Bil. Asli Bil. Bulat Bil. Cacah

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bil. Asli Bil. Bulat Bil. Cacah"

Transkripsi

1 Bil. Asli Bil. Bulat Bil. Cacah

2 I. Materi Ajar: Pertemuan : A. Macam-macam ilangan real. Bilangan Asli (A) Bilangan asli adalah suatu ilangan yang mula-mula dipakai untuk memilang. Bilangan asli dimulai dari,,3,4,... A {,,3,4,...}. Bilangan Genap (G) Bilangan genap dirumuskan dengan n, n A G {,4,,8,...} 3. Bilangan Ganjil (Gj) Bilangan ganjil dirumuskan dengan n -, n A Gj {,3,5,7,...} 4. Bilangan Prima (P) Bilangan prima adalah suatu ilanganyang dimulai dari dan hanya dapat diagi oleh ilngan itu sendiri dan ± P {,3,5,7,...} 5. Bilangan Komposit (Km) Bilangan komposit adalah suatu ilangan yang dapat diagi oleh ilangan yang lain Km {4,,8,9,...}. Bilangan Cacah (C) Bilangan Cacah adalah suatu ilangan yang dimulai dari nol C {0,,,3,4,...} 7. Bilangan Bulat (B) Bilangan ulat terdiri dari ilangan ulat negatif, ilangan nol, dan ilangan ulat positif. B {...,-4,-3,-,-,0,,,3,4,...} 8. Bilangan Pecahan (Pc) Bilangan pecahan adalah suatu ilangan yang dapat dinyatakan dalam entuk a, a seagai pemilang dan seagai penyeut, dengan a dan B serta 0

3 ,, Bilangan Rasional (Q) Bilangan rasional adalah suatu ilangan yang dapat dinyatakan dalam entuk a, a dan B serta 0. (Gaungan ilangan ulat dengan himpunan ilangan pecahan) 4 -,, 4, Bilangan Irasional (I) Bilangan irasional adalah suatu ilangan yang tidak dapat dinyatakan dalam entuk a, a dan B serta 0., 3, π 3,459..., e, Bilangan Real (R) Bilangan real adalah suatu ilangan yang terdiri dari ilangan rasional dan ilangan irasional. Bilangan real iasanya disajikan dengan seuah garis ilangan Bilangan Khayal (Kh) Bilangan khayal adalah suatu ilangan yang hanya isa dikhayalkan dalam pikiran, tetapi kenyataannya tidak ada.,, 3 3. Bilangan Kompleks (K) Bilangan Kompleks adalah suatu ilangan yang terdiri dari ilangan dan khayal. +,5

4 B. Peredaan Antara Bilangan Rasional Dan Bilangn Irasional Bilangan Rasional:. Dapat dtulis dalam entuk pecahan iasa 5,, 3 3. Dapat ditulis dalam entuk pecahan desimal teratas. 0, ditulis0,3 3 0, ditulis0, Bilangan Irasional:. Tidak dapat ditulis seagai pecahan iasa. Jika didahului seagai pecahan desimal, merupakan desimal tak teratas., , Bilangan irasional ditulis dalam entuk akar., 3, 7 Pertemuan : C. Sifat-sifat Operasi Bilangan Bulat a. Sifat Komutatif: a + + a a..a. Sifat Assosiatif: (a + ) + c a + ( + c) (a. ). c a. (. c). (5 + ) ( + 3) 0. (5 x ) x 3 5 x ( x 3) 30

5 c. Sifat Distriutif Perkalian Terhadap Penjumlahan a x ( + c) a + ac 5 x (3 + ) d. Terdapat Dua Elemen Identitas Setiap ilangan a mempunyai dua elemen identitas, yaitu dan 0, sehingga memenuhi: a + 0 a a. a e. Terdapat Elemen Invers Setiap ialngan a mempunyai alikan atau invers penjumlahan, yaitu a yang memenuhi: a + (-a) 0 Setiap a 0 mempunyai alikan perkalian yaitu a, yang memenuhi: a. a Pertemuan 3: D. Operasi Pada Bilangan Bulat: a. Operasi Penjumlahan a + c a, dan c ilangan ulat Operasi Pengurangan A c a + (-) c a, dan c ilangan ulat 0 (-) 0 +

6 c. Operasi Perkalian a. c a, dan c ilangan ulat (-9). (-4) 3 d. Operasi Pemagian a a. c a, ilangan ulat dan 0, c ilangan real Pertemuan 4: E. Operasi Pada Bilangan Pecahan a. Operasi Penjumlahan Operasi Pengurangan Tentukan hasil perkalian erikut!

7 c. Operasi Perkalian Tentukan hasil perkalian erikut: 4 4x 4. x x x 4 x d. Operasi Pemagian Tentukan hasil pemagian dari pecahan di awah ini! : x : Pertemuan 5: x F. Konversi Pecahan a. Menguah pecahan iasa ke pecahan desimal. Menguah penyeutnya menjadi 0 atau perpangkatan 0 lainnya a. 0, , Dengan pemagian erulang Uahlah 4 ke dalam pecahan desimal! 4 0, ,33. Menguah pecahan iasa ke entuk persen. Menguah penyeutnya menjadi % %

8 3. Uahlah 75% dan 30% ke dalam entuk pecahan! 75 3 Jawa: 75% % 00 0 c. Menguah persen ke pecahan iasa dan ke pecahan desimal Uahlah persen erikut ke pecahan iasa dan ke pecahan desimal! 0 a. 0% 0, % 0, c. 75% 0, G. Perandingan, Skala, Dan Persen a. Perandingan digunakan untuk memandingkan dua uah ilangan ) Perandingan senilai Bentuk Umum: a a atau a : a : ) Perandingan eralik nilai Bentuk Umum: a a atau a : a :. Seorang iu menghaiskan ½ liter minyak tanah untuk mereus air seanyak 5 liter air. Jika dia akan mereus air seanyak 00 liter, erapa liter minyak tanah yang diperlukan?. Suatu pekerjaan dapat diselesaikan oleh 4 orang tukang dalam 0 hari. Jika pekerjaan itu harus selesai dalam hari, maka erapa orang tukang yang diperlukan untuk menyelesaikan pekerjaan itu?

9 Jawa:. Jika perandingan anyak minyak tanah (M) dengan anyak air (A) adalah M : A, maka: M M A A / M M x liter 3. Jika 4 orang tukang (T ) dapat menyelesaikan 0 hari (H ), maka untuk selesai selama hari (H ) harus dipekerjakan leih dari 4 orang. T T H H 4 T T 0 4 0x 80 40orangtukang Pertemuan :. Skala Skala merupakan entuk perandingan nilai dari suatu esaran atau perandingan antara ukuran gamar dengan ukuran sesungguhnya (kenyataannya). Suatu skala isa merupakan pemesaran atau pengecilan dari ukuran sesungguhnya. ) Skala pemesaran Jarak kota A ke kota B pada peta adalah 0 cm. Jika jarak sesungguhnya adalah 00 km,erapakah skala kota A ke kota B? Jawa: Misal jarak pada peta x Misal jarak sesungguhnya y X : y 0 cm : 00 km 0 cm : cm : Jadi, skala jarak kota A ke kota B adalah : ) Skala Pengecilan Tinggi seorang aktor adalah 80 cm. Berapakah tinggi aktor terseut pada layar TV jika skalanya : 00?

10 Jawa: Misal tinggi sesungguhnya A 80 cm Tinggi pada TV B B B 80 B,8cm 00 A Jadi tinggi aktor pada layar TV,8 cm c. Persen Persen (%) erarti per seratus, merupakan entuk lain dari perandingan yang ditulis dalam pecahan dengan penyeut 00. Misal: % 00 Seatang perunggu teruat dari 00 kg temaga, 0 kg timah hitam, dan 30 kg timah putih. Berapakah persentase tiap-tiap ahan terseut dalam perunggu itu? Jawa: Massa total perunggu 00 kg + 0 kg + 30 kg 50 kg 00 Persentase temaga x 00%,7% 50 0 Persentase timah hitam x 00% 3,3% Persentase timah putih 00% 0,0% 50 Pertemuan : H. Penerapan Pada Bidang Keahlian ) Komisi Komisi adalah pendapatan yang esarnya tergantung pada tingkat penjualan yang dilakukan. ) Diskon Diskon adalah potongan harga yang dierikan oleh penjual kepada pemeli

11 3) Laa dan Rugi Laa Penjualan Pemelian Rugi Pemelian Penjualan Contoh soal:. Seorang sales mendapat komisi 0% jika dia mampu menjual arang senilai Rp ,00. Tentukan komisi yang diterima! Jawa: Komisi 0% x Rp ,00 0 xrp , Rp ,00. Seuah arang dieli seharga Rp ,00, kemudian arang terseut dijual dengan harga Rp ,00. Hitunglah persentase keuntungan dari harga pemelian dan dari harga penjualan! Jawa: Laa Rp ,00 Rp ,00 Rp50.000,00 Rp50.000,00 Persentase laa dari harga eli : x00% 50% Rp ,00 Rp50.000,00 Persentase laa dari harga jual : x00% 33,3% Rp ,00

PERSAMAAN DAN PERTIDAKSAMAAN

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN DAN PERTIDAKSAMAAN Sumer: Art & Gallery 44 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi persamaan dan pertidaksamaan linier dan kuadrat terdiri atas tiga kompetensi dasar.

Lebih terperinci

SISTEM BILANGAN. Nur Edy, PhD.

SISTEM BILANGAN. Nur Edy, PhD. SISTEM BILANGAN Nur Edy, PhD. Sub Pokok Bahasan Bilangan riil dan sifat-sifatnya Bilangan kompleks BILANGAN REAL Sistem Bilangan Real BILANGAN REAL BILANGAN IRASIONAL BILANGAN RASIONAL BILANGAN BULAT BIL

Lebih terperinci

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b 2 SISTEM BILANGAN Perhatikan skema sistem bilangan berikut Bilangan Bilangan Kompleks Bilangan Real Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan bulat adalah bilangan yang

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit BAB I BILANGAN Skema Bilangan Bilangan Kompleks Bilangan Real Bilangan Imajiner Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan Cacah Bilangan Bulat Negatif Bilangan Asli

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

SISTEM BILANGAN RIIL

SISTEM BILANGAN RIIL SISTEM BILANGAN RIIL Sumber: Art & Gallery Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi sistem bilangan riil terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini,

Lebih terperinci

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat Sumer: Art and Gallery Standar Kompetensi 6. Memecahkan masalah yang erkaitan dengan fungsi, persamaan fungsi linier dan fungsi kuadrat Kompetensi Dasar 6. Mendeskripsikan peredaan konsep relasi dan fungsi

Lebih terperinci

4. Mononom dan Polinom

4. Mononom dan Polinom Darpulic www.darpulic.com 4. Mononom dan Polinom Sudaratno Sudirham Mononom adalah pernataan tunggal ang erentuk k n, dengan k adalah tetapan dan n adalah ilangan ulat termasuk nol. Fungsi polinom merupakan

Lebih terperinci

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK.

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK. SEKOLAH : SMP NEGERI 9 CIMAHI KELAS : IX MATA PELAJARAN : MATEMATIKA SEMESTER : ( DUA ) KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) BILANGAN Standar Kompetensi

Lebih terperinci

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks Matriks & Operasi Matriks () Pertemuan 5 Aljaar Linear & Matriks Sifat-sifat Operasi Matriks Perkalian antara dua matriks tidak mengikuti hukum komutatif, artinya AB tidak sama dengan BA (dengan asumsi

Lebih terperinci

PERSAMAAN FUNGSI KUADRAT-1

PERSAMAAN FUNGSI KUADRAT-1 PERSAMAAN FUNGSI KUADRAT- Mata Pelajaran K e l a s Nomor Modul : Matematika : X (Sepuluh) : MAT.X.0 Penulis Pengkaji Materi Pengkaji Media : Drs. Suyanto : Dra.Wardani Rahayu, M.Si. : Drs. Soekiman DAFTAR

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) Ba 7 Residu dan Penggunaannya BAB 7 RESIDU DAN PENGGUNAAN 7 Residu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-5904 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar

Lebih terperinci

SOAL UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 PAKET TIGA

SOAL UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 PAKET TIGA Ruang Pertemuan OL UJIN NIONL THUN PELJRN 015/01 PKET TIG 1. Operasi # erarti kalikan ilangan pertama dan kedua, kemudian jumlahkan hasilnya dengan ilangan pertama. Hasil dari #. 1. C. D. 1. apak dan paman

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol dan bilangan bulat negatif. Bilangan bulat

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) BAB 7 RESIDU DAN PENGGUNAAN 7 idu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik pada suatu titik dari setiap

Lebih terperinci

MAKALAH KALKULUS 1. Damas Fahmi Assena NIM : DIAJUKAN UNTUK MEMENUHI TUGAS MATA KULIAH Kalkulus

MAKALAH KALKULUS 1. Damas Fahmi Assena NIM : DIAJUKAN UNTUK MEMENUHI TUGAS MATA KULIAH Kalkulus MAKALAH KALKULUS 1 DIAJUKAN UNTUK MEMENUHI TUGAS MATA KULIAH Kalkulus Dosen Pengampu Bapak H. LILIK SULISTYO, Drs., M.Pd. oleh : NIM : 161240000500 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI

Lebih terperinci

COURSE NOTE : Sistem Persamaan Liniear

COURSE NOTE : Sistem Persamaan Liniear COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...

Lebih terperinci

UM UNPAD 2007 Matematika Dasar

UM UNPAD 2007 Matematika Dasar UM UNPAD 007 Matematika Dasar Kode Soal Doc. Name: UMUNPAD007MATDAS999 Version : 0- halaman 0. Jika A e adalah komplemen dari A, maka daerah yang diarsir pada diagram Venn di awah ini dapat dinyatakan

Lebih terperinci

TES AKHIR. Kartu-kartu diatas dapat disusun dengan aturan susunan kartu adalah jumlah bilangan kebawah sama dengan jumlah bilangan kesamping

TES AKHIR. Kartu-kartu diatas dapat disusun dengan aturan susunan kartu adalah jumlah bilangan kebawah sama dengan jumlah bilangan kesamping TES AKHIR NAMA KELAS TANGGAL :... : : 1. Perhatikan angka pada kartu ilangan erikut : 1 2 4 5 a. Angka mana saja yang merupakan ilangan ganjil?.. Angka mana saja yang merupakan ilangan genap?.. Kartu-kartu

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-90 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

Gelanggang Evalusi dan Sifat-sifatnya

Gelanggang Evalusi dan Sifat-sifatnya Vol. 5, No.1, 52-57, Juli 2008 Gelanggang Evalusi dan Sifat-sifatnya Amir Kamal Amir Astrak Sifat-sifat gelanggang evaluasi eserta pemuktiannya sudah ada dieerapa literatur seperti misalnya pada McConnel

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

SOAL TPHBS MATEMATIKA IPS MKKS DIY

SOAL TPHBS MATEMATIKA IPS MKKS DIY Diketik ulang, SOAL TPHBS MATEMATIKA IPS MKKS DIY. Diketahui peryataan p ernilai enar dan q ernilai salah. Peryataan majemuk erikut ernilai salah adalah. p v q ~ q p p q p v ~ q p ~ q. Suatu pernyataan

Lebih terperinci

SMK N 1 Demak Jurusan Multimedia Kelas X Semester 1

SMK N 1 Demak Jurusan Multimedia Kelas X Semester 1 SOAL LATIHAN ULANGAN SEMESTER GASAL KELAS X MM BAB SISTEM BILANGAN REAL Himpunan-Himpunan Bilangan pada Sistem Bilangan Real. Bilangan-bilangan berikut adalah irasional, kecuali... 4 7. Bilangan-bilangan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Pengertian HIMPUNAN Himpunan adalah suatu kumpulan dari sejumlah obyek. Sedangkan obyek yang ada didalamnya disebut anggota/elemen/unsur. Benda-benda yang berada di sekitar

Lebih terperinci

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli BILANGAN A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya pola dalam suatu bilangan,

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 06 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB I BILANGAN Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

LOGIKA MATEMATIKA. Dosen: Drs. Sumardi Hs., M.Sc. Modul ke: 01Fakultas FASILKOM. Program Studi Teknik Informatika

LOGIKA MATEMATIKA. Dosen: Drs. Sumardi Hs., M.Sc. Modul ke: 01Fakultas FASILKOM. Program Studi Teknik Informatika Modul ke: 01Fakultas FASILKOM LOGIKA MATEMATIKA Dosen: Program Studi Teknik Informatika Drs. Sumardi Hs., M.Sc. Template Modul Himpunan 1 Tentang Abstrak Modul ini membahas pengertian himpunan, notasi-notasi,

Lebih terperinci

Free-download

Free-download PREDIKSI UJIAN NASIONAL TAHUN 2008/2009 I. Standar Kompetensi Menggunakan konsep operasi hitung dan sifat-sifat bilangan, perbandingan, aritmetika sosial, barisan bilangan, serta penggunaannya dalam pemecahan

Lebih terperinci

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2

a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2 Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi

Lebih terperinci

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian. Glosarium A Akar pangkat dua : akar pangkat dua suatu bilangan adalah mencari bilangan dari bilangan itu, dan jika bilangan pokok itu dipangkatkan dua akan sama dengan bilangan semula; akar kuadrat. Asosiatif

Lebih terperinci

BILANGAN DAN KETERBAGIAN BILANGAN BULAT

BILANGAN DAN KETERBAGIAN BILANGAN BULAT BILANGAN DAN KETERBAGIAN BILANGAN BULAT A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya

Lebih terperinci

SISTEM BILANGAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 03 Oktober 2016

SISTEM BILANGAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 03 Oktober 2016 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER SISTEM BILANGAN ILHAM SAIFUDIN Senin, 03 Oktober 2016 Universitas Muhammadiyah Jember SISTEM BILANGAN 1 Sistem Bilangan

Lebih terperinci

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Standar kompetensi:. Memecahkan masalah yang erkaitan dengan fungsi, persamaan dan pertidaksamaan kuadrat Kompetensi Dasar:. Memahami konsep fungsi.

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Silabus. Tugas individu, tugas kelompok, kuis.

Silabus. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi

Lebih terperinci

MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A.

MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A. MATRIKS DAN TRANSFORTASI I. MATRIKS PENGERTIAN Matriks adalah kumpulan ilangan yang dinyatakan dalam aris kolom. Matriks A = 5 dengan ukuran (ordo) : X. Artinya matriks terseut tersusun atas aris kolom.

Lebih terperinci

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang

Lebih terperinci

SISTEM BILANGAN. Sistem bilangan,bilangan nyata dan khayal,hubungan perbandingan antar bilangan. Triwahyono SE.MM. Modul ke: Fakultas EKONOMI

SISTEM BILANGAN. Sistem bilangan,bilangan nyata dan khayal,hubungan perbandingan antar bilangan. Triwahyono SE.MM. Modul ke: Fakultas EKONOMI SISTEM BILANGAN Modul ke: Sistem bilangan,bilangan nyata dan khayal,hubungan perbandingan antar bilangan. Fakultas EKONOMI Triwahyono SE.MM. Program Studi MANAJEMEN www.mercubuana.ac.id Sistem Bilangan

Lebih terperinci

PENDEKATAN TEORI ... (2) k x ... (3) 3... (1)

PENDEKATAN TEORI ... (2) k x ... (3) 3... (1) PENDEKATAN TEORI A. Perpindahan Panas Perpindahan panas didefinisikan seagai ilmu umtuk meramalkan perpindahan energi yang terjadi karena adanya peredaan suhu diantara enda atau material (Holman,1986).

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu Bahan Kuliah ke-21 IF5054 Kriptografi Message Authentication Code (MAC) Pemangkit Bilangan Acak Semu Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004

Lebih terperinci

SD kelas 4 - MATEMATIKA BAB 4. PECAHANLatihan Soal 4.2

SD kelas 4 - MATEMATIKA BAB 4. PECAHANLatihan Soal 4.2 SD kelas 4 - MATEMATIKA BAB 4. PECAHANLatihan Soal 4.2 1. Bentuk desimal dari pecahan adalah... http://latex.codecogs.com/gif.latex?\frac{13}{8} 1,625 1,525 1,515 1,415 Kunci Jawaban : A Mengubah pecahan

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-5904 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai BILANGAN PECAHAN A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai a b dengan a, b bilangan bulat dan b 0. Bilangan a disebut pembilang dan

Lebih terperinci

Bab. Bilangan Riil. A. Macam-Macam Bilangan B. Operasi Hitung pada. Bilangan Riil. C. Operasi Hitung pada Bilangan Pecahan D.

Bab. Bilangan Riil. A. Macam-Macam Bilangan B. Operasi Hitung pada. Bilangan Riil. C. Operasi Hitung pada Bilangan Pecahan D. Bab I Sumber: upload.wikimedia.org Bilangan Riil Anda telah mempelajari konsep bilangan bulat di Kelas VII. Pada bab ini akan dibahas konsep bilangan riil yang merupakan pengembangan dari bilangan bulat.

Lebih terperinci

Bab. A. Macam-Macam Bilangan B. Operasi Hitung pada. Bilangan Riil. C. Operasi Hitung pada Bilangan Pecahan D. Konversi Bilangan

Bab. A. Macam-Macam Bilangan B. Operasi Hitung pada. Bilangan Riil. C. Operasi Hitung pada Bilangan Pecahan D. Konversi Bilangan Bab I Sumber: upload.wikimedia.org Bilangan Riil Anda telah mempelajari konsep bilangan bulat di Kelas VII. Pada bab ini akan dibahas konsep bilangan riil yang merupakan pengembangan dari bilangan bulat.

Lebih terperinci

DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR

DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR DETERMINAN, INVERS, PENYELESAIAN SISTEM PERSAMAAN LINEAR DETERMINAN Definisi Setiap matriks kuadrat/persegi mempunyai suatu nilai khusus yang diseut determinan. determinan adalah jumlah hasil kali elementer

Lebih terperinci

1. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan :

1. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan : BAB I BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan bukan pecahan yang terdiri dari bilangan : Bulat positif (,,, 4, 5, ) Nol : 0 Bulat Negatif (,-5,-4,-,-,-) Himpunan Bilangan bulat A = {, -4,

Lebih terperinci

UJIAN NASIONAL SD/MI TAHUN PELAJARAN 2005/2006

UJIAN NASIONAL SD/MI TAHUN PELAJARAN 2005/2006 UJIN NSIONL S/MI THUN PELJRN 2/26 Mata Pelajaran : MTEMTIK Hari/Tanggal : JUNI 26 Waktu : 7.3 9.3 PETUNJUK UMUM. Periksa dan bacalah soal-soal sebelum kamu menjawab 2. Tulis nomor peserta pada lembar jawaban

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR a 6 TRIGONOMETRI A. KOMPETENSI DASAR DAN PENGALAMAN ELAJAR Kompetensi Dasar 1. Menghayati pola hidup disiplin, kritis, ertanggungjawa, konsisten dan jujur serta menerapkannya dalam kehidupan sehari hari..

Lebih terperinci

6. T H E M E T R I C S Y S T E M

6. T H E M E T R I C S Y S T E M 8 6. T H E M E T R I C S Y S T E M Dalam pidatonya di Congress tahun 181, John Quincy Adams, presiden ke-6 Ameri ka Serikat, mengatakan: masalah ukuran sudah menjadi keutuhan penting agi tiap orang. Ukuran

Lebih terperinci

Bab 5 Pecahan. Penghasilan Pak Rusdi selama 1 bulan sebesar Rp ,00. bagian dari penghasilannya digunakan untuk biaya pendidikan putraputrinya,

Bab 5 Pecahan. Penghasilan Pak Rusdi selama 1 bulan sebesar Rp ,00. bagian dari penghasilannya digunakan untuk biaya pendidikan putraputrinya, Bab Pecahan? Lain-lain Pendidikan Sehari-hari Transportasi Penghasilan Pak Rusdi selama bulan sebesar Rp.000.000,00. bagian dari penghasilannya digunakan untuk biaya pendidikan putraputrinya, bagian untuk

Lebih terperinci

UN SMA 2015 Matematika IPA

UN SMA 2015 Matematika IPA UN SMA 05 Matematika IPA Soal Doc. Name: UNSMA05MATIPA Doc. Version : 05- halaman 0. Ani rajin elajar maka naik kelas. Ani dapat hadiah atau tidak naik kelas. Ani rajin elajar. Kesimpulan yang sah adalah

Lebih terperinci

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n Bilangan Berpangkat Kita ingat kembali bahwa untuk bilangan-bilangan cacah a, m, dan n dengan a 0, berlaku: 1 a m = a a a a (sebanyak m faktor) a m a n = a m + n a 0 = 1, di mana a 0 Notasi-notasi di atas

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisan Modul e Learning ini diiayai oleh dana DIPA BLU UNY TA 00 Sesuai dengan Surat Perjanjian Pelaksanaan

Lebih terperinci

Prediksi Soal US/M SD/MI Tahun Pelajaran 2015/2016 1

Prediksi Soal US/M SD/MI Tahun Pelajaran 2015/2016 1 Prediksi Soal US/M SD/MI Tahun Pelajaran 15/1 1 KISI-KISI PREDIKSI UJIAN SEKOLAH/MADRASAH SD/MI TAHUN PELAJARAN 15/1 MATEMATIKA PAKET SOAL PREDIKSI GANJIL No. Materi Indikator A. BILANGAN 1. Operasi hitung

Lebih terperinci

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.7 Sukoharjo Telp. 071-5904 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s i K- ateatika K e l a s XI PEMBAGIAN HORNER DAN TEOREMA SISA Tujuan Peelajaran Setelah epelajari ateri ini, kau diharapkan eiliki keapuan erikut.. Menguasai konsep peagian suku anyak dengan etode Horner..

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

MODUL I: OPERASI BILANGAN REAL

MODUL I: OPERASI BILANGAN REAL MODUL I: OPERASI BILANGAN REAL I. HIMPUNAN BILANGAN REAL DAN MACAM OPERASI PADA BILANGAN REAL A. Tujuan Setelah mempelajari uraian kegiatan ini. Anda diharapkan :. Dapat membedakan macam-macam bilangan

Lebih terperinci

Modul ke: Matematika Ekonomi. Himpunan dan Bilangan. Bahan Ajar dan E-learning

Modul ke: Matematika Ekonomi. Himpunan dan Bilangan. Bahan Ajar dan E-learning Modul ke: 01 Pusat Matematika Ekonomi Himpunan dan Bilangan Bahan Ajar dan E-learning MAFIZATUN NURHAYATI, SE.MM. 08159122650 [email protected] Selamat Datang di Perkuliahan MATEMATIKA EKONOMI 2 BUKU

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Lingkungan mikro di dalam rumah tanaman khususnya di daerah tropika asah perlu mendapat perhatian khusus, mengingat iri iklim tropika asah dengan suhu udara yang relatif panas,

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 2018 PROVINSI SULAWESI SELATAN

PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 2018 PROVINSI SULAWESI SELATAN PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 08 PROVINSI SULAWESI SELATAN 0. Pada suatu data terdapat 5 bilangan bulat positif. Bilangan terbesar pada data tersebut adalah 55. Median dari data

Lebih terperinci

MATEMATIKA BISNIS DAN MANAJEMEN JILID 1

MATEMATIKA BISNIS DAN MANAJEMEN JILID 1 Bandung Arry Sanjoyo, dkk. MATEMATIKA BISNIS DAN MANAJEMEN JILID 1 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB III METODE PENELITIAN. Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang

BAB III METODE PENELITIAN. Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang 35 BAB III METODE PENELITIAN 3.1. Populasi dan sampel Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang go pulic di Bursa Efek Indonesia. Sampel yang diamil diatasi pada perusahaanperusahaan

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL FUNGSI KUADRAT Materi: Fungsi Kuadrat A Kajian ulang tentang fungsi B Fungsi kuadrat dan grafiknya C Menentukan fungsi kuadrat D Menentukan sumu simetri, titik puncak, sifat definit positif atau

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/1

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/1 RENCANA PELAKSANAAN PEMBELAJARAN No. 01/1 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / 1 Alokasi Waktu : 12 x 45 menit (3 x pertemuan) Standar Kompetensi Kompetensi

Lebih terperinci

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani)

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani) Bilangan Bulat 1. Suhu sebongkah es mula-mula 5 o C. Dua jam kemudian suhunya turun 7 o C. Suhu es itu sekarang a. 12 o C c. 2 o C b. 2 o C d. 12 o C 2. Jika x lebih besar dari 1 dan kurang dari 4 maka

Lebih terperinci

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,

Lebih terperinci

NOTASI ILMIAH DAN ANGKA PENTING

NOTASI ILMIAH DAN ANGKA PENTING NOTASI ILMIAH DAN ANGKA PENTING Apa itu notasi ilmiah? Apa itu angka penting? Dalam fisika, sering dijumapi bilangan yang sangat kecil atau sangat besar. Misalnya jari-jari atom hidrogen 0,000000000053

Lebih terperinci

PANGKAT TAK SEBENARNYA

PANGKAT TAK SEBENARNYA PANGKAT TAK SEBENARNYA Bab 5 Pangkat Tak Sebenarnya Sumber: www6.fheberswalde.de Pada bab ini, kamu akan diajak untuk memahami sifat-sifat bilangan berpangkat dan bentuk akar serta penggunaannya dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Gabungan himpunan bilangan rasional dan himpunan bilangan irrasional disebut bilangan riil. Bilangan riil biasanya dilambangkan dengan

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Pertama)

Sistem Bilangan Kompleks (Bagian Pertama) Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian

Lebih terperinci

Himpunan dari Bilangan-Bilangan

Himpunan dari Bilangan-Bilangan Program Studi Pendidikan Matematika STKIP YPM Bangko October 22, 2014 1 Khususnya dalam analisis, maka yang teristimewa penting adalah himpunan dari bilangan-bilangan riil, yang dinyatakan dengan R. Himpunan

Lebih terperinci

Konstruksi Rangka Batang

Konstruksi Rangka Batang Konstruksi Rangka atang Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka atang merupakan suatu konstruksi yang terdiri dari sejumlah atang atang

Lebih terperinci

BAB XII GAYA DAN TEKANAN

BAB XII GAYA DAN TEKANAN BAB XII GAYA DAN TEKANAN 1. Bagaimanakah huungan antara gaya dan tekanan?. Faktor apakah yang mempengaruhi tekanan di dalam zat cair? 3. Apakah yang dimaksud dengan hukum Pascal? 4. Apakah yang dimasudkan

Lebih terperinci

HIMPUNAN. Matematika 7 - Himpunana 1

HIMPUNAN. Matematika 7 - Himpunana 1 HIMPUNN. Penulisan Himpunan 1. Pengertian himpunan Himpunan adalah kumpulan obyek yang dapat didefinisikan secara jelas. Himpunan dituliskan dengan huruf kapital. Misalnya,, dsb. Himpunan ditulis dengan

Lebih terperinci

1 m, maka jumlah anak yatim yang menerima. menerima Bilangan 3 jika dinyatakan dalam bentuk akar menjadi... A. 9 3 C. 5 2 B. 6 3 D.

1 m, maka jumlah anak yatim yang menerima. menerima Bilangan 3 jika dinyatakan dalam bentuk akar menjadi... A. 9 3 C. 5 2 B. 6 3 D. PREDIKSI UCUN THP I Sukses Ujian Nasional 204 No. Kisi-Kisi Jabaran Soal Prediksi Soal Menentukan hasil operasi hitung campuran bilangan bulat 2 Menyelesaikan soal cerita yang berkaitan dengan pembagian

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA

PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA MENTERI TENAGA KERJA REPUBLIK INDONESIA, Menimang: a ahwa seagai pelaksanaan Pasal 19

Lebih terperinci

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah. XIV V E K T O R 4. engertian adalah esaran yang mempunyai arah. Tafsiran geometri seuah vektor dilukiskan seagai panah. dengan titik pangkal (a x, a y, a z ) dan titik ujung ( x, y, z ) dinotasikan dengan.

Lebih terperinci

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4.

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4. BILANGAN A. BILANGAN BULAT Himpunan bilangan bulat adalah himpunan bilangan yang terdiri dari himpunan bilangan positif (bilangan asli), bilangan nol, dan bilangan bulat negatif. Himpunan bilangan bulat

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

Ringkasan Materi Contoh Soal dan Pembahasan. Matematika.

Ringkasan Materi Contoh Soal dan Pembahasan. Matematika. Ringkasan Materi Contoh Soal dan Pembahasan Matematika BILANGAN BAB 1 A. PENDAHULUAN Bilangan merupakan suatu sebutan untuk menyatakan banyaknya sesuatu. 1. Lambang Bilangan Lambang Dibaca Lambang Dibaca

Lebih terperinci