Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Ukuran: px
Mulai penontonan dengan halaman:

Download "Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya"

Transkripsi

1 Matematika Teknik Dasar- 10 Aplikasi Integral - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

2 Volume Benda-Putar Sebuah bentuk bidang yang dibatasi kurva y = f(x), sumbu-x, dan ordinatordinat di x=a dan x=b, diputar satu putaran penuh mengelilingi sumbu-x, maka putaran ini akan membentuk sebuah benda yang simetris terhadap OX.

3 Volume Benda-Putar Volume yang dibentuk oleh potongan kira-kira sama dengan volume yang dibentuk oleh empat-persegi panjang, atau δv = y.

4 Volume Benda-Putar Jika dibagi seluruh bentuk bidang menjadi sejumlah potongan tipis. Maka masing-masing akan menghasilkan cakram tipis dengan volume πy. δx x=b Volume total, V = πy. δx x=a

5 Volume Benda-Putar Dalam pendekatan model ini muncul kesalahan dikarenakan luas daerah di atas masing-masing adalah empat-persegi panjang, sehingga muncul pola tangga. Tetapi jika δx 0, kesalahan akan hilang maka V = a b πy. δx

6 Contoh - 1 Carilah volume yang terbentuk jika bentuk bidang yang dibatasi oleh y=5cosx, sumbu-x dan ordinat-ordinat di x=0 dan x= /4, diputar satu putaran penuh mengelilingi sumbu-x V = න 0 π/4 πy. δx = 5π න 0 Dinyatakan dalam bentuk sudut ganda (4x) π/4 cos x cos θ = cos θ 1; cos θ = cos θ V = 5π π/4 4 න 1 + cos 4x 0

7 Contoh - 1 V = 5π 4 V = 5π 4 x + sin 4x 4 0 π π/4 V= 5π 8 satuan 3

8 Contoh - Persamaan parametrik suatu kurva adalah x = 3t, y = 3t t. Carilah volume yang terbentuk jika bentuk bidang yang dibatasi oleh kurva, sumbu-x dan ordinat-ordinat yang bersangkutan dengan t=0 dan t=, diputar mengelilingi sumbu-x V = න a b πy. t= V = න π 3t t. t=0 x = 3t, y= 3t-t c = 3t = 6t dt

9 Contoh - V = π න 0 V = 6π න 0 9t 6t 3 + t 4 9t 6t 3 + t 4 V = 6π 9t4 4 6t5 5 + t6 6 0 V = 6π 36 38,4 + 10,67 V = 6π 8,7 V = 156 satuan 3 6tdt dt

10 Volume Benda-Putar Carilah volume yang terbentuk jika bentuk bidang yang dibatasi oleh kurva y=x +5, sumbu-x, dan ordinat-ordinat di x=1 dan x=3, diputar mengelilingi sumbu-y sampai satu putaran penuh.

11 Volume Benda-Putar Pada kasus tersebut tidak memiliki rumus standar, karena rumus V = b a πy. adalah rumus untuk rotasi mengelilingi sumbu-x. Dibuat metode umum Volume yang dibentuk oleh potongan = Volume yang dibentuk oleh empat persegi panjang (silinder tipis yang berongga)

12 Volume Benda-Putar δv luas empat persegi panjang kecil x keliling δv yδx. πx πxy. δx Maka untuk semua potongan seperti ini di antara x=1 dan x=3: x=3 V δv x=1 πxy. δx Jika δx 0, kesalahan akan hilang dan akan diperoleh V = න 1 3 πxy dt

13 Contoh - 3 Menggunakan soal yang diberikan pada pembahasan sebelumnya. Karena y=x + 5, maka dapat mensubstitusikan y: V = න 1 3 πxy = π න 1 3 x x + 5 = π න V = π x x 1 81 V = π x 3 + 5x

14 Contoh - 3 V = π V = π V = 80 satuan 3

15 ҧ ҧ Sentroid dari Suatu Bentuk Bidang Sentroid dapat dicari posisinya dengan cara mengambil satu potongan elementer dan kemudiann menghitung momennya (a) terhadap OY untuk mencari x, dan (b) terhadap OX untuk mencari തy. Axҧ σ x=b x=a x. yδx A തy σx=b y x=a. yδx Yang menghasilkan b xy x = a b, തy = a y 1 b a y a b y

16 ҧ Contoh - 4 Carilah posisi sentroid dari daerah yang dibatasi oleh y=e x, sumbu-x, sumbu-y, dan ordinat di x= Jawaban: Langkah pertama dicari b xy xҧ x = a b, yang kemudian dihitung kedua integral a y secara terpisah.

17 Contoh - 4 Misalkan, x ҧ = I 1 I Maka I 1 = 0 xe x = x ex 1 e x 0 I 1 = xex ex 4 0 I 1 = e 4 e I 1 = 3e = 3e

18 ҧ Contoh - 4 Maka I = 0 e x = ex Sehingga x ҧ = I 1 = 3e4 +1 I 4 Kemudian dicari തy. 0 = e 4 = 3e4 +1 e 4 1 e = e4 1 x = 1,537 തy = 1 0 y = I 3 0 y I 3 54,60 +1 = = 163,8+1 = 164,8 54, , 107,

19 Contoh - 4 I 3 = 1 න 0 തy = I 3 I = y = 1 න e8 1 1 e4 1 I 3 = න 0 1 y e 4x = 1 = 1 4 e4 1 = 1 4 e 4x 0 Maka sentroidnya adalah di x ҧ = 1,537 dan തy = 13,90 = 1 8 e8 1 54, = 13,90

20 ҧ ҧ Pusat Massa Suatu Benda Putar Akan dicari posisi pusat massa (centre of gravity) dari suatu benda yang terbentuk apabila bentuk bidang yang dibatasi kurva y=f(x), sumbu-x, dna ordinat-ordinat di x=a dan x=b, diputar mengelilingi sumbu-x Jika diambil cakram-cakram elementer dan menjumlahkan seluruh momen volumenya (atau momen massanya) terhadap OY, maka kita dapat menghitung x. x = a b xy a b xy, sedangkan തy = 0

21 Contoh - 5 Carilah posisi pusat massa dari benda yang terbentuk apabila bentuk bidang yang dibatasi oleh kurva x + y = 16, sumbu-x, dan ordinat-ordinat di x=1 dan x=3 diputar mengelilingi sumbu-x 3 I 1 = න 1 3 x 16 x = න 1 16x x 3 = 8x x4 4 1 I 1 = = 64 0 = 44 I 1 = 44 3

22 Contoh I = න 1 16 x = 16x x I 1 = = I = Jadi x ҧ = 1,89 dan തy = 0 x ҧ = I 1 = 44 I = = 1,89

23 Panjang Kurva Akan dicari panjang busur suatu kurva y=f(x) diantara x=a dan x=b Misalkan P adalah titik (x,y) dan Q adalah suatu titik pada kurva di dekat P. misalkan δx= panjang busur kecil PQ.

24 Panjang Kurva Maka: δs δx δs δx + δy δs 1 + δy δx δs δx δx 1 + δy δx 1 + δy δx Jika δx 0 ds = 1 + dy s = a b 1 + dy.

25 Contoh - 6 Carilah panjang dari kurva y=10 cosh x 10 diantara x=-1 dan x= Jawaban: y=10 cosh x s = dy. dy = sinh x 1 + dy = 1 + sinh x = x cosh 10 s = න cosh x = න cosh x 1 10 = 10 sinh x 10 1

26 Contoh - 6 s = 10 (sinh 0, sinh( 0,1)) sinh x = sinh x s = 10 (sinh 0, + sinh 0,1) = 10(0, ,100) s = 10 0,3015 = 3,015 satuan

27 Panjang Kurva Persamaan Parametrik Daripada dilakukan proses perubahan variable integral seperti yang dilakukan sebelumnya jika kurva dinyatakan dalam persamaan parametrik, dapat dibuat suatu bentuk kurva yang akan memudahkan pekerjaan. Misalkan y = f t, x = F(t) Seperti sebelumnya: δs = δx + δy Bagi kedua sisi dengan δt ds dt = dt + dy dt

28 Panjang Kurva Persamaan Parametrik Jika t 0, ini mejadi: ds = + dy dt dt dt ds dt = dt + dy dt t=t s = t=t1 dt + dy dt. dt

29 Contoh 7 Carilah panjang dari kurva x = cos θ, y = sin 3 θ di antara titik-titik yang berkorespondensi dengan =0 dan = / Ingatlah s = 0 π/ + dy. Kita memiliki = 6cos θ sin θ = 6cos θ sin θ dy = 6sin θ cos θ + dy = 36 cos 4 θ sin θ + 36sin 4 θcos θ

30 Contoh 7 + dy + dy = 36 cos 4 θ sin θ + 36sin 4 θcos θ = 36 sin θ cos θ cos θ + sin θ + dy = 36 sin θ cos θ + dy = 6 sin θ cos θ = 3 sin θ

31 Contoh 7 cos θ s = න π/3 sin θ = s = 3 1 = 3 satuan π/ 0

32 Luas Permukaan Benda Putar Jika busur suatu kurva diputar mengelilingi sebuah sumbu, maka putaran ini akan membentuk suatu permukaan. Carilah luas permukaan benda-putar yang terjadi jika busur suatu kurva y=f(x) diantara x=x 1 dan x=x diputar satu putaran penuh mengelilingi sumbu-x.

33 Luas Permukaan Benda Putar Jika kita memutar sebuah elemen busur kecil dengan panjang δs satuan, maka putaran ini akan membentuk pita tipis dengan luas A. Maka δa πy. δs Dengan membagi kedua sisi dengan x kita peroleh da = πy ds Seperti yang telah kita lihat sebelumnya ds = 1 + dy

34 Luas Permukaan Benda Putar da = πy 1 + dy x Sehingga A = x1 πy 1 + dy

35 Contoh 8 Carilah luas permukaan yang terbentuk jika busur dari parabola y =8x di antara x=0 dan x= diputar mengelilingi sumbu-x Jawaban A = න πy 1 + dy 0. y = 8x x 1/ dy = x1/ dy 1 + dy = 1 + x = x + x = x

36 Contoh 8 x + A = න π x1/ x 0 1/ x + A = න 4. π. x1/ 0 x 1/ A = 4. π න 0 A = 4. π x + 1/ x + 3/ 3/ 0.

37 Contoh 8 A = 4. π 3 8 A = 8π = 8π 3 7,314 A = 19,5π satuan

38 Luas Permukaan Benda-Putar Persamaan Parametrik Telah dilihat bahwa jika kita memutar sebuah busur kecil s, maka luas A dari pita tipis yang terbentuk diberikan oleh: δa πy. δs Jika dibagi semua sisi dengan, maka didapatkan δa δs πy. δθ δθ Dan jika 0, ini menjadi: da πy. ds

39 Luas Permukaan Benda-Putar Persamaan Parametrik Ketika membahas tentang panjang kurva, maka: ds = + dy δa δθ = πy + dy θ A = න πy θ 1 + dy.

40 Contoh 9 Carilah luas permukaan yang dihasilkan ketika kurva x=a( - sin ), y=a(1 - cos ) antara =0 dan = diputar mengelilingi sumbu-x sampai satu putaran penuh. Disini = a 1 cos θ = a 1 cos θ + cos θ dy dy = a sin θ = a sin θ + dy = a 1 cos θ + cos θ + sin θ

41 Contoh 9 + dy = a 1 cos θ tetapi cos θ = 1 sin θ + dy = 4a sin θ Diselesaikan integralnya dan dicari luas permukaan yang terbentuk π A = න 0 πy + dy.

42 Contoh 9 π A = π න a 1 cosθ. a sin θ π 0. = π න 0 A = 8πa න A = 8πa න 0 A = 8πa 0 π π 1 cos θ. sin θ. sin θ cos θ cos θ + cos3 θ/ 3 A = 8πa 0 + /3 A = 8πa 4/3 = 3πa 3 a sin θ. a sin θ. sin θ. π 0 satuan

43 Aturan-Aturan Pappus Ada dua aturan yang bermanfaat dan perlu diketahui: 1. Jika busur dari suatu kurva bidang diputar mengelilingi sebuah sumbu dalam bidang tersebut, maka luas permukaan yang terbentuk akan sama dengan panjang kurva tersebut dikalikan dengan jarak yang ditempuh oleh sentroidnya. Jika suatu bentuk bidang diputar mengelilingi sebuah sumbu putar dalam bidang tersebut, maka volume yang terbentuk akan sama dengan luas bentuk tersebut dikalikan dengan jarak yang ditempuh oleh sentroidnya.

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 11 Aplikasi Integral - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Momen Inersia Energi yang dimiliki benda karena pergerakannya disebut Energi Kinetik

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua dan

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

I N T E G R A L (Anti Turunan)

I N T E G R A L (Anti Turunan) I N T E G R A L (Anti Turunan) I. Integral Tak Tentu A. Rumus Integral Bentuk Baku. Derifatif d/ X n = nx n- xn = Integral x n+ n. d/ cos x = - sin x sin x = - cos x. d/ sin x = cos x cos x = sin x 4.

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia 214 Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x

Lebih terperinci

Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Turunan Parsial Volume V dari sebuah silinder

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I JENIS-JENIS FUNGSI SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I JENIS-JENIS FUNGSI SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I JENIS-JENIS FUNGSI SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN 1. Satuan Sudut Radial DALIL ILMU UKUR Besar sudut pusat sebuah lingkaran, sama dengan bilangan yang menyatakan

Lebih terperinci

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR Interpretasi Geometri dari Derivatif Vektor Jika C adalah kurva yang dinyatakan dalam bentuk fungsi vektor r(t) = x(t)i + y(t)j + z(t)k maka:. Derivatif dari kurva

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB Kalkulus Variasi Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Distribusi Tekanan pada Fluida

Distribusi Tekanan pada Fluida Distribusi Tekanan pada Fluida Ref: White, Frank M., 2011, Fluid Mechanics, 7th edition, Chapter 2, The McGraw-Hill Book Co., New York 2/21/17 1 Tekanan pada Fluida Tekanan fluida (fluid pressure): tegangan

Lebih terperinci

Bab 3 (3.1) Universitas Gadjah Mada

Bab 3 (3.1) Universitas Gadjah Mada Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

CONTOH SOAL UAN INTEGRAL

CONTOH SOAL UAN INTEGRAL 1. Diketahui. Nilai a = a. 4 b. 2 c. 1 d. 1 e. 2 2. Nilai a. d. b. e. c. 3. Hasil dari a. b. d. e. c. 4. Hasil dari a. cos 6 x. sin x + C b. cos 6 x. sin x + C c. sin x + sin 3 x + sin 5 x + C d. sin x

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Rekap Dari materi sebelumnya telah dipelajari operasi dalam bilangan kompleks (penambahan,

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 7 Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Definisi dan Persamaan Silinder adalah sebuah permukaan yang didapatkan dari sebuah garis yang

Lebih terperinci

v i Kata Sambutan iii Sekilas Isi Buku v i ii ii B a b Gerak dalam Dua Dimensi Sumber: www.rit.edu Pada bab ini, Anda akan diajak untuk dapat menganalisis gejala alam dan keteraturannya dalam cakupan mekanika

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika

K13 Revisi Antiremed Kelas 11 Matematika K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan

Lebih terperinci

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI Nama : Syifa Robbani NIM : 125100301111002 Dosen Kelas : Nimas Mayang Sabrina S., STP, MP, MSc : L Nimas Nimas Mayang Sabrina S., STP, MP, MSc Mayang

Lebih terperinci

21. SOAL-SOAL TRANSFORMASI GOMETRI

21. SOAL-SOAL TRANSFORMASI GOMETRI 21. SOAL-SOAL TRANSFORMASI GOMETRI Maka rotasi terhadap R[, 18 ] = cos18 sin18 sin18 cos18 UAN22 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: A. y = x + 1 C. y = 2 x - 1 E.

Lebih terperinci

Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Simbol j Penyelesaian dari sebuah persamaan kuadratik ax 2 + bx rumus x = b± b2

Lebih terperinci

Catatan Kuliah FI2101 Fisika Matematik IA

Catatan Kuliah FI2101 Fisika Matematik IA Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.

Lebih terperinci

Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas

Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Slide II Toni Bakhtiar Departemen Matematika IPB February 2012 TBK (IPB) Kalkulus Variasi February 2012 1 / 37 Masalah Brachystochrone

Lebih terperinci

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c Page of 9. Luas daerah yang dibatasi oleh kurva y =, sumbu Y, sumbu X, dan garis = / d. 8 / 6 / e. 9 / 7 /. Hasil dari sin.cos d ¼ d. ¾ / e. 7. Volum benda putar yang terjadi bila daerah yang dibatasi

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016) PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

Modul Praktikum Kalkulus II dengan Menggunakan Matlab

Modul Praktikum Kalkulus II dengan Menggunakan Matlab Modul Praktikum Kalkulus II dengan Menggunakan Matlab disusun oleh : Arif Muchyidin, S.Si., M.Si. NIP. 19830806 201101 1 009 TADRIS MATEMATIKA INSTITUT AGAMA ISLAM NEGERI SYEKH NURJATI CIREBON 2016 KATA

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas Toni Bakhtiar Departemen Matematika IPB Februari 214 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 214 1

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA

SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR 14 SMA SOAL DAN SOLUSI PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SANGGAR SMA Sekretariat : SMA Negeri 8, Jl. Pinang Ranti II No. TMII Kec. Makasar Telp. 80097 80060 / Fax. (0) 80097 Kode

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Kelompok Teknologi Industri Paket Utama (P) MATEMATIKA (E-) TEKNIK SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) B Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Mata Pelajaran Jenjang Program Studi Hari/Tanggal Jam MATA PELAJARAN : MATEMATIKA : SMA/MA : IPA WAKTU

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

Integral Garis. Sesi XIII INTEGRAL 12/7/2015

Integral Garis. Sesi XIII INTEGRAL 12/7/2015 2//25 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TK 85 Pengampu : Achfas Zacoeb esi XIII INTEGRAL e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 823398339 Integral Garis Dari Gambar.,

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E 1. Diketahui premis-premis berikut: Premis 1: jika lampu menyala merah, maka semua kendaraan berhenti. Premis 2: Jika polisi memberi tilang, maka ada kendaraan yang tidak berhenti. Premis 3: Lampu menyala

Lebih terperinci

LATIHAN ULANGAN BAB. INTEGRAL

LATIHAN ULANGAN BAB. INTEGRAL LATIHAN ULANGAN BAB. INTEGRAL A. PILIHAN GANDA 4( ). d... A. 4( ) 5 B. 4( ) 4 C. + 8 9 4 + C D. + 8 + C E. 4 5 + C 5. Nilai ( 4 ) d... A. 6 D. B. 4 6 E. C. 8. Hasil dari. cos d... (UAN 4) A. (.sin.cos

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup

Lebih terperinci

Suryadi Siregar Metode Matematika Astronomi 2

Suryadi Siregar Metode Matematika Astronomi 2 Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Tujuan Khusus. Tujuan Umum

Tujuan Khusus. Tujuan Umum Tujuan Umum Tujuan Khusus Mahasiswa memahami arti Kerangka Kontrol Horizontal (KKH) Mahasiswa memahami cara pengukuran, cara menghitung, cara koreksi dari suatu pengukuran polygon baik polygon sistem terbuka

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b . TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis

Lebih terperinci

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E 1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci

Lebih terperinci

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah

e. 238 a. -2 b. -1 c. 0 d. 1 e Bilangan bulat ganjil positip disusun sebagai berikut Angka yang terletak pada baris 40, kolom 20 adalah Soal Babak Penyisihan OMITS 007. Jikaf R R dengan R bilangan real. Jikaf x + x = x + x maka nilai f 5. Nilaidari a. 5 5 4 5 5 d. 5 e. 5 k= 4 k +.5 k+ + 7 k a. 0 5 9 d. 40 e. 45. Sukubanyakx + 5x + x dan

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160 7. UN-SMA-- Diketahui sebidang tanah berbentuk persegi panjang luasnya 7 m. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tanah tersebut m m m m m 7. UN-SMA-- Pak Musa mempunyai kebun

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci