y = y= 80
13 6. Fungsi Logaritma Bentuk umum y = a. log Contoh: y = 5 log Fungsi Trigonometri Bentuk umum y = a sin y = a cos y = a tan Keterangan : Y= sin Y = cos Y = tan 8
14 8. Fungsi Hiperolik Bentuk umum: y = sinh = e e e y = cosh = e e y = tanh = e e e dimana e =,7888-8
15 Keterangan : Y= sinh Y = cosh Y = tanh Nilai-nilai dalam fungsi hiperolik : Dalam fungsi sinh Sinh 0 = 0 Sinh dapat memiliki harga dari - ~ sampai + ~ Dalam fungsi cosh Cosh 0 = Harga cosh tidak pernah kurang dari Dalam fungsi tanh Tanh 0 = 0 Tanh selalu diantara y= dan y=- Untuk =~ maka tanh = Untuk = - ~ maka tanh = - 8
16 DAFTAR PUSTAKA Agus Santoso.(999). Matematika. Yogyakarta: Fakultas Teknik UNY Frank Ayres. (98). Differential and Integral Calculus. Singapore: McGraw-Hill KA Straud.(996). Matematika untuk Teknik. Jakarta : Erlangga Pradoto. (99). Matematika. Yogyakarta : FPTK IKIP Yogyakarta. Sumarsono. (994). Matematika. Yogyakarta : FPTK IKIP Yogyakarta. 84
FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.
FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel
MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.
MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya
4. Mononom dan Polinom
Darpulic www.darpulic.com 4. Mononom dan Polinom Sudaratno Sudirham Mononom adalah pernataan tunggal ang erentuk k n, dengan k adalah tetapan dan n adalah ilangan ulat termasuk nol. Fungsi polinom merupakan
UM UNPAD 2007 Matematika Dasar
UM UNPAD 007 Matematika Dasar Kode Soal Doc. Name: UMUNPAD007MATDAS999 Version : 0- halaman 0. Jika A e adalah komplemen dari A, maka daerah yang diarsir pada diagram Venn di awah ini dapat dinyatakan
6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat
Sumer: Art and Gallery Standar Kompetensi 6. Memecahkan masalah yang erkaitan dengan fungsi, persamaan fungsi linier dan fungsi kuadrat Kompetensi Dasar 6. Mendeskripsikan peredaan konsep relasi dan fungsi
1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.
Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f
1. Jika p dan q akar-akar persamaan. x 2 bx c 0 dan k konstanta real, maka
PERSAMAAAN DAN FUNGSI KUADRAT Bentuk umum persamaan kuadrat a + + c =0, a 0 Akar-akar persamaan : D = a D = 4ac Menyusun persamaan paraola y q = a ( p) Diskriminan (D = 4ac) Persamaan kuadrat memiliki.
PERSAMAAN FUNGSI KUADRAT-1
PERSAMAAN FUNGSI KUADRAT- Mata Pelajaran K e l a s Nomor Modul : Matematika : X (Sepuluh) : MAT.X.0 Penulis Pengkaji Materi Pengkaji Media : Drs. Suyanto : Dra.Wardani Rahayu, M.Si. : Drs. Soekiman DAFTAR
A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan
MODUL FUNGSI KUADRAT Materi: Fungsi Kuadrat A Kajian ulang tentang fungsi B Fungsi kuadrat dan grafiknya C Menentukan fungsi kuadrat D Menentukan sumu simetri, titik puncak, sifat definit positif atau
Matematik Ekonom Fungsi nonlinear
1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya
b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0
B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar
Konstruksi Rangka Batang
Konstruksi Rangka atang Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka atang merupakan suatu konstruksi yang terdiri dari sejumlah atang atang
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
UN SMA IPA 2010 Matematika
UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui
7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)
BAB 7 RESIDU DAN PENGGUNAAN 7 idu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik pada suatu titik dari setiap
TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
a 6 TRIGONOMETRI A. KOMPETENSI DASAR DAN PENGALAMAN ELAJAR Kompetensi Dasar 1. Menghayati pola hidup disiplin, kritis, ertanggungjawa, konsisten dan jujur serta menerapkannya dalam kehidupan sehari hari..
BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT
BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Standar kompetensi:. Memecahkan masalah yang erkaitan dengan fungsi, persamaan dan pertidaksamaan kuadrat Kompetensi Dasar:. Memahami konsep fungsi.
7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)
Ba 7 Residu dan Penggunaannya BAB 7 RESIDU DAN PENGGUNAAN 7 Residu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik
PERSAMAAN DAN PERTIDAKSAMAAN
PERSAMAAN DAN PERTIDAKSAMAAN Sumer: Art & Gallery 44 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi persamaan dan pertidaksamaan linier dan kuadrat terdiri atas tiga kompetensi dasar.
Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR
Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : [email protected] Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,
BAB II FUNGSI D K D K. ( a ) ( b ) Gambar 2.1. Gambar 2.2
BAB II FUNGSI. Definisi Jika nilai dari suatu esaran, misal, ergantung pada nilai esaran lainna, misal, maka kita dapat mengatakan ahwa adalah fungsi dari. Cara lain untuk menatakan ketergantungan terhadap
PTE 4109, Agribisnis UB
MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan
Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA
Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA
Bab 3 PERUMUSAN MODEL KINEMATIK DDMR
Ba 3 PERUMUSAN MODEL KINEMATIK DDMR Model kinematika diperlukan dalam menganalisis pergerakan suatu root moil. Model kinematik merupakan analisis pergerakan sistem yang direpresentasikan secara matematis
MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A.
MATRIKS DAN TRANSFORTASI I. MATRIKS PENGERTIAN Matriks adalah kumpulan ilangan yang dinyatakan dalam aris kolom. Matriks A = 5 dengan ukuran (ordo) : X. Artinya matriks terseut tersusun atas aris kolom.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-5904 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran
5 F U N G S I. 1 Matematika Ekonomi
5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal
UN SMA 2015 Matematika IPA
UN SMA 05 Matematika IPA Soal Doc. Name: UNSMA05MATIPA Doc. Version : 05- halaman 0. Ani rajin elajar maka naik kelas. Ani dapat hadiah atau tidak naik kelas. Ani rajin elajar. Kesimpulan yang sah adalah
KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK.
SEKOLAH : SMP NEGERI 9 CIMAHI KELAS : IX MATA PELAJARAN : MATEMATIKA SEMESTER : ( DUA ) KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) BILANGAN Standar Kompetensi
SOAL TPHBS MATEMATIKA IPS MKKS DIY
Diketik ulang, SOAL TPHBS MATEMATIKA IPS MKKS DIY. Diketahui peryataan p ernilai enar dan q ernilai salah. Peryataan majemuk erikut ernilai salah adalah. p v q ~ q p p q p v ~ q p ~ q. Suatu pernyataan
BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5
BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama
SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP
SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus 1 Kode Mata Kuliah : TIS1213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Tujuan utama dari mata kuliah ini adalah
GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)
Mata : Kalkulus Bobot Mata : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata : Sistem Bilangan; Fungsi; Limit Fungsi; Penerapan Turunan; Integral Fungsi; Perhitungan Integral;Terapan Integral.
F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI
F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.
Modul Matematika 2012
Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) Nama Mata : Kalkulus I Kode Mata : TI 001 Bobot Kredit : 3 SKS Semester Penempatan : II Kedudukan Mata : Mata Keilmuan dan Keterampilan Mata Prasyarat : - Penanggung Jawab
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA
FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA NAMA: KELAS: 1 P a g e FUNGSI EKSPONENSIAL DAN LOGARITMA I. FUNGSI EKSPONEN Fungsi eksponen f dengan bilangan pokok a (a konstan) adalah fungsi yang didefinsikan
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-90 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran
Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang
ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka
A B A B. ( a ) ( b )
BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan
SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN
SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : Kalkulus 1 Kode Mata : DK - 11204 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa
COURSE NOTE : Sistem Persamaan Liniear
COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...
Bab 2 Bentuk Aljabar. A. Pengertian Bentuk Aljabar. B. Suku-suku Sejenis. C. Penjumlahan dan Pengurangan. Contoh Soal dan Pembahasan:
Moh. Fatkoer Rohman 6 Ba Bentuk Aljaar Pengertian Bentuk Aljaar Bentuk aljaar adalah entuk matematika ang didalamna memuat variael atau konstanta. Perhatikan entuk-entuk aljaar erikut! ) ) 4 ) Bentuk aljaar
HASIL DAN PEMBAHASAN
IV. HASIL DAN PEMBAHASAN Lingkungan mikro di dalam rumah tanaman khususnya di daerah tropika asah perlu mendapat perhatian khusus, mengingat iri iklim tropika asah dengan suhu udara yang relatif panas,
EFISIENSI DAN EFEKTIVITAS SIRIP LONGITUDINAL DENGAN PROFIL SIKU EMPAT KEADAAN TAK TUNAK KASUS 2D
EFISIENSI DAN EFEKIVIAS SIRIP LONGIUDINAL DENGAN PROFIL SIKU EMPA KEADAAN AK UNAK KASUS 2D PK Purwadi Jurusan eknik Mesin, FS, Universitas Sanata Dharma Yogyakarta Email: [email protected] ABSRAK Penelitian
PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI
FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat
http://meetaied.wordpress.com SMAN Bone-Bone, Luwu Utara, Sul-Sel Sahaat paling aik dari keenaran adalah waktu, musuhnya yang paling esar adalah prasangka, dan pengiringnya yang paling setia adalah kerendahan
BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.
XIV V E K T O R 4. engertian adalah esaran yang mempunyai arah. Tafsiran geometri seuah vektor dilukiskan seagai panah. dengan titik pangkal (a x, a y, a z ) dan titik ujung ( x, y, z ) dinotasikan dengan.
METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS
JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 118-177, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK
Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden
Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan
III. FUNGSI POLINOMIAL
III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan
FUNGSI HIPERBOLIK Matematika
FUNGSI HIPERBOLIK FTP UB Pokok Bahasan Pendahuluan Grafik dari fungsi hiperbolik Menentukan nilai fungsi hiperbolik Fungsi hiperbolik invers Bentuk log dari fungsi hiperbolik invers Identitas hiperbolik
Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu
Bahan Kuliah ke-21 IF5054 Kriptografi Message Authentication Code (MAC) Pemangkit Bilangan Acak Semu Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004
METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS
JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 167-178, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK
BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU
BAB II PERSAMAAN DIFERENSIAL BIASA (PDB) ORDE SATU Tujuan Instruksional: Mampu memahami dan menyelesaikan PD orde-1 dg integrasi langsung, pemisahan variael. Mampu memahami dan menyelesaikan Persamaan
Disusun Oleh : Dewi Ratna Nawangsari NRP Dosen Pembimbing : Tri Tiyasmihadi, ST. MT
STUDI PENGARUH BENTANGAN(SPAN) PADA SINGLE GIRDER OVERHEAD CRANE DENGAN KAPASITAS 5 TON TYPE EKKE DAN ELKE DAN KAPASITAS 10 TON TYPE EKKE TERHADAP BERAT KONSTRUKSI GIRDERNYA Disusun Oleh : Dewi Ratna Nawangsari
KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag
KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi
Model Regresi Berganda
REGREI DAN KORELAI LINEAR BERGANDA Materi:. Konsep Analisis Regresi Berganda. Penduga Koefisien Regresi 3. Model regresi dengan dua variael eas 4. Contoh Kasus 5. Koefisien Determinasi dan koefisien korelasi
Fungsi dan Grafik Diferensial dan Integral
Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.
APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG
Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil
Teknik Pengintegralan
Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah
Bil. Asli Bil. Bulat Bil. Cacah
Bil. Asli Bil. Bulat Bil. Cacah I. Materi Ajar: Pertemuan : A. Macam-macam ilangan real. Bilangan Asli (A) Bilangan asli adalah suatu ilangan yang mula-mula dipakai untuk memilang. Bilangan asli dimulai
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-5904 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran
Materi Bahasan. Analisis Sensitivitas (Sensitivity Analysis) Analisis Sensitivitas. 1 Pengertian Analisis Sensitivitas
Materi ahasan nalisis Sensitivitas (Sensitivity nalysis) Pengertian analisis sensitivitas nalisis sensitivitas dengan metode grafis nalisis sensitivitas dengan metode simpleks Kuliah 7 TI Penelitian Operasional
Metode Simpleks Diperbaiki (Revised Simplex Method) Materi Bahasan
/7/ Metode Simpleks Diperaiki (Revised Simple Method) Kuliah TI Penelitian Operasional I Materi ahasan Dasar-dasar aljaar dari metode simpleks Metode simpleks yang diperaiki TI Penelitian Operasional I
Rencana Pembelajaran
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga
Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.
Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program
ANALISA REFRAKSI GELOMBANG PADA PANTAI
ANALISA REFRAKSI GELOMBANG PADA PANTAI A.P.M., Tarigan *) dan Ahmad Syarif Zein **) *) Staf Pengajar Departemen Teknik Sipil Fakultas Teknik USU **) Sarjana Departemen Teknik Sipil Fakultas Teknik USU
Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier
Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi
V. DEFLEKSI BALOK ELASTIS: METODE-LUAS MOMEN
V. DEFEKSI BOK ESTIS: METODE-US MOMEN Defleksi alok diperoleh dengan memanfaatkan sifat diagram luas momen lentur. Cara ini cocok untuk lendutan dan putaran sudut pada suatu titik sudut saja, karena kita
Fungsi dan Grafik Diferensial dan Integral
Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.
BAB VI DEFLEKSI BALOK
VI DEFEKSI OK.. Pendahuluan Semua alok akan terdefleksi (atau melentur) dari kedudukannya apaila tereani. Dalam struktur angunan, seperti : alok dan plat lantai tidak oleh melentur terlalu erleihan untuk
Gelanggang Evalusi dan Sifat-sifatnya
Vol. 5, No.1, 52-57, Juli 2008 Gelanggang Evalusi dan Sifat-sifatnya Amir Kamal Amir Astrak Sifat-sifat gelanggang evaluasi eserta pemuktiannya sudah ada dieerapa literatur seperti misalnya pada McConnel
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
PERKALIAN DUA VEKTOR & PROYEKSI VEKTOR
PERKALIAN DUA VEKTOR & PROYEKSI VEKTOR. Identitas Mata Pelajaran : Matematika X (Peminatan). Semester : c. Kompetensi Dasar : Kompetensi Dasar. Kompetensi Dasar 4. Menjelaskan vektor, operasi vektor, panjang
Fungsi dan Grafik Diferensial dan Integral
Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno Sudirham i Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaryatmo Sudirham Darpublic,
DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3x, maka simbol dari. atau ditulis
DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3, maka simbol dari Turunan pertama y 1 atau Turunan kea y 11 atau d( ) B. Rumus Dasar Deferensial Jika y = n maka d (3) atau ditulis
BAB III METODE PENELITIAN. Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang
35 BAB III METODE PENELITIAN 3.1. Populasi dan sampel Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang go pulic di Bursa Efek Indonesia. Sampel yang diamil diatasi pada perusahaanperusahaan
PENDEKATAN TEORI ... (2) k x ... (3) 3... (1)
PENDEKATAN TEORI A. Perpindahan Panas Perpindahan panas didefinisikan seagai ilmu umtuk meramalkan perpindahan energi yang terjadi karena adanya peredaan suhu diantara enda atau material (Holman,1986).
SOAL UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 PAKET TIGA
Ruang Pertemuan OL UJIN NIONL THUN PELJRN 015/01 PKET TIG 1. Operasi # erarti kalikan ilangan pertama dan kedua, kemudian jumlahkan hasilnya dengan ilangan pertama. Hasil dari #. 1. C. D. 1. apak dan paman
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
KALKULUS INTEGRAL 2013
KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral
VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA
VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA 6. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi eksponen; 2. menggambar grafik fungsi eksponen;
Kelas XI MIA Peminatan
Kelas Disusun : Markus Yuniarto, S.Si Tahun Pelajaran 017 018 Peta Konsep Glosarium Istilah Keterangan Lingkaran Himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
LAJU PERTUMBUHAN BAKTERI S. Aerous MELALUI PENDEKATAN PERSAMAAN DIFERENSIAL
LAJU PERTUMBUHAN BAKTERI S. Aerous MELALUI PENDEKATAN PERSAMAAN DIFERENSIAL Nurdeni 1, Witri Lestari 2, dan Seruni 3 1 Program Studi Pendidikan Matematika, FTMIPA, Universitas Indraprasta PGRI [Email:
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul
DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada
Ringkasan Materi Kuliah Bab II FUNGSI
Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,
Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.
DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan
MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT
MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
Aplikasi Geometri pada Permainan Dinamis Non- Kooperatif Skalar Waktu tak Berhingga
Seminar Nasional eknologi Informasi, Komunikasi dan Industri (SNIKI) 7 ISSN :85-99 Pekanaru, Novemer 5 Aplikasi Geometri pada Permainan Dinamis Non- Kooperatif Skalar Waktu tak Berhingga Nilwan Andiraja
