Koefisien Korelasi Spearman
|
|
|
- Sudomo Susanto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Koefe Koela Speama La hala dega oefe oela poduct-momet Peao, oela Speama dapat dguaa utu data beala mmal odal utu edua vaabel ag heda dpea oelaa. Lagah petama ag dlaua utu meghtug oefe oela Speama adalah meguuta data mag-mag vaabel da data teecl ampa dega data tebea. Apabla X < X j, hau belau a(x ) < a(x j ), dega a(x ) meataa pegat/ag da data X. Beut adalah pedoma utu membea pegat pada data. Mala detahu buah paaga data (X,Y ), (X, Y ),, (X,Y ). Apabla belau X X j utu etap j (baca: etap la data X tuggal), pegat teedah ag dbea adalah da pegat tetgg ag dbea adalah. Dema pula apabla Y Y j utu etap j (baca: etap la data Y tuggal), pegat teedah ag dbea adalah da pegat tetgg ag dbea adalah. Apabla ada dua atau lebh data bela ama, aa belau pegat teedah da pegat tetgg. Utu mempega pembahaa, ag aa duaa d adalah caa membea pegat utu vaabel X. Pembea pegat utu vaabel Y dlaua dega caa ag ama. Apabla ada dua atau lebh data ag bela ama, pemegata dlaua dega caa beut: Lagah (Peomoa data). Bea omo mula omo,,, dt. ampa dega (bua pegat) pada data X dega etetua () < (j) ja da haa ja X X j, dega, j,,, da () meataa omo utu data X, (j) omo utu data X j. Catata: apabla X X j dbea eleluaaa utu membelaua () < (j) atau (j) < (). Lagah (Peguuta data). Defa utu,,,, : X X ω (ω,,,, ) edema hgga (ω). Lagah (Pembea pegat). Tjau uut-uuta blaga X,, X, X, L X. Pembea pegat utu buah data petama dalam dtetua ebaga beut: Tetua la ebea-beaa edema hgga X X L X. Utu etap X ag bela ama dega X, tetapa
2 a ( X ). Selajuta, tetua la ebea-beaa edema hgga X + X + X + L. Utu etap X ag bela ama dega X + tetapa a ( X ) ( + ). Begtu pu elajuta, tetua la ebea-beaa edema hgga X + + X + + L X + +. Utu etap X ag bela ama dega + + X tetapa a( X ) ampa emua X meml pegat. ( + + ). Lajuta poe dega pola eupa, Cotoh: Pehata elompo paaga data beut X Y Lagah da Lagah dapat dgaa pada tabel beut X () X Lagah : aea X X X 7. Pehata bahwa X X X 4 7 ehgga + + a ( X ) a( X ) a( X 4 ). aea X 4 X Pehata bahwa X X 5 45 ehgga a ( X ) a( X 5 ) 4, 5.
3 6 a 6.. Dalam hal X 6 X 6 5 ehgga ( X ) aea X 7 X 8 X 9 X 0 X 65. Pehata bahwa X 7 X 9 X X X 5 ehgga a ( X ) a( X ) a( X ) a( X ) a( X ) a Dalam hal X 8 X 7 ehgga ( X ) a Dalam hal X 0 X 75 ehgga ( X ) 7 aea X 4 X Pehata bahwa X X 4 80 ehgga a ( X ) a( X 4 ) 4, 5. Hal pembea pegat tu dapat daja ecaa ga dalam tabel beut: X X Ra (X ) 4,5 4, ,5 9 4,5 9 Pembea pegat utu Y dlaua ecaa eupa, da hala dapat dlhat pada tabel beut: Y Y Ra (Y ) 4 5,5,5 5,5 8,5 0 4,5 7 8,5 4 Yag mejad put utu meghtug oefe oela Speama adalah a mag-mag data. Jad, ag mejad put utu cotoh d ata adalah ebaga beut.
4 Ra(X ) Ra(Y ) 4 4,5 5,5,5 4 5,5 5 4,5 8, ,5 9 4, ,5 4 4, Setelah meguuta data, lagah elajuta adalah meetua d a(x ) a(y ), utu elajuta dpeguaa dalam umu: 6 d Jad, utu la utu cotoh d ata dhtug (utu emetaa) ebaga beut.
5 X Y Ra(X ) Ra(Y ) d d ,5 5,5-7 5,5 -,5, ,5 -,5, ,5 8, ,5 9,5 90, ,5 7 7,5 56, ,5 0,5 0, ,5 4 0,5 0, Jumlah 468,50 d ,50 0,6 5 5 Apabla popo la gada (ba utu X maupu Y ) cuup bea, pelu dlaua g g oe bag. Fato-fato oe teebut adalah T ( t t ) da T ( t t ) x x x x dega g x adalah baaa pegelompoa la-la gada ag bebeda bag a(x ), g adalah baaa pegelompoa la-la gada ag bebeda bag a(y ), baaa pegat gada dalam pegelompoa e- vaabel X, da t x adalah t adalah baaa pegat gada dalam pegelompoa e- vaabel Y. Utu cotoh d ata, g x 4 aea ada 4 elompo la gada ag bebeda bag a(x ), atu, 4 /, 9, da 4 /. Dema pula g 4 aea ada 4 elompo la gada ag bebeda bag a(y ), atu /, 5 /, 8 /, da 4. Peghtuga T x da T ebaga beut: T x ( ) + ( ) + (5 5) + (
6 ) 56, T ( ) + ( ) + ( ) + ( ) 4. Dega fato oe, umu mejad: ( ) 6 d ( Tx + T ) ( ) ( Tx + T )( ) + TxT Pada d ata, , T x + T , da T x T 655 ehgga mejad: ,5 98/ 0, Apabla dpeoleh da hal amplg, flutua amplg pelu dpetmbaga dalam memea apaah ada hubuga d ataa edua vaabel ag edag dtjau. Kaea tu, pelu dlaua uj hpote H 0 : ta ada hubuga ataa X da Y melawa H : ada hubuga ataa X da Y (au uj dua ) atau H : ada hubuga potf (atau egatf) ataa X da Y (au uj atu ). Pelu dtegaa d jaga meula hpote H 0 : ρ 0 melawa H : ρ 0 aea ρ 0 tda dapat membea empula bahwa edua vaabel alg beba (depedet) ecual edua vabel bedtbu omal. Caa peguja hpote teebut hau dbedaa meuut baaa ampel. Apabla 50, guaa Tabel Nla Kt. Apabla > 50 hpote ol dapat duj dega tatt z. Utu > 50 tatt teebut bedtbu medeat omal bau. Jad, utu cotoh d ata, apabla dguaa taaf ata α 0,05 dega H 0 : ta ada hubuga ataa X da Y melawa H : ada hubuga ataa X da Y ta ta boleh meola H 0 aea la t utu 5 dega α 0,05 adalah 0,5 (> 0,4). Apabla 0,5, H 0 dtola pada taaf ata 0,05 da ta mpula ada hubuga d ataa X da Y; peataa teebut gfa pada taaf ata 0,05. Adaa hal 0,4 dpeoleh dega baaa ampel 80 buah, meuut uaa d ata, utu memea gfa dguaa tatt z. Jad, z 0,4 (5-) 0,5. Da tabel lua daeah d bawah uva omal bau, dpeoleh bahwa z 0,05,96 ehgga la tatt z jatuh d daeah peolaa H 0 dega taaf ata 0,05 apabla dlaua uj dua. Dalam hal ta mpula ada hubuga gfa ataa X da Y.
adalah nilai-nilai yang mungkin diambil oleh parameter jika H
Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu
KAJIAN MODEL REGRESI ASYMTOTIC
Podg Sema Naoal Peelta, Pedda da Peeaa MIPA aulta MIPA, Uveta Nege Yogaata, 6 Me 009 KAJIAN MODEL REGRESI ASYMOIC Yul Ada, Da Cahawat, da Nov Yat Juua Matemata MIPA UNSRI Abta Model Rege ole meml ebaa
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1
HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w
dan µ : rata-rata hitung populasi x : rata-rata hitung sampel
Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura
Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data
Raguma. Statt meyataa umpula data yag dapat berupa aga yag damaa data uattat maupu o aga yag damaa data ualtat yag duu dalam betu tabel da atau dagram/gra, yag meggambara da mempermudah pemahama aa aga
BAB IV HASIL PENELITIAN DAN ANALISIS HASIL PENELITIAN. Adapun hasil penelitian akan dijelaskan sebagai berikut : TABEL 4.1
68 BAB IV HASIL PENELITIAN DAN ANALISIS HASIL PENELITIAN A. Hasl Peelta Adapu hasl peelta aka djelaska sebaga bekut : TABEL 4. Tabel IQ, Iteleges Gada da Tes Hasl Belaja pada Pokok Bahasa Kesebagua Kelas
BAB 4 SISTEM DINAMIK ORDE-TINGGI
Stem Damk Ore-Tgg 47 BAB 4 SISTEM DINAMI ORDE-TINI Stem amk ore-tgg gabuga ua atau lebh tem amk ore-atu. Cotoh:. Level cotrol paa tagk-tagk, bak yag tem o- terka oteractg ytem maupu yag terterak teractg
titik tengah kelas ke i k = banyaknya kelas
STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas
BAB 3 Interpolasi. 1. Beda Hingga
BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT
Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real
PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )
PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da
BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA
9 BAB III REVIEW SIFAT- SIFAT STATISTI PENDUGAAN TIPE ERNE BAGI FUNGSI INTENSITAS PROSES POISSON PERIODI DENGAN PERIODE GANDA 3. Perumua Peduga Malka adala proe Poo ag damat pada terval [0] dega fug teta
METODE PENELITIAN. Desain Penelitian yang digunakan dalam penelitian ini adalah deskriptif
III. METODE PENELITIAN 3.1 Dea Peelta Dea Peelta yag dguaka dalam peelta adalah dekptf aaltk, dega pedekata kuattatf da kualtatf. Pegguaa dea tekat dega tujua peelta yatu utuk medapatka gambaa tetag peep
Created by Simpo PDF Creator Pro (unregistered version)
Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data
BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam
BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya
BAB III TEOREMA GLEASON DAN t-desain
BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk
BAB II LANDASAN TEORI
5 A II LANDASAN TEORI Pada bab aa dbahas bebeapa teo alaba le yag meduug dalam peuua Teo Peo-Fobeus pada ab III Teo-teo yag aa dbahas beupa subuag vaa, poyeto, des mats, deomposs coe-lpotet, seta om da
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si
ANALISIS MULTIVARIAT Pegatar Aal Multvarat Lauta Irlada Gaar M.S Jurua Stattka FMIPA Uad Nota utuk varabel varabel berkala l terval atau rao k bl k Vektor varabel acak: Nla haraa vektor Nla haraa vektor
EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM
Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal
Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya
Untuk mentukan titik tetap dari persamaan (3.1) maka persamaan tersebut dibuat sama dengan nol, yaitu dt 0. seperti dalam persamaan berikut dt dt dt
LAMIRA 4 5 Lamra eetua t eta ar eramaa 3. Utu metua tt teta ar eramaa 3. maa eramaa tereut uat ama ega ol yatu a ee alam eramaa erut t t t..................3 Dar eramaa aa eroleh la eaga erut t Dar eramaa
STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu
8.4 GENERATING FUNCTIONS
8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah
PENERAPAN ANALISIS REGRESI DAN KORELASI DALAM MENENTUKAN ARAH HUBUNGAN ANTARA DUA FAKTOR KUALITATIF PADA TABEL KONTINGENSI
PNRAPAN ANALISIS RGRSI DAN KORLASI DALAM MNNTUKAN ARAH HUBUNGAN ANTARA DUA FAKTOR KUALITATIF PADA TABL KONTINGNSI Iwa Sugawa Mathematcs & Statstcs Depatmet, School o Compute Scece, Bus Uvesty Jl. K.H.
BAB III METODE PENELITIAN
30 BAB III METODE PENELITIAN A. Tujua Peelta Tujua ag g dcapa dalam peelta adalah utu megetahu apaah hasl belajar perserta dd elas IX MP Nusa Bagsa Mragge Dema pada mater poo volume bagu ruag ss legug
BAB 2 DASAR TEORI ALIRAN DAYA. Sistem tenaga listrik (Electric Power System) terdiri dari tiga komponen
BAB DAAR TEOR ALRAN DAA. Umum,,3,4 stem teaga lstr Electrc ower stem terdr dar tga ompoe utama, atu sstem pembagta teaga lstr, sstem trasms teaga lstr, da sstem dstrbus teaga lstr. Kompoe dasar ag membetu
BAB IV SISTEM TUNGGU (DELAY SYSTEM)
38 Da eayaa Traf BB IV SISTM TUGGU (DLY SYSTM) Kedaaga ae buffer erver µ Keberagaa ae Gambar 4. : model em uggu ada em uggu, aggla yag daag ada aa emua bu, aggla erebu meuggu ama ada alura/eralaa yag beba
PREDIKSI CUACA MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION-NEURAL NETWORK (PSONN)
emar Naoal Matemata da Aplaa, Otober 07 urabaa, Uverta Arlagga PREDIKI CUACA MENGGUNAKAN ALGORITMA PARTICLE WARM OPTIMIZATION-NEURAL NETWORK (PONN Dta Rahmala, Teguh Herlambag Program tud Matemata, Uverta
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.
ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)
BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut
Gambar 3.1Single Channel Multiple Phase
BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag
Pelabelan Total Super Sisi Ajaib Pada Graf Caterpillar Teratur
Jural Matemata Itegrat ISSN 4-4 Vol. 9 No. Otober 0 pp. -9 Pelabela Total Super Ss Ajab Pada Gra Caterpllar Teratur Trya St Rahmah Nursham Muta Nur Estr Program Stud Matemata Jurusa MIPA Faultas Sas da
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
PENDAHULUAN. Pembagian Statistik
PEDAHULUA PERAA STATISTIKA Dadar atau tda peraa tatta telah baya dguaa dalam ehdupa ehar-har. Dua peelta atau ret, dmaapu dlaua, bua aja telah medapata maaat yag ba dar tatta tetap erg haru megguaaya.
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMA YP Unila Bandarlampung yang berlokasi
III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMA YP Ula Badalampug yag belokas d Jl. Jedal R. Supapto No.88 Tajug Kaag Badalampug. Populas yag dguaka dalam peelta adalah seluuh sswa kelas
Pemodelan Pengangguran Terbuka di Jawa Timur dengan Menggunakan Pendekatan Regresi Spline Multivariabel
JURNAL SAINS DAN SENI ITS Vol., No., (Set. 0) ISSN: 0-98X D-6 Pemodela Pegaggua Tebua d Jawa Tmu dega Megguaa Pedeata Reges Sle Multvaabel Rul Sata Sa da I Nyoma Budataa Juusa Statsta, Faultas Matemata
BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk
5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh
PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA
PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda
BAB III MATERI DAN METODE. non karkas kambing Jawarandu betina dilaksanakan pada bulan Juli sampai
BAB III MATERI DAN METODE Peelta tetag hubuga ataa bobot potog dega bobot kakas da o kakas kambg Jawaadu beta dlaksaaka pada bula Jul sampa dega Oktobe 2016 d tempat pemotoga hewa (TPH) Bustama d Jala
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
HUBUNGAN MATRIKS AB DAN BA PADA STRUKTUR JORDAN NILPOTEN
HUBUNGAN ARKS AB DAN BA ADA SRUKUR ORDAN NLOEN Sodag uraasar aaha ([email protected]) UB-U eda Elva Herawaty FA ateata Uverstas Suatera Utara ABSRAC ths aer, we gve aother roof about the relatosh betwee
JENIS BUNGA PEMAJEMUKAN KONTINYU
JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa
Analisis Regresi Eksponensial Berganda (Studi Kasus: Jumlah Kelahiran Bayi di Kalimantan Timur pada Tahun 2013 dan 2014)
Jural EKSPONENSIAL Volume 6, Nomor, Nopember 5 ISSN 85-789 Aalss Regres Espoesal Bergada (Stud Kasus: Jumlah Kelahra Bay d Kalmata Tmur pada Tahu 3 da 4) Double Expoetal Regresso Aalyss (Case Study: Number
STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE
STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 50 K MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE Kade Ad Dw Purwaa 2205 00 038 dose pembmbg :. Ir. Syarffudd M M.Eg. 2.
Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d
Jural Grade Vol4 No Jul 008 : 37-38 Kaja Hubuga Koefse Korelas Pearso (r), Spearma-rho (ρ), Kedall-Tau (τ), Gamma (G), da Somers ( d yx ) Sgt Nugroho, Syahrul Abar, da Res Vusvtasar Jurusa Matemata, Faultas
100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400
h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat
Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori
Ruag Basa Sesh ( Δ ),< < da Bebeaa Pemasaaha Kaatesas Podu Teso ( Δ) ( Δ) Musm Aso Juusa Matemata, FMIPA, Uvestas Lamug J. Soemat Bodoegoo No. Bada Lamug 3545 E-ma: [email protected] ABSTRACT I ths ae we
BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.
BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks
STATISTIKA ELEMENTER
STATISTIKA ELEMENTER Statsta Apa tu statsta? Apa beda statsta dega statst? Populas? Sampel? Parameter? Sala Peguura: Nomal Ordal 3 Iterval 4 Raso Bagamaa r-r eempat sala d atas? Bera masg-masg otoh sala
Statistika Non Parametrik
. Pedahulua Statistika No Paametik Kelebiha Uji No Paametik: - Pehituga sedehaa da cepat - Data dapat beupa data kualitatif (Nomial atau Odial) - Distibusi data tidak haus Nomal Kelemaha Uji No Paametik:
COMPLETELY RANDOMIZED DESIGN (CRD)
COMPLETELY RANDOMIZED DESIGN (CRD) CRD Tdak ada kea pengelompokan: Lngkungan homogen Bahan homogen (pebedaan danaa expemenal un yang mempeoleh pelakuan yang ama dalam CRD debu ebaga expemenal eo) Ala homogen
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian
3 III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMAN Teusa Nuya. Populas dalam peelta adalah seluuh sswa kelas X SMAN Teusa Nuya semeste geap tahu pelajaa / yag bejumlah lma kelas. Kemampua
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).
UKURAN DASAR DATA STATISTIK
UKURAN DASAR DATA STATISTIK UKURAN PUSAT Apa yag dapat ta smpula secara gamblag da cepat dar data yag dsodora berut : Tabel 1 Sampel Data Karyawa peserta Jamsoste Nama Sex Status Kerja Gaj/Bl Umur NATUL
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M
JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS [email protected] ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.
Bab 16 Integral di Ruang-n
Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat
BAB 1 ERROR PERHITUNGAN NUMERIK
BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakanakan di Pulau Umang Reot Hotel Kabupaten Pandeglang. Yang menjadi objek penelitian adalah kayawan Pulau Umang Reot Hotel,
* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
* PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
Analisis regresi linear ganda bertujuan untuk mencari bentuk hubungan linear antara satu variabel terikat Y dan k variabel bebas X1, X2, X3,..., Xk.
EGESI DAN KOELASI LINEA GANDA Aalisis egesi liea gada etujua utu mecai etu huuga liea ataa satu vaiael teiat da vaiael eas,, 3,...,. Meetua pesamaa egesi liea gada Pesamaa egesi pada da adalah Dega metode
BAB III UKURAN PEMUSATAN (RATA-RATA)
BAB III UKUAN PEMUSATAN (ATA-ATA Salah sat ra mer yag mejelasa cr-cr data yag petg adalah ra pemsata, yat ra yag meja psat seggs data yag telah drta dar yag terecl sampa yag terbesar ata sebalya Ura pemsata
METODE PRIMAL AFFINE-SKALING UNTUK MASALAH PROGRAM LINEAR
PLGI ERUPKN INDKN IDK ERPUJI EODE PRIL FFINE-SKLING UNUK SLH PROGR LINER Srps Dajua utu emeuh Salah Satu Sarat emperoleh Gelar Sarjaa Sas Program Stud atemata Oleh: jeg Retojwat NI : 343 PROGR SUDI EIK
Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif
Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
Bab 6: Analisa Spektrum
BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi
Penelitian Operasional II Teori Permainan TEORI PERMAINAN
Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game
E ax by c ae X be Y c. 6.1 Pengertian Umum
6.1 Pegerta Umum Baya permasalaha yag dataya dyataa oleh lebh dar sebuah varabel. Hubuga atara dua atau lebh varabel dapat dyataa secara matemata sehgga merupaa suatu model yag dapat dguaa utu berbaga
Ir. Tito Adi Dewanto
Ir. Tto A Dewato Dega megetahu la rata-rata saja,ormas yag apat aag-aag bsa salah terpretas. Msalya, ar ua elompo ata etahu rata-rataya sama, alau haya ar ormas ta suah meyataa bahwa ua elompo sama, mug
MODUL BARISAN DAN DERET
MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi
H dinotasikan dengan B H
Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN. Latar elaag Salah atu baga petg yag tda dapat dpaha dalam eolah tgg da uverta adalah maalah peadwala mata ulah dega edala watu yag dga (prefere doe, mahawa, da bayaya ruaga yag terbata.
BAB II TINJAUAN PUSTAKA. analisis regresi logistik, dan analisis regresi logistik rare event.
BAB II TINJAUAN PUSTAKA. Peahulua Sebelum melaua pembahasa megea permasalaha ar srps, paa Bab II aa uraa beberapa teor peujag ag perraa apat membatu alam pembahasa bab-bab selajuta. Pembahasa paa Bab II
5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS
5//04 Matakulah: T EDALI Tahu : 04 Pertemuaa 45 Tempat eduduka Akar(Root Lou Aaly) Learg Outome Pada akhr pertemua, dharapka mahawa aka mampu : meerapka aal da aplka Tempat keduduka Akar dalam dea tem
Estimasi VaR Dengan Pendekatan Extreme Value * (Estimation of VaR by Extreme Value Approach)
Estmas VaR Dea Pedeata Exteme Value Estmato of VaR by Exteme Value Appoach Suoo, Subaa 2 & Ded Rosad 3 Juusa Matemata FMIPA UNPAD Badu, e-mal : [email protected] 2 Juusa Matemata FMIPA UGM Yoyaata, e-mal
2. Menghitung luas bangun datar. Persegi Panjang : L = AB x BC K = 2( p + l) = p x l A B. p = panjang l = lebar D C
SKL Nomo 3 : Memahami bangun data, bangun uang, gai ejaja, dan udut, eta menggunakannya dalam pemecahan maalah. 1. Menyeleaikan oal dengan menggunakan teoema Pythagoa eoema Pythagoa : kuadat hipotenua
4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data
//203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura
