Bab6 PENAKSIRAN PARAMETER
|
|
|
- Doddy Lesmana
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Bab6 PENAKSIRAN PARAMETER
2 MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak berukura, lalu hitug tatitik yag erlu ialah da Titik takira utuk ratarata µ ialah Dega kata lai ilai µ bearya ditakir oleh harga yag didaat dari amel Utuk memeroleh takira yag lebih tiggi derajat keercayaaya, diguaka iterval takira atau elag takira diertai ilai koefiie keercayaa yag dikehedaki
3 a Simaga baku σ diketahui da oulaiya berditribui ormal σ µ + σ b Simaga baku σ diketahui da oulaiya berditribui ormal, jika (/N) > 5% σ N µ + N Dega = koefiie keercayaa da dari tabel ormal baku utuk eluag ½ σ N N = bilaga didaat
4 c Simaga baku σ tidak diketahui da oulaiya berditribui ormal t µ + ; d Simaga baku σ tidak diketahui da oulaiya berditribui ormal, jika (/N) > 5% t ; N t µ + ; N t ; N N Dega = koefiie keercayaa da t = ilai t didaat dari daftar ditribui tudet /ditribui t dega derajat kebebaa dk =
5 Meakir Seliih Ratarata Mialka kita memuyai dua buah oulai, keduaduaya berditribui ormal Ratarata da imaga bakuya maigmaig µ da σutuk oulai keatu, µ da σ utuk oulai kedua Dari maigmaig oulai ecara ideede diambil ebuah amel acak dega ukura da Ratarata da imaga baku dari amelamel itu berturutturut,, da, Aka ditakir eliih ratarata ( µ µ )
6 a Jika σ da σ bearya diketahui da oulaiya berditribui ormal ) ( ) ( σ σ µ µ σ σ Dega = koefiie keercayaa da = bilaga didaat dari tabel ormal baku utuk eluag ½ b Jika σ tetai tidak diketahui bearya Maka bearya diyataka dega rumu : ) ( ) ( + ) ( ) ( + + = Da t ) ( t ) ( µ µ Dega = koefiie keercayaa da t = ilai t didaat dari daftar ditribui tudet /ditribui t dega derajat kebebaa dk = +
7 LATIHAN SOAL Suatu tudi tetag ertumbuha dari taama cactu jei tertetu meujukka bahwa dari 50 taama yag diagga ebagai amel ratarata tumbuh 44,8 mm dega deviai tadar 4,7 mm elama jagka waktu bula Dega iterval kofidei 95 %, tetuka ratarata ertumbuha tahua yag eugguhya dari jei cactu terebut Samel radom ebayak 40 drum baha kimia ditarik dari 00 drum baha kimia, memuyai berat ratarata 40,8 oud dega deviai tadar, oud Jika diduga bahwa berat ratarata dari 00 drum baha kimia terebut adalah 40,8, tetuka dega iterval keercayaa 95 % utuk berat ratarata drum baha kimia terebut! 3 Utuk megetahui waktu ratarata yag dierluka utuk merakit uatu alat mekai tertetu, telah dilakuka erhituga berdaarka amel 6 erakita dega waktu maigmaig 3, 4,, 6,, da meit Buatlah iterval kofidei 95 % utuk waktu ratarata yag eugguhya utuk merakit alat mekai terebut 4 Sebuah amel berua 0 egukura diameter balok kayu, meujukka ratarata diameter 43,8 cm dega deviai tadar 0,6 cm Hituglah iterval kofidei 99 % utuk ratarata diameter yag eugguhya
8 7 Samel radom ebayak 50 buah bola lamu merk A meujukka daya hidu ratarata 400 jam dega deviai tadar 0 jam Samel radom lai ebayak 00 buah bola lamu merk B memuyai daya hidu ratarata 00 jam dega dega deviai tadar 80 jam Hituglah iterval kofidei 95 % utuk erbedaa ratarata daya hidu dari oulai bola lamu kedua merk itu 8 Dua amel maigmaig berua 00 taama bibit yag tumbuh di dua temat yag berbeda Dari amel ertama tiggi ratarataya adalah 9,8 ici dega deviai tadar ici Dari amel kedua memuyai tiggi ratarata 0,5 ici dega deviai tadar 3 ici Buatlah iterval kofidei 90 % utuk erbedaa tiggi dari kedua oulai 9 Diambil amel murid yag megikuti elajara matematika dega metode moder, kemudia diambil amel lai 0 murid yag megikuti elajara matematika dega metode koveioal Pada akhir emeter ujia dega oal yag ama diberika ada maigmaig kelomok Samel kelomok ertama mecaai ilai ratarata 85 dega deviai tadar 4, edag amel kelomok kedua mecaai ilai ratarata 8 dega dega deviai tadar 5 Hituglah iterval kofidei 90 % utuk erbedaa atara mea oulai
9 Meakir Proori π Mialka kita memuyai ebuah oulai berukura N dimaa terdaat roori π utuk eritiwa A yag ada di dalam oulai itu Sebuah amel acak berukura diambil dari oulai ii Mialka terdaat eritiwa A, ehigga roori π amel utuk eritiwa A = (/) Jadi titik takira utuk adalah / Utuk memeroleh takira yag lebih tiggi derajat keercayaaya, diguaka iterval takira atau elag takira diertai ilai koefiie keercayaa yag dikehedaki
10 a Jika (/N) 5% q π + q b Jika (/N) > 5% q N π + N q N N Dega = koefiie keercayaa da = bilaga didaat dari tabel ormal baku utuk eluag ½
11 Meakir Seliih Proori Mialka kita memuyai dua buah oulai, dega arameter utuk eritiwa yag ama maigmaig π da π Dari oulai ii ecara ideede maigmaig diambil ebuah amel acak berukura dari oulai keatu da dari oulai kedua Proori utuk eritiwa yag dierhatika dari amelamel itu adalah = / da = / dega da berturutturut meyataka bayakya eritiwa yag dierhatika yag didaat didalam amel keatu da kedua
12 Aka ditetuka iterval takira utuk π π ebagai berikut : q q ) ( q q ) ( π π Dega = koefiie keercayaa da = bilaga didaat dari tabel ormal baku utuk eluag ½
13 LATIHAN SOAL Sebuah amel radom terdiri dari 50 lulua SMU di kota A, 65 orag diataraya megataka bahwa mereka megharaka daat melajutka tudiya ke Pergurua Tiggi Negeri Hituglah iterval kofidei 99% utuk roori yag eugguhya Dari amel radom ebayak 600 waita yag berumur tahu keata di kota B telah diwawacarai, 378 orag diataraya megataka bahwa mereka lebih memilih bekerja full time dariada arttime Hituglah iterval kofidei 95% utuk roori yag eugguhya 3 Samel radom ebayak 00 butir telur telah diambil dari 000 butir telur yag dikirim dari daerah A ke daerah B Dari amel terebut diketahui 8 diataraya ecah atau ruak Hituglah iterval kofidei 95% utuk roori telur yag ecah atau ruak dari 000 telur terebut
14 4 Dari amel radom ebayak 400 ibu rumah tagga di kota A, 40 diataraya lebih meyukai abu cuci merk Rio dariada merk laiya Samel radom lai di kota B ebayak 00 ibu rumah tagga diketahui 80 diataraya lebih meyukai abu cuci merk Rio dariada merk laiya Etimaika erbedaa roori ibu rumah tagga yag lebih meyukai abu cuci merk Rio dari kedua kota itu Guaka iterval kofidei 95% 5 Dari amel radom ebayak 400 emira dewaa da Dari amel radom ebayak 400 emira dewaa da 600 emira remaja yag megikuti rogram iara TV tertetu, diketahui 00 emira dewaa da 300 emira remaja meujukka bahwa mereka meyeagi jei iara TV terebut Etimaika erbedaa roori emira yag meyeagi rogram iara TV terebut atara emua emira dewaa da emira remaja Guaka iterval kofidei 95%
ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga
ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya
Teori Penaksiran. Oleh : Dadang Juandi
Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam
INTERVAL KEPERCAYAAN
INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira
Teori Penaksiran. Oleh : Dewi Rachmatin
Teori Peakira Oleh : Dewi Rachmati Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam
Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi
Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik
1. Ilustrasi. Materi 2 Pendugaan Parameter
Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu
A. Interval Konfidensi untuk Mean
ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha
Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga
A.Interval Konfidensi pada Selisih Rata-rata
A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah
Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval
Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi
PENDUGAAN PARAMETER. Ledhyane Ika Harlyan
PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai
Bab 6 PENAKSIRAN PARAMETER
Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :
Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval
Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi
Metode Statistika Pertemuan IX-X
/7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK
Statistika 2. Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.
Statistika Toik Bahasa: Pegujia Hiotesis Oleh : Edi M. Pribadi, SP., MSc. E-mail: [email protected]. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu
PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH
PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER Populai : Parameter Sampel : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ebara cotoh PENDUGA TAK BIAS DAN MEMPUNYAI
1. Pendahuluan. Materi 3 Pengujuan Hipotesis
Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis
Tetapi apabila n < 5% N maka digunakan :
Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar
Pengujian Hipotesis untuk selisih dua nilai tengah populasi
Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika
Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu
Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:
Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa
A. PENGERTIAN DISPERSI
UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa
MINGGU KE XII PENDUGAAN INTERVAL
MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa
Pendugaan Parameter 1
Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai
BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model
3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah
Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil
Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I
BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F
BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab
Metode Statistika Pertemuan XI-XII
/4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Tujua Peelitia Berdaarka rumua maalah pada BAB I, peelitia kuatitatif ii bertujua utuk megetahui efektivita metode pembelajara dicovery dega megguaka Papa Tempel egi Empat
Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO
Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa
BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai
3 BAB II ESTIMASI STATISTIK. Pegertia Etimai a. Etimai merupaka uatu metode dimaa kita dapat memperkiraka ilai Populai dega memakai ilai ampel. b. Etimai merupaka kegiata pearika keimpula tatitik yag berawal
Mata Kuliah: Statistik Inferensial
STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: [email protected] PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui
ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto
Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).
Praktikum Perancangan Percobaan 9
Praktikum Peracaga Percobaa 9 PRAKTIKUM RANCANGAN ACAK LENGKAP A. Tujua Istruksioal Khusus Mahasiswa diharaka mamu: a. Megguaka kalkulator utuk meyelesaika aalisis ragam RAL b. Megguaka kalkulator ada
BAB IV DESKRIPSI ANALISIS DATA
BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka
JENIS PENDUGAAN STATISTIK
ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka
III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar
7 III. METDE PENELITIAN A. Populai Peelitia Populai peelitia ii yaitu eluruh iwa kela MA Negeri Badar Lampug dega ampel kela, pada emeter geap Tahu Pelajara 0/0. B. ampel Peelitia Tekik pegambila ampel
Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand
TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh
STATISTIK PERTEMUAN VIII
STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag
III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3
III. METODOLOGI PENELITIAN A. Populai da Sampel Peelitia Populai dalam peelitia ii adalah emua iwa kela I IPA SMA Al Azhar-3 Badar Lampug tahu ajara 0/0 yag berjumlah 48 iwa da terebar dalam empat kela.
UKURAN PEMUSATAN UKURAN PENYEBARAN
UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU
DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin
DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa
UKURAN PEMUSATAN DATA
Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN
INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi.
INFERENSI STATISTIK Iferei tatitik mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai populai. Iferei Statitik Pedugaa Parameter Pegujia Hipotei PENDUGAAN PARAMETER Pedugaa parameter
PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:
PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)
STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka
Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015
Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi
Analisa Data Statistik. Ratih Setyaningrum, MT
Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.
Statistika. Besaran Statistik
Statitika Beara Statitik Itiarto Statitical Meaure Commo tatitical meaure Meaure of cetral tedecy Mea Mode Media Meaure of variability Rage Variace Stadard deviatio Meaure of a idividual i a populatio
BAB 6 PENAKSIRAN PARAMETER
BAB 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Standar Kompetensi : Setelah mengikuti kuliah ini, mahasiswa dapat memahami hubungan nilai sampel dan populasi dan menentukan distribusi sampling yang
Statistika Inferensial
Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi
BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan
BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1
x = μ...? 2 2 s = σ...? x x s = σ...?
Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)
Pendugaan Parameter. Debrina Puspita Andriani /
Pedugaa Parameter 7 Debria Puspita Adriai E-mail : [email protected] / [email protected] Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus
-Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jei Peelitia Peelitia ii merupaka peelitia ekperime. Peelitia ekperime yaitu peelitia yag egaja membagkitka timbulya uatu kejadia atau keadaa, kemudia diteliti bagaimaa akibatya
METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa
19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh
METODE PENAKSIRAN PENAKSIRAN ILUSTRASI CONTOH. pendekatan metode tertentu. Nilai sesungguhnya dari suatu parameter yang berada di selang tertentu.
ENAKIRAN eaksira Titik eaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk MA 08 tatistika Dasar Dose : Udjiaa. asaribu Utriwei Mukhaiyar 6 April 009 METODE ENAKIRAN. eaksira Titik Nilai tuggal dari
3/27/2013. Ali Muhson, M.Pd. Jenisnya. Uji Beda Rata-rata. Uji z Uji t. Uji Beda Proporsi. Uji z. (c) 2013 by Ali Muhson 2
3/7/03 Ali Muhso, M.Pd. Jeisya Uji Beda Rata-rata Uji z Uji t Uji Beda Proorsi Uji z (c) 03 by Ali Muhso 3/7/03 Jeis Uji Beda Rata-rata dua kelomok Dua Kelomok Salig Bebas (Ideedet Samles): Uji z utuk
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG MASALAH
BAB ENDAHULUAN. LATAR BELAKANG MASALAH Dalam kehidua yata, sejumlah feomea daat diikirka sebagai ercobaa yag mecaku sederata egamata yag berturut-turut da buka satu kali egamata. Umumya, tia egamata dalam
PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA
PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka
: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd
R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram
BAB V ANALISA PEMECAHAN MASALAH
89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada
Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.
Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,
Perilaku Distribusi Bernoulli. Definisi: Bernoulli. Contoh Binomial. Contoh Binomial
Defiisi: Beroulli ercobaa Beroulli: Haya terdaat satu kali ercobaa dega eluag sukses da eluag gagal - eluag Sukse: eluag Gagal: ( = ) = ( = 0 ( = 0) = ( 0 0 = erilaku Distribusi Beroulli E() = Var () =
SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.
SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data
BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan
BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu
Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,
DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara
Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui
Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,
MATERI DAN METODE. Gambar 1. (a). Kambing PE Kondisi A, (b). Kambing PE Kondisi B, (c). Kambing PE Kondisi C, (d). Kambing PE Kondisi D.
MATERI DAN METODE Tempat da Waktu Peelitia Peelitia ii dilakaaka elama bula, yaitu dari bula Jauari ampai Februari 0. Pelakaaa peelitia dilakuka di peteraka kambig perah Cordero, peteraka kambig perah
Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd
Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag
III. METODE PENELITIAN
9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja
PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]
PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu
III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.
9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara
Distribusi Sampel Sampling Distribution
Chapter 5 Studet Lecture otes 5-1 Samplig Distributio Pegatar Distribusi mea Sampel dari ilai Rata-rata Distribusi mea Sampel dari ilai Proporsi Chap 5-1 Distribusi sampel adalah f() distribusi dari ratarata
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu
ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN
8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika
Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.
Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya
SEBARAN t dan SEBARAN F
SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita
--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University
--Fiherie Data Aalyi-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fiherie ad Marie Sciece Brawijaya Uiverity Tujua Itrukioal Khuu Mahaiwa dapat megguaka aalii tatitika ederhaa dega berfoku ukura
Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai
PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,
BAB 2 LANDASAN TEORI
LNDSN TEORI. robabilitas robabilitas adalah suatu ilai utuk megukur tigkat kemugkia terjadiya suatu eristiwa evet aka terjadi di masa medatag yag hasilya tidak asti ucertai evet. robabilitas diyataka atara
BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA
BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,
BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.
BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Racaga da Jeis Peelitia Racaga peelitia ii adalah deskriptif dega pedekata cross sectioal yaitu racaga peelitia yag meggambarka masalah megeai tigkat pegetahua remaja tetag
BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h
BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari
BAB III PEMBAHASAN. sebagaimana dinyatakan pada Persamaan (2.1). Model antrian. memiliki enam ciri.
BAB III EMBAHASAN Di dalam krii ii aka dibaha megeai ukura keefektifa item atria da otimaliai model ( M / M / ) : ( FFS / / ) dega megguaka model biaya Namu, ebelum membaha ukura keefektifa da otimaliai
REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan
REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k
