HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN

Ukuran: px
Mulai penontonan dengan halaman:

Download "HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN"

Transkripsi

1 HUBUNGAN ARKS AB DAN BA ADA SRUKUR ORDAN NLOEN Sodag uraasar aaha UB-U eda Elva Herawaty FA ateata Uverstas Suatera Utara ABSRAC ths aer, we gve aother roof about the relatosh betwee AB ad BA wth egevalue zero that reduced by structure orda for lote atr Keywords egevalue, lotet atr, structure orda erala dua atrs uadrat AB da BA tda selalu outatf, teta bua berart AB da BA tda euya hubuga satu dega yag laya. Salah satu hubuga yag deroleh elalu trace (AB) = trace(ba) Hubuga atrs AB da BA yag la derlhata oleh Flader (9), elalu strutur orda AB da BA sebaga berut. Utu la ege ta ol, strutur orda AB saa dega strutur orda BA. Utu la ege ol a da uurauura blo orda AB da dega uurauura blo orda BA, aa ; yatu strutur orda eduaya aa a sebesar satu atau relatf saa. Hubuga atr AB da BA uga derlhata Flader (9) dega egguaa ose ebag ol atas laaga secara uu, yag relatf abstra. hoso (968) ebuta eryataa Flader dega egguaa ose ra da arer da tchell (9) ebutaya dega egguaa ose varas, teta eduaya tda ebera but yag trasara. Dala teor atrs, strutur orda dar suatu atrs lote euya betu yag has, yatu blo-blo ordaya berbetu atrs lote dega etr satu ada suerdagoal da etr ol ada oss laya, da atrs lote euya la ege ol (Hor & ohso, 98). elhat eryataa yag dbera oleh Hor da ohso (98) utu atr lote, aa tbul ertayaa, aaah eryataa Fleder (9) yag edua daat dbuta taa egguaa ose ebag ol da lebh trasara?

2 ural ateata, Sas, da eolog, Volue 9, Noor, aret 9, - ulsa ebahas cara ebuta yag berbeda tetag hubuga strutur orda atara erala atrs AB da BA haya ada atrs lote. KONSE DASAR Strutur orda utu atrs lote dbera oleh Hor da ohso (98) sebaga berut Seta atrs lote L berdes slar e betu atrs dega blo- blo dagoal N = dag,,,, yatu ada atrs vertble sehgga berlau N A dega seta blo da dega. Dala hal berlau. ulah blo d N sebaya = d N(L). Uura blo orda terbesar d N adalah. ulah blo yag beruura d dtetua oleh r- r + r+ dega r = ra ( L ) Cotoh Dbera atrs L sebaga berut L aa L adalah atrs lote berdes. Bayaya blo N adalah d N (L) = 6 ra ( L) =. Dega r = ra ( L ) = r = ra ( L ) = da r = ra ( L ) =. Baya blo beruura = r r + r4 =, blo beruura = r r + r =, baya blo beruura = r r + r =.

3 aaha, Hubuga atrs AB da BA ada Strutur orda Nlote Oleh area tu blo orda dar L adalah N = Dar atrs lote L berdes slar e betu atrs dega blo- blo dagoal N = dag (,,, utu, deroleh atrs vertble. Keuda dbuat atr utu = + sebaga berut Dala hal atrs uga vertble dega ( ) = ) (. a dbera L D, aa ') ( A L D (*) Karea D berua atrs lote berart slar ebetu atrs blo orda, yatu ada atrs vertble Q sehgga Q - D Q = (**) Dega, Agar (*) da (**) euya betu yag saa derlua egerta berut ) a betu D sebaga berut D da dlh eberadaa = dega. Dala hal elas vertbel da berlau Y Y D dega Y =

4 ural ateata, Sas, da eolog, Volue 9, Noor, aret 9, - 4 Karea aa seta blo dar atrs - D euya ( ) bars ertaa berla ol da ada bars e- etrya saa seert. ) ada lagah seta blo abl etr ada bars e-, euda betu atrs R, yag berart beruura. atrs R ada atrs R dlaua redus bars taa elaua ertuara bars da euda redus olo, sehgga deroleh atrs R yag berbetu - dega ucul alg baya satu ada seta bars da olo. Buat atrs sebaga berut ) ada atrs dlaua a) eghaus blo bars e- dar sebelah atas da blo olo e- dar sebelah r b) eghaus blo bars e- dar sebelah bawah da blo olo e- dar sebelah aa. aa dar blo etr yag dhaus deroleh atrs da eruaa subatrs dar setelah roses egelasa. a = [,,, ] t da aa a = [,,, ] t aa. Artya a aa slar secara erutas dega

5 aaha, Hubuga atrs AB da BA ada Strutur orda Nlote Dar lagah observas daat dbuat lea berut Lea a A atrs loote dega blo orda utu da atrs D = L lote beruura dega blo-blo orda utu aa da ) Blo = utu ) utu =,,, Utu eerlhata hubuga strutur orda atrs AB yag beruura dega strutur orda BA yag beruura cuu dasusa B B A da B yag dbawa ebetu blo atrs yag bersesuaa. B B deroleh B B B AB da BA. O B B B Utu AB dega det (AB - ) = ebera la ege atau. O Utu aa cuu dasusa B berbetu atrs lote. a dalasa lea d atas, berart strutur orda AB saa dega BA atau a sebesar satu. ENUU Hubuga strutur orda atara erala atrs AB da BA utu la ege relatf saa atau berbeda sebesar satu uura, daat derlhata taa egguaa ose abstra haya ada atrs lote. Utu atrs secara uu but d atas tda berlau. REFERENS Flades, H. (9). Eleetary dvsors of AB ad BA. roc. Aer. ath. Soc,, Hor, R.A. & ohso, C.R. (98). atr aalyss. New Yor Cabrdge Uvesty ress. hoso, R.C. (968). O the atrces AB ad BA. Lear Algebra Al,, 4-8 arer,.v., & tchell (9). Eleetary dvsors of certa atrces. Due ath, 9, 48-48

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275 ENENTUKN INVERS RZIN RI TRIKS SINGULR Lisilwati Khasaah da Babag Irawato Progra Studi ateatia FIP UNIP lprofsoedarto SH Searag 7 bstract sigular atri with size has a iverse be called razi iverse ad deoted

Lebih terperinci

PROSEDUR PENGUJIAN HIPOTESIS SEHUBUNGAN DENGAN AKAR-AKAR LATEN DARI MATRIKS KOVARIANS (Dalam Analisis Komponen Utama)

PROSEDUR PENGUJIAN HIPOTESIS SEHUBUNGAN DENGAN AKAR-AKAR LATEN DARI MATRIKS KOVARIANS (Dalam Analisis Komponen Utama) H. Maa Suhera,Drs.,M.S PROSEDUR PEGUJIA HIPOTESIS SEHUBUGA DEGA AKAR-AKAR LATE DARI MATRIKS KOVARIAS (Dala Aalss Kopoe Utaa) Abstra Utu ebuat espula tetag araterst populas ultvarat husuya populas varat

Lebih terperinci

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING Afra, Ar Kaal Ar da Nur Erawaty Jurusa Mateata Faultas Mateata da Ilu Pegetahua Ala Uverstas Hasaudd (UNHAS) Jl. Perts Keerdeaa KM.0 Maassar 90245, Idoesa [email protected]

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS [email protected] ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

BAB III FUZZY C-MEANS. mempertimbangkan tingkat keanggotaan yang mencakup himpunan fuzzy sebagai

BAB III FUZZY C-MEANS. mempertimbangkan tingkat keanggotaan yang mencakup himpunan fuzzy sebagai BB III FUZZY C-MENS 3. Fuzzy Klasterg Fuzzy lasterg erupaa salah satu etode aalss laster dega epertbaga tgat eaggotaa yag eaup hpua fuzzy sebaga dasar pebobota bag pegelopoa (Bezde,98). Metode erupaa pegebaga

Lebih terperinci

BAB 3 Interpolasi. 1. Beda Hingga

BAB 3 Interpolasi. 1. Beda Hingga BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Persoala utaa yag dhadap oleh seorag aaer atau pegabl eputusa adalah bagaaa egaloasa suatu suber yag terbatas datara berbaga atvtas atau proye Progra lear adalah suatu etode yag dapat

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] PROSIING ISBN : 978 979 6353 9 4 LOCALLY AN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-UNFOR PAA [a,b] A-8 Solh, Y Suato, St Khabbah 3,,3 Jurusa Mateata, Faultas Sas da Mateata, Uverstas poegoro

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

PERBANDINGAN ESTIMATOR KERNEL DAN ESTIMATOR SPLINE DALAM MODEL REGRESI NONPARAMETRIK

PERBANDINGAN ESTIMATOR KERNEL DAN ESTIMATOR SPLINE DALAM MODEL REGRESI NONPARAMETRIK NM VI 3-6 Jul 0 UNPAD, Jatagor PERBANDINGAN ESTIMATOR ERNEL DAN ESTIMATOR SPLINE DALAM MODEL REGRESI NONPARAMETRI I OMANG GDE SUARSA, I GUSTI AYU MADE SRINADI, NI LUH AYU PUSPA LESTARI 3 Jurusa Mateata

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

BAB III T 2 HOTELLING PADA DATA SUBGRUP

BAB III T 2 HOTELLING PADA DATA SUBGRUP BAB III HOELLING PADA DAA SUBGRUP Pada tahu 94, Walter. A. Shewart d Bell elehoe Laboratores ectaa suatu gra otrol statsta utu egotrol varabel-varabel etg ada roses rodus. Gra derraa sebaga cal baal dar

Lebih terperinci

BAB 2 KAJIAN TEORITIS

BAB 2 KAJIAN TEORITIS BAB KAJIAN TEORITIS Desrps Teor Utu ebera dasar peulsa srps, terlebh dahulu pada baga aa dgabara secara rgas osep dasar yag berhubuga dega rptograf sepert defs rptograf, algorta rptograf, sste rptograf,

Lebih terperinci

π ( ) menyatakan peluang bahwa

π ( ) menyatakan peluang bahwa GRF RN SNY D SSTE ERSN CHN- OOGOROV u Nugrahe Jurusa eddka atematka F Uverstas uhammadyah uroreo Jala H.. Dahla uroreo e-mal: [email protected] bstrak Tuua dar eulsa adalah megetahu kostruks betuk graf alra

Lebih terperinci

PROGRAM LINIEAR DENGAN METODE SIMPLEX

PROGRAM LINIEAR DENGAN METODE SIMPLEX POGAM LINIEA DENGAN METODE SIMPLEX A. TEKNIK PENYELESAIAN Betuk Soal Progra Lear Kedala utaa asalah rogra lear daat eretuk a atau a atau a. Kedala yag eretuk ertdaksaaa daoat duah ead ersaaa seaga erkut

Lebih terperinci

Analisis Sensitivitas

Analisis Sensitivitas Analss Senstvtas Terdr dar aa : Analss Senstvtas, bla terad perubahan paraeter seara dsrt Progra Lnear Paraetr, bla terad perubahan paraeter seara ontnu Maa-aa perubahan pasa optu: Perubahan suu tetap,

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN Pada baga awal bab, aa delasa latar belaag da tuua peelta yag dlaua. Seetara tu pada baga ahr bab aa dperlhata afaat dar peelta bag perusahaa. 1.1 Latar Belaag Masalah trasportas da dstrbus

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur

Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur Jural Matemata Itegrat ISSN 4-4 Vol. 9 No. Otober 0 pp. -9 Pelabela Total Super Ss Ajab Pada Gra Caterpllar Teratur Trya St Rahmah Nursham Muta Nur Estr Program Stud Matemata Jurusa MIPA Faultas Sas da

Lebih terperinci

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia?

MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK. Masalah 1 Terdapat berapa carakah kita dapat memilih 2 baju dari 20 baju yang tersedia? Kartia Yuliati, SPd, MSi MASALAH DAN ALTERNATIF JAWABAN DALAM MATEMATIKA KOMBINATORIK Masalah Terdapat berapa caraah ita dapat memilih baju dari 0 baju yag tersedia? Cara Misala baju diberi omor dari sampai

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d

Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d Jural Grade Vol4 No Jul 008 : 37-38 Kaja Hubuga Koefse Korelas Pearso (r), Spearma-rho (ρ), Kedall-Tau (τ), Gamma (G), da Somers ( d yx ) Sgt Nugroho, Syahrul Abar, da Res Vusvtasar Jurusa Matemata, Faultas

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura

Lebih terperinci

Koefisien Korelasi Spearman

Koefisien Korelasi Spearman Koefe Koela Speama La hala dega oefe oela poduct-momet Peao, oela Speama dapat dguaa utu data beala mmal odal utu edua vaabel ag heda dpea oelaa. Lagah petama ag dlaua utu meghtug oefe oela Speama adalah

Lebih terperinci

RUANG BANACH PADA RUANG BARISAN, DAN

RUANG BANACH PADA RUANG BARISAN, DAN RUANG BANACH PADA RUANG BARISAN, DAN Wahidah Alwi* * Dose ada Jurusa Mateatia Faultas Sais da Teologi UIN Alauddi Maassar e-ail: [email protected] Abstract: The ai object of the vectors are the vectors

Lebih terperinci

Aplikasi Pemetaan Kucing Arnold pada Logo UNHAS

Aplikasi Pemetaan Kucing Arnold pada Logo UNHAS Vol. 3, No., -, Jauari 07 Aliasi Peetaa Kucig Arold ada Logo UNHAS Ara Efedi Abstra Peetaa ii eetaa bujursagar S x, y 0 x,0 y secara satu-satu da ada egguaa trasforasi Tx, y x y, x y od. Misala x, y adalah

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data Raguma. Statt meyataa umpula data yag dapat berupa aga yag damaa data uattat maupu o aga yag damaa data ualtat yag duu dalam betu tabel da atau dagram/gra, yag meggambara da mempermudah pemahama aa aga

Lebih terperinci

UKURAN DASAR DATA STATISTIK

UKURAN DASAR DATA STATISTIK UKURAN DASAR DATA STATISTIK UKURAN PUSAT Apa yag dapat ta smpula secara gamblag da cepat dar data yag dsodora berut : Tabel 1 Sampel Data Karyawa peserta Jamsoste Nama Sex Status Kerja Gaj/Bl Umur NATUL

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t) BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

Regresi Logistik Ordinal untuk Menganalisis Faktor-Faktor yang Mempengaruhi Perilaku Sexual Remaja

Regresi Logistik Ordinal untuk Menganalisis Faktor-Faktor yang Mempengaruhi Perilaku Sexual Remaja Jural EKSONENSIAL Volume, Nomor, Me 0 ISSN 085-789 Regres Logst Ordal utu Megaalss Fator-Fator yag Memegaruh erlau Seual Remaa Ordal Logstc Regresso for Aalyss Factors of Ifluece Behavor Adolecet Seual

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam

BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si ANALISIS MULTIVARIAT Pegatar Aal Multvarat Lauta Irlada Gaar M.S Jurua Stattka FMIPA Uad Nota utuk varabel varabel berkala l terval atau rao k bl k Vektor varabel acak: Nla haraa vektor Nla haraa vektor

Lebih terperinci

Materi Bahasan. Pemrograman Bilangan Bulat (Integer Programming) Pemrograman Bilangan Bulat. 1 Pengantar Pemrograman Bilangan Bulat

Materi Bahasan. Pemrograman Bilangan Bulat (Integer Programming) Pemrograman Bilangan Bulat. 1 Pengantar Pemrograman Bilangan Bulat Mater Bahasa Pemrograma Blaga Bulat (Iteger Programmg) Kulah - Pegatar pemrograma blaga bulat Beberapa cotoh model pemrograma blaga bulat Metode pemecaha blaga bulat Metode cuttg-plae Metode brach-ad-boud

Lebih terperinci

Kuliah 9 Filter Digital

Kuliah 9 Filter Digital TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah

Lebih terperinci

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space)

KEKONVERGENAN INTEGRAL HENSTOCK-PETTIS. PADA RUANG EUCLIDE R (Henstock-Pettis Integral Convergence in Euclidean Space) Harur Rahma da Soeara Darmawjaya, Keovergea Itegral Hestoc KEKONVERGENN INTEGRL HENSTOCK-PETTIS PD RUNG EUCLIDE R (Hestoc-Petts Itegral Covergece Eucldea Sace Harur Rahma da Soeara Darmawjaya 2 Uverstas

Lebih terperinci

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS

TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Jural Matematia Vol.6 No. November 6 [ 5 : ] TEOREMA CAYLEY-HAMILTON SEBAGAI SALAH SATU METODE DALAM PENGHITUNGAN FUNGSI MATRIKS Ooy Rohaei Jurusa Matematia, UNISBA, Jala Tamasari No, Badug,6, Idoesia

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

TINJAUAN PUSTAKA Statistical Proses Control Control Chart

TINJAUAN PUSTAKA Statistical Proses Control Control Chart TINJAUAN PUTAKA tatistical Proses Cotrol tatistical Proses Cotrol adalah salah satu cabag ilu statistia yag eelajari tetag eeraa tei statistia utu eguur da egaalisis variasi yag terjadi selaa roses rodusi

Lebih terperinci

Ir. Tito Adi Dewanto

Ir. Tito Adi Dewanto Ir. Tto A Dewato Dega megetahu la rata-rata saja,ormas yag apat aag-aag bsa salah terpretas. Msalya, ar ua elompo ata etahu rata-rataya sama, alau haya ar ormas ta suah meyataa bahwa ua elompo sama, mug

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : [email protected]

Lebih terperinci

Pemodelan Kondisi Jaringan Listrik PT. PLN (Persero) Area Surabaya Selatan dengan Analisis Regresi Logistik Ordinal

Pemodelan Kondisi Jaringan Listrik PT. PLN (Persero) Area Surabaya Selatan dengan Analisis Regresi Logistik Ordinal JURNAL SAINS DAN SENI ITS Vol. 6, No., (7) ISSN: 7-0 (-98X Prt) D86 Pemodela Kods Jarga Lstr PT. PLN (Persero) Area Surabaya Selata dega Aalss Regres Logst Ordal Des Olva Sswadar da Haryoo Dearteme Statsta,

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB III UKURAN PEMUSATAN (RATA-RATA)

BAB III UKURAN PEMUSATAN (RATA-RATA) BAB III UKUAN PEMUSATAN (ATA-ATA Salah sat ra mer yag mejelasa cr-cr data yag petg adalah ra pemsata, yat ra yag meja psat seggs data yag telah drta dar yag terecl sampa yag terbesar ata sebalya Ura pemsata

Lebih terperinci

Penelitian Operasional II Program Bilangan Bulat PROGRAM BILANGAN BULAT (INTEGER PROGRAMMING)

Penelitian Operasional II Program Bilangan Bulat PROGRAM BILANGAN BULAT (INTEGER PROGRAMMING) Peelta Operasoal II Program Blaga Bulat 37 3 PROGRAM BILANGAN BULAT (INTEGER PROGRAMMING) 3 PENDAHULUAN : Formulas Program Blaga Bulat da Aplasya Program Lear (LP) Program Lear basa dormulasa secara matemats

Lebih terperinci

Untuk mentukan titik tetap dari persamaan (3.1) maka persamaan tersebut dibuat sama dengan nol, yaitu dt 0. seperti dalam persamaan berikut dt dt dt

Untuk mentukan titik tetap dari persamaan (3.1) maka persamaan tersebut dibuat sama dengan nol, yaitu dt 0. seperti dalam persamaan berikut dt dt dt LAMIRA 4 5 Lamra eetua t eta ar eramaa 3. Utu metua tt teta ar eramaa 3. maa eramaa tereut uat ama ega ol yatu a ee alam eramaa erut t t t..................3 Dar eramaa aa eroleh la eaga erut t Dar eramaa

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 50 K MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE Kade Ad Dw Purwaa 2205 00 038 dose pembmbg :. Ir. Syarffudd M M.Eg. 2.

Lebih terperinci