integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

Ukuran: px
Mulai penontonan dengan halaman:

Download "integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2."

Transkripsi

1 integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. Menentukan fungsi ( ) dari, berarti menentukan antiturunan dari ( ). Sehingga, integral merupakan antiturunan (antidiferensial) atau operasi invers terhadap diferensial. Jika ( ) adalah fungsi umum yang bersifat merupakan antiturunan atau integral dari =, maka ( ) = ( ) INTEGRAL TAK TENTU A. Pengertian Integral Tak Tentu Pengintegralan fungsi ( ) yang ditulis sebagai ( ) tak tentu dari ( ). Jika disebut integral ( ) anti turunan dari ( ), maka Keterangan: ( ) = ( ) + = notasi integral (yang diperkenalkan oleh Leibniz, seorang matematikawan Jerman) ( ) = fungsi integran ( ) = fungsi integral umum yang bersifat ( ) = ( ) = konstanta pengintegralan Matematika Dasar Page 181

2 Ada dua jenis integral tak tentu yang akan kamu pelajari pada bagian ini yaitu integral tak tentu dari fungsi aljabar dan integral tak tentu dari fungsi trigonometri. Agar kamu memahaminya dengan baik, perhatikan uraian berikut. a. Rumus Dasar Integral Tak Tentu dan Fungsi Aljabar Sekarang, perhatikan turunan fungsi-fungsi berikut. =, didapat = 1 Jadi, jika = 1 maka = = + c =, didapat = Jadi, jika = maka = = + Dari uraian ini, tampak bahwa jika =, = + atau dapat dituliskan = 1 +, Sebagai contoh, turunan fungsi = 2 + adalah = 4 Ini berarti, antiturunan dari = 4 adalah = 2 + atau dituliskan = 2 +. Uraian ini menggambarkan hubungan berikut. Jika =, maka = suatu konstanta. +, 1 dengan Misalnya konstanta real sembarang, () dan () merupakan fungsi yang dapat diintegralkan, maka akan berlaku: a) = + b) = c) ± = ± d) = + Matematika Dasar Page 182

3 Untuk lebih memahami integral tak tentu fungsi aljabar, marilah kita simak contoh-contoh berikut. Contoh Selesaikan integral berikut! a) b) c) 2 d) a) = + = + b) = + = + c) 2 3 = 2 = 2 + = + d) = = b. Rumus Integral Tak Tentu dari Fungsi Trigonometri Untuk memahami integral dari fungsi trigonometri, dibutuhkan pemahaman yang baik mengenai turunan trigonometri. Agar kamu lebih memahaminya, perhatikan label turunan fungsi trigonometri berikut: Tabel Turunan Fungsi Trigonometri () () Cos sin 2 tan.sec 2 cot.csc Berdasarkan tabel Tersebut, rumus dasar pengintegralan trigonometri adalah sebagai berikut. Matematika Dasar Page 183

4 cos = sin + sin = cos + = tan + = cot + tan. sec = sec + cot. csc = csc + Berdasarkan rumus integral dari fungsi trigonometri diatas, maka rumus-rumus tersebut dapat diperluas menjadi : a. + = + + b. + = c. + = d = + + e. + = + + f = + + Contoh 13.2 Selesaikan integral berikut! 1. 2 sin cos 5. sin 4. cos 2 6. sec. tan 7. 2 sin 3 Ingat kembali = cos 2 2 = cos 2 2 Matematika Dasar Page 184

5 Penyelesaian: 1. 2 sin + 3 = 2 sin + 3 = 2 cos = 2 = tan = cos 2 = sin + cos 2 = + 2 sin. cos + 5. sin 4. cos 2 = sin. cos = = 1 = = + 1 = = sin 6 + sin 2 = sin 6 + sin 2 6. sec. = sec = 2 3 = cos 6 cos 2 + = cos 6 cos 2 + = 3 + B. Penerapan Integral Tak Tentu Integral tak tentu dapat digunakan untuk menyelesaikan permasalahanpermasalahan di bawah ini: 1. Untuk menentukan suatu fungsi jika turunan dari fungsinya diberikan. 2. Untuk menentukan posisi, kecepatan, dan percepatan suatu benda pada waktu tertentu. Misalnya s menyatakan posisi benda, kecepatan benda dinyatakan dengan v, dan percepatan benda dinyatakan dengan a. Hubungan antara s, v, dan a adalah sebagai berikut. Matematika Dasar Page 185

6 = sehingga = dan = sehingga = Agar lebih memahami aplikasi integral tak tentu, perhatikan contoh soal berikut ini! Contoh Diketahui = dan 1 = 2. Tentukan. = = = = 2 2 = = = 12, = Sebuah benda bergerak pada garis lurus dengan percepatan a yang memenuhi persamaan = 2 1, dalam / 2 dan t dalam detik. Jika kecepatan awal benda = 5 / dan posisi benda saat = 6 adalah = 92, maka tentukan persamaan posisi benda tersebut saat t detik! = 2 1 = = 2 1 = + Kecepatan awal benda 5 1, artinya saat t = 0 nilai v = 5 = = 5 Matematika Dasar Page 186

7 Sehingga, = 5 = + 5 = = + 5 = =6 = = = = 92 = INTEGRAL TERTENTU Jika fungsi = kontinu pada interval, maka: = = dengan () adalah anti turunan dari () dalam. Bentuk integral di atas disebut integral tertentu dengan sebagai batas bawah dan sebagai batas atas. Definisi integral di atas dikenal sebagai Teorema Dasar Kalkulus. Misalnya dan merupakan fungsi-fungsi kontinu dalam interval tertutup [,], maka integral tertentu memenuhi sifat-sifat umum sebagai berikut. Matematika Dasar Page 187

8 = 0. = ± = = +, = konstanta = ± Untuk memahami integral tertentu lebih lanjut, marilah kita simak contohcontoh berikut. Contoh Hitunglah hasil integral berikut! a = 6 b = = = = = = = = = = 32 3 = Matematika Dasar Page 188

9 2. Hitunglah hasil integral dari bentuk berikut! 2 sin + 6 cos 2 sin + 6 cos = 2 cos + 6 sin = = Jika 2 5 = = 18 5 = = = = = 0 = 7 atau = 2 tidak memenuhi maka nilai + 1 = = 8. untuk > 0 maka tentukan nilai = 1 + cos 2 = + sin 2 =. + sin 2 = = 13.4 TEKNIK-TEKNIK PENGINTEGRALAN Sering kita jumpai fungsi-fungsi yang akan diintegralkan tidak sesuai dengan rumus dasar integral dan tidak sedikit fungsi tersebut diberikan dalam bentuk yang sangat rumit. Pada subbab ini kita akan membahas dua teknik Matematika Dasar Page 189

10 pengintegralan untuk menyelesaikan integral dengan fungsi seperti itu, yaitu integral substitusi dan integral parsial. A. Integral Substitusi a) Bentuk Subtitusi-1 Tidak semua bentuk pengintegralan bisa dikerjakan dengan menggunakan rumus = +.Banyak bentuk-bentuk yang kelihatannya rumit, sehingga tidak bisa diselesaikan dengan rumus di atas. Karena itu dibutuhkan suatu cara lain untuk menyelesaikannya. Pada bagian ini akan dibahas teknik integrasi yang disebut metode substitusi. Konsep dasar dari metode ini adalah dengan mengubah integral yang kompleks menjadi bentuk yang lebih sederhana. Bentuk umum integral substitusi adalah sebagai berikut. = Contoh Misal: = 5 2 = 5 = Sehingga 5 2 = = = + = Jadi, 5 2 = Matematika Dasar Page 190

11 Misal = + 3 = = 3 Sehingga = 3 1 = = = + + = Jadi, = Misalkan = + 3, maka Sehingga diperoleh, = 2 = = + = = 2 atau = b) Integral yang Memuat Bentuk, +, Untuk menyelesaikan pengintegralan yang memuat bentuk, + dan, kita menggunakan teknik integral substitusi trigonometri. Agar kamu lebih memahaminya, perhatikan dengan baik tabel berikut. Bentuk Substitusi Hasil = sin = cos + = tan + = sec = sec = tan Untuk lebih memahami teknik integral substitusi trigonometri, perhatikan contoh berikut. Matematika Dasar Page 191

12 1 4 Misal = 2 sin, maka sin = = 2 cos Batas Integral Sehingga = = = = = 2 B. Integral Parsial Apabila kamu menemukan bentuk integral yang tidak bisa diselesaikan dengan integral subtitusi, mungkin permasalahan tersebut dapat diselesaikan dengan subtitusi ganda yang lebih dikenal sebagai integral parsial. Perhatikan uraian berikut. Misalnya, = dengan,, dan fungsi dari, maka = +. = = + + = + = + = + Matematika Dasar Page 192

13 = + = Jadi, dari uraian di atas dapat kita ambil kesimpulan bahwa rumus integral parsial adalah sebagai berikut. = Contoh cos 1. cos Misal = = 2 = cos = sin Sehingga cos = sin sin 2 = sin = sin 2 + sin + b = sin + 2 cos sin BEBERAPA PENGGUNAAN INTEGRAL TERTENTU A. Luas Daerah antara Kurva dan Sumbu X Misalkan S adalah daerah yang dibatasi oleh kurva =, sumbu X, garis =, dan garis = Dengan () 0 pada, maka luas daerah S dapat ditentukan dengan rumus : = Apabila () 0 atau daerahnya di bawah sumbu X, maka = Gambar 1 Matematika Dasar Page 193

14 B. Luas Daerah antara Dua Kurva Misalkan daerah S adalah daerah yang dibatasi oleh kurva =, =, garis =, dan garis = seperti pada gambar di samping maka luas daerah =. Luas daerah S dapat ditentukan dengan cara sebagai berikut. = = = Jadi, luas daerah yang dibatasi oleh kurva =, =,dari = sampai = ditentukan dengan rumus = Dengan () () dalam interval. Untuk memahami cara menentukan luas daerah, perhatikan contoh berikut ini! 1. Tentukan luas daerah antara kurva = + 3 dan = Penyelesaian : Titik potong kedua kurva yaitu: + 3 = = 0 = 2 = 1 Matematika Dasar Page 194

15 = = 2 = Tentukan luas daerah antara kurva =, sumbu X, x = -1 dan x = 1! Penyelesaian : = + = 1 4 satuan luas = = 1 2 C. Volume Benda Putar Mengelilingi Sumbu X Volume benda putar dari daerah yang diputar sejauh 360 mengelilingi sumbu X V = atau V = Volume benda putar dari daerah yang diputar sejauh 360 mengelilingi sumbu Y V = atau V = Matematika Dasar Page 195

16 Volume benda putar dari daerah antara dua kurva kurva yang diputar360 terhadap sumbu Y. = atau = Volume benda putar dari daerah antara dua kurva kurva yang diputar 360 terhadap sumbu X. = atau = Contoh Hitunglah volume benda putar yang terjadi, jika yang daerah dibatasi kurva y = x + 1, x = 0, x = 2, dan sumbu x diputar mengelilingi sumbu x sejauh 360 o Penyelesaian: y = x = = + = Matematika Dasar Page 196

17 = + + = = = satuan volume 2. Hitung volume benda putar yang terjadi jika daerah yang dibatasi y=(x - 2) 2, sumbu y, y = 0 dan y = 3 diputar mengelilingi sumbu y sejauh 360 o. Penyelesaian: dimana 2 = menjadi = + 2 = = + 2 = = = = y = (x 2) Tentukan volume benda putar, jika daerah yang dibatasi oleh grafik = 4 2, sumbu x, dan sumbu y diputar 360 o terhadap : a. Sumbu x b. Sumbu y a. Volumenya adalah Matematika Dasar Page 197

18 = 4 = = = = = Jadi, volume benda putar yang terjadi jika daerah R diputar mengelilingi sumbu x adalah satuan volume. b. Untuk menentukan volume benda putar yang terjadi jika daerah R diputar mengelilingi sumbu-y, nyatakan persamaan kurva = = 4 menjadi persamaan dalam variabel y. = 4 = 4 Volume benda putar tersebut adalah = 4 = = = 16 8 = 8 Jadi, volume benda putar yang terjadi jika daerah R diputar mengelilingi sumbu-y adalah 8 satuan volume. Matematika Dasar Page 198

19 13.6 Aplikasi Integral dalam Kehidupan Sehari-hari Definisi Integral adalah kebalikan dari diferensial. Apabila kita mendiferensiasi kita mulai dengan suatu pernyataan dan melanjutkannya untuk mencari turunannya. Apabila kita mengintegrasikan, kita mulai dengan turunannya dan kemudian mencari pernyataan asal integral ini. Lambang integral adalah = + Integral dalam kehidupan sehari-hari sangatlah luas cakupannya seperti digunakan di bidang teknologi, fisika, ekonomi, matematika, teknik dan bidangbidang lain. Adapun uraiannya sebagai berikut: A. Bidang Teknologi Integral sering digunakan untuk memecahkan persoalan yang berhubungan dengan volume, panjang kurva, memperkirakan populasi, keluaran kardiak, usaha, gaya dan surplus konsumen. B. Bidang Ekonomi Penerapan integral dalam bidang ekonomi yaitu: Untuk menentukan persamaan-persamaan dalam perilaku ekonomi. Untuk mencari fungsi konsumsi dari fungsi konsumsi marginal. C. Bidang Matematika Penerapan integral dalam bidang matematika yaitu: Untuk menentukan luas suatu bidang. Untuk menentukan volume benda putar dan menentukan panjang busur. D. Bidang Fisika Penerapan integral dalam bidang fisika yaitu: Untuk menganalisis rangkaian listrik arus AC. Untuk menganalisis medan magnet pada kumparan. Untuk menganalisis gaya-gaya pada struktur pelengkung. E. Bidang Teknik Matematika Dasar Page 199

20 Penerapan integral dalam bidang teknik yaitu: Untuk mengetahui volume benda putar Untuk mengetahui luas daerah pada kurva. Contoh integral dalam kehidupan sehari-hari, dapat kita ketahui dari kecepatan sebuah motor pada waktu tertentu, dan posisi perpindahan benda itu pada setiap waktu. Untuk menemukan hubungan ini kita memerlukan proses integral (antidiferensial), contoh lain yaitu setiap gedung Petronas di Kuala Lumpur atau gedung-gedung bertingkat di Jakarta. Semakin tinggi bangunan semakin kuat angin yang menghantamnya. Karenanya bagian atas bangunan harus dirancang berbeda dengan bagian bawah. Untuk menentukan rancangan yang tepat, dipakailah integral. Matematika Dasar Page 200

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi

Lebih terperinci

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) = Nama : Deami Astenia Purtisari Nim : 125100300111014 Kelas : L / TIP A. Integral Integral merupakan konsep yang bermanfaat, kegunaan integral terdapat dalam berbagai bidang. Misalnya dibidang ekonomi,

Lebih terperinci

Read more:

Read more: Aplikasi Integral dalam kehidupan sehari-hari Definisi Integral adalah kebalikan dari diferensial. Apabila kita mendiferensiasi kita mulai dengan suatu pernyataan dan melanjutkannya untuk mencari turunannya.

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut.

INTERGRAL. Sifat dasar dari bentuk integral tak tentu sebagai berikut. INTERGRAL Operasi balikan dari diferensial adalah anti diferensial atau integral. Suatu fungsi F dikatakan sebagai anti diferensial dari fungsi f apabila F (x) = f(x) untuk setiap x dalam domain F. Jika

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

: Pramitha Surya Noerdyah NIM : A. Integral. ʃ f(x) dx =F(x) + c

: Pramitha Surya Noerdyah NIM : A. Integral. ʃ f(x) dx =F(x) + c Nama : Pramitha Surya Noerdyah NIM : 125100300111022 Kelas/Jur : L/TIP A. Integral Integral dilambangkan oleh ʃ yang merupakan lambang untuk menyatakan kembali F(X )dari F -1 (X). Hitung integral adalah

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab INTEGRAL A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran integral siswa mampu:. Mampu mentransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah,

Lebih terperinci

Integral dan Aplikasinya

Integral dan Aplikasinya Nama : Mutiara Devita Sari NIM : 125100301111020 Kelas : L/TIP Integral dan Aplikasinya Pengertian Integral Integral merupakan invers atau kebalikan dari diferensial. Integral memiliki banyak kegunaan

Lebih terperinci

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036

Lebih terperinci

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN

INTEGRAL MATERI 12 IPS ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN MODUL MATEMATIKA INTEGRAL MATERI 12 IPS ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp.

Lebih terperinci

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)

MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah

Lebih terperinci

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI

MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI MATEMATIKA INDUSTRI 1 RESUME INTEGRAL DAN APLIKASI Nama : Syifa Robbani NIM : 125100301111002 Dosen Kelas : Nimas Mayang Sabrina S., STP, MP, MSc : L Nimas Nimas Mayang Sabrina S., STP, MP, MSc Mayang

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. SETIAWAN, M. Pd. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar

INTEGRAL. C = konstanta. Integral tak tentu adalah integral yang tidak ada batasnya. - Contoh : Rumus rumus integral tak tentu dari fungsi aljabar INTEGRAL 1. Pengertian Integral Integral adalah kebalikan dari turunan (diferensial),secara matematis dapat dirumuskan : dengan : f (x) = turunan f(x) C = konstanta 1.1 Integral Tak Tentu Integral tak

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/5

RENCANA PELAKSANAAN PEMBELAJARAN NO. 01/5 RENCANA PELAKSANAAN PEMBELAJARAN NO. /5 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : XII / 5 Alokasi Waktu : x 45 menit ( x pertemuan) Standar Kompetensi Kompetensi

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Kalkulus: Fungsi Satu Variabel Oleh: Prayudi Editor: Kartono Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2005 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga.

Modul 1 : Barisan dan Deret Takhingga. Kegiatan Belajar 1 : Barisan Takhingga. Kegiatan Belajar 2 : Deret Takhingga. ix M Tinjauan Mata Kuliah ata kuliah Kalkulus 2 yang disajikan pada bahan ajar ini membahas materi tentang barisan, deret, dan integral. Pembahasan barisan dan deret hanya sekitar 11 persen dari dari keseluruhan

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci

Gambar 1. Gradien garis singgung grafik f

Gambar 1. Gradien garis singgung grafik f D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +

Lebih terperinci

INTEGRAL APLIKASI EKONOMI

INTEGRAL APLIKASI EKONOMI INTEGRAL APLIKASI EKONOMI Pengertian Integral Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. adalah lambang untuk notasi integral, dx adalah

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA 1. PROGRAM STUDI : Pendidikan Matematika/Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus II/MT 307/2 3. PRASYARAT : Kalkulus I 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : Matakuliah

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

INTERGRAL INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI MENU

INTERGRAL INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI MENU INTERGRAL OLEH : KELOMPOK 5 KETUA TEORI 1. I GEDE DIKA VIRGA SAPUTRA 2. I WAYAN HERMAWAN 3. EGI AZIKIN MAULANA KETUA SOAL 1. I MADE DUPI ANDIKA 2. I PUTU BAGUS MAHENDRA INTEGRAL TAK TENTU INTEGRAL SUBSTITUSI

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri 2 Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Negeri Lahat Mata Pelajaran : Matematika Kelas / Program : XII / IPA Semester : Ganjil Standar Kompetensi : 1. Menggunakan konsep integral dalam

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

INTEGRAL PARSIAL DENGAN TEKNIK TURIN. Mintarjo SMK Negeri 2 Gedangsari Gunungkidul

INTEGRAL PARSIAL DENGAN TEKNIK TURIN. Mintarjo SMK Negeri 2 Gedangsari Gunungkidul INTEGRAL PARSIAL DENGAN TEKNIK TURIN Mintarjo SMK Negeri Gedangsari Gunungkidul email : tarjamint@gmailcom Abstrak Matematika merupakan ilmu pengetahuan yang memiliki sifat universal Salah satu cabang

Lebih terperinci

Kompetensi Dasar Tujuan Pembelajaran

Kompetensi Dasar Tujuan Pembelajaran BAB 7 LIMIT FUNGSI Kompetensi Dasar Siswa dapat menjelaskan it fungsi di satu titik dan di tak hingga beserta teknis perhitungannya. Menggunakan sifat it fungsi untuk menghitung bentuk tak tentu fungsi

Lebih terperinci

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/ matematika K e l a s XI LIMIT TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menghitung it fungsi trigonometri di suatu

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

MAKALAH KALKULUS Integral Turunan Limit

MAKALAH KALKULUS Integral Turunan Limit MAKALAH KALKULUS Integral Turunan Limit KATA PENGANTAR Puji dan syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat dan karunianya penulis dapat menyelesaiakan makalah ini tepat waktu

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

CONTOH SOAL UAN INTEGRAL

CONTOH SOAL UAN INTEGRAL 1. Diketahui. Nilai a = a. 4 b. 2 c. 1 d. 1 e. 2 2. Nilai a. d. b. e. c. 3. Hasil dari a. b. d. e. c. 4. Hasil dari a. cos 6 x. sin x + C b. cos 6 x. sin x + C c. sin x + sin 3 x + sin 5 x + C d. sin x

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH

SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH SATUAN ACARA PERKULIAHAN STRATA-1 STMIK UBUDIYAH MATA KULIAH : KALKULUS I JURUSAN : TEKNIK INFORMATIKA KODE MATA KULIAH : JUMLAH PERTEMUAN : 32 X (30 X, 2 X Ujian) TATAP MUKA KE POKOK BAHASAN 1 SUB POKOK

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c

4. Nilai dari 18x 3x. 12. Hitung = 13. Hitung. c. 8 ( x ) -2 + c d. 8 ( x ) 2 + c e. ( x ) -2 + c Page of 9. Luas daerah yang dibatasi oleh kurva y =, sumbu Y, sumbu X, dan garis = / d. 8 / 6 / e. 9 / 7 /. Hasil dari sin.cos d ¼ d. ¾ / e. 7. Volum benda putar yang terjadi bila daerah yang dibatasi

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

ii Kalkulus

ii Kalkulus Fungsi Real i ii Kalkulus Fungsi Real iii KALKULUS Oleh : Wikaria Gazali Soedadyatmodjo Editor : F. Wiwiek Nurwiyati Edisi Pertama Cetakan Pertama, 2005 Edisi Kedua Cetakan Pertama, 2007 Hak Cipta 2005,

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN

SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN SILABUS MATA PELAJARAN MATEMATIKA KELAS XII - IA SEMESTER 1 (SATU) Oleh TIM MATEMATIKA SMA NEGERI 3 MEDAN DINAS PENDIDIKAN KOTA MEDAN SEKOLAH MENENGAH ATAS NEGERI 3 MEDAN 2010 SILABUS Nama Sekolah : SMA

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci